
Handling of Current Time in Native XML Databases

Bela Stantic1 Guido Governatori2 Abdul Sattar1

1 Institute for Integrated and Intelligent Systems,
Griffith University, Brisbane Australia

2 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane Australia,

Email: B.Stantic@griffith.edu.au, guido@itee.uq.edu.au, A.Sattar@griffith.edu.au

Abstract

The introduction of Native XML databases opens many re-
search questions related to the data models used to represent
and manipulate data, including temporal data, in XML. In-
creasing use of XML for Valid Web pages warrants an adequate
treatment of now in Native XML databases. In this study, we
examined how to represent and manipulate now-relative tem-
poral data. We identify different approaches being used to rep-
resent current time in XML temporal databases, and introduce
the notion of storing variables such as ‘now’ or ‘UC’ as strings
in XML native databases. All approaches are empirically eval-
uated on a query that time-slices the timeline at the current
time. The experimental results indicate that the proposed ex-
tension offers several advantages over other approaches: better
semantics, less storage space and better response time.

Keywords: Native XML Databases, Temporal
Databases, current time

1 Introduction

There has been a lot of research into adding time to
different data models, for example to Semantic data
model, Knowledge-based data model and Entity Re-
lationship model. But most of the literature in tem-
poral databases is related to Relational and Object-
Oriented data model (Jensen 2000). A large number
of temporal data models were studied and the design
space for the relational data model has been exhaus-
tively explored (Date, Darwen & Lorentzos 2002).
Clifford et al. (Clifford, Croker & Tuzhilin 1994)
classified them as two main categories: temporally
ungrouped and temporally grouped. Although tem-
porally grouped models have long been known to be
more expressive and appealing to intuition (Clifford,
Croker, Grandi & Tuzhilin 1995), they cannot be sup-
ported easily in the framework of flat relations and
SQL, and therefore they have not been actually im-
plemented in temporal database projects and proto-
types (Ozsoyoglu & Snodgrass 1995).

Recently research in temporal representtion and
reasonng has been extended to XML. Research on
adding temporal features to XML has taken into ac-
count change, versioning, evolution and also explicitly
temporal aspects. Some extensions of the XML, such
as τXQuery language, have been proposed to extend
XQuery for temporal support (Chawathe, Abiteboul
& Widom 1999), (Gao & Snodgrass 2003). Recently,
database researchers, vendors and SQL standardiza-
tion groups started work toward extensions of SQL

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventeenth Australasian Database Con-
ference (ADC2006), Hobart, Australia. Conferences in Re-
search and Practice in Information Technology (CRPIT), Vol.
49. Gillian Dobbie and James Bailey, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

with XML capabilities (http://www.sqlx.org 2004)
and to support languages such as XQuery (XQuery
1.0: An XML query language 2004) on XML data
(Carey, Kiernan, Shanmugasundaram & et al 2000)
(Funderburk, Kiernan, Shanmugasundaram, Shekita
& Wei 2002). XML and XQuery can be viewed as a
new powerful data model and query language provide-
ing a better basis for representing and querying tem-
poral data. In contrast to relational databases tempo-
rally grouped data model is supported well by XML
and its query languages.

Most modern database applications involve a sig-
nificant amount of time dependent data and a sub-
stantial proportion of this data is now-relative, i.e.
the end time of their validity follows the current time.
Now-relative data are natural and meaningful part of
every temporal database as well as being the focus
of most queries. It has been shown that different se-
mantics for now in temporal relational environment
significantly influence performance (Torp, Jensen &
Bohlen 1999), (Stantic, Khanna & Thornton 2004).
As XML is used for Valid Web, which has temporal
features and is associated with current validity of Web
pages, handling now in XML is even more impor-
tant than in relational databases. While significant
research has been oriented toward adding different
temporal dimensions to XML and querying such data
with XQuery and on different extensions to XQuery,
handling current time or now has received only a little
attention. The majority of the proposals for simplic-
ity consider only closed intervals. For closed intervals
exact starting and ending point must be known up
front. This is obviously unrealistic in real applica-
tion domains. These proposals do not support data
where ending time of validity follows the current time,
now-relative data. Proposals that mentioned ‘now’
usually do so only briefly, in line with temporal re-
lational research, recommending the MAX approach
to represent current time or suggesting the usage of
user defined functions. These recommendations are
usually made without any further explanation or em-
pirical results that show the efficiency and support
the recommendation (Wang & Zaniolo 2003).

For the above reasons we decided to investigate
how different semantic for now influence not only
the performance but also the accuracy of the queries.
Also, we decided to investigate whether temporally
groping of data offers any advantage and better per-
formance than the direct conversion of relations to
XML. In order to do this testing we decided to use
data set generated in relational environment.

At first, we identify available options for represent-
ing now in XML-Temporal. Interestingly, the options
ruled out as not suitable for relational databases can
be considered as viable options for XML and Native
XML databases. We introduce the notion of storing
variables such as ‘now’ or ‘UC’ as strings in XML na-
tive databases. All approaches are empirically eval-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14983083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

uated on a query that time-slices the timeline at the
current time. The experimental results indicate that
the proposed extension offers several advantages over
other approaches: better semantics, less storage space
and better response time.

The remainder of this paper is organised as fol-
lows, in the next section we look more closely at
temporal dimensions of interest in XML. In Section
3 we demonstrate that any temporal data can be
viewed in two different ways: the DIRECT represen-
tation and in temporally grouped data model; both
can be represented in XML and efficiently queried by
XQuery. Furthermore in this section, we discuss avail-
able methods to represent current time and highlight
their limitations and disadvantages. Also, in Section
3, we illustrate the experiment taken to evaluate the
identified approaches to represent current time and
present the experimental results and analysis. Fi-
nally, in Section 4, we present our conclusions and
suggest future work.

2 Temporal data and XML

A significant percentage of data for web pages is dy-
namic and generated as a result of queries most often
in form of XML, so it is more natural and more con-
venient to store data directly in XML format. There
are two basic methods to store XML documents in
a database. The first is to map the document’s
schema to a database schema and transfer data ac-
cording to that mapping. The second is to use a fixed
set of structures that can store any XML document.
Databases that support the first method are called
XML-enabled databases while databases that support
the second method are called native XML databases
(xml.com 2005).

XML-enabled databases are useful when publish-
ing existing data as XML or importing data from an
XML document into an existing database. For in-
stance, DB2s XML Extender (www3.ibm.com 2005)
takes advantage of user-defined functions and stored
procedures to map between XML data and rela-
tional data. Another approach of XML-enabled
databases is a middleware based approach such as
used in SilkRoute (Fernandez, Tan & Suciu 2000) and
XPERANTO (Carey et al. 2000). However, XML-
enabled databases are not a good way to store com-
plete XML documents. The reason is because they
store data and hierarchy but discard everything else:
document identity, sibling order, comments, process-
ing instructions, and so on. This approach obviously
has some limitations as XML itself is more power-
ful and conversion from relational model to XML is
considered as straightforward, but the opposite con-
version is not always possible without some ingenuity.

Native XML databases, on the other hand, store
complete documents and can store any document, re-
gardless of schema. Native XML databases are used
in a wide number of fields, such as health care, ge-
netics, insurance, data integration, messaging, Web
sites, etc. The most popular of these are storing and
querying document-centric XML, integrating data,
and storing and querying semi-structured data. Na-
tive XML databases are used in these cases because
the data involved does not easily fit the relational
data model, while it does fit the XML data model.

In order to access data in XML that are valid at
particular (and most often present) time, it is neces-
sary to represent time dimensions in XML. This issue
opens a big question not only for databases but also in
computer science in general, i.e. how to handle and
store current time or now. The assumption mostly
taken in the literature is that only closed intervals of
validity exist (Wang & Zaniolo 2003). This is obvi-

ously unrealistic; often ending points will be unknown
and will follow the advancing current time indicating
that, for example, fact is valid now and that its end-
ing time of validity is unknown.

2.1 Time dimensionality of interest

Research on adding temporal features to XML has
identified different time dimensions of interest. The
focus of some approaches was on the representa-
tion and management of changes, where different
versions of data are produced by updates. In this
approach, temporal attributes are often used to
timestamp stored versions (Amagasa, Yoshikawa, &
Uemura 2000), (Chawathe et al. 1999) and they rep-
resent the time the updates were applied, which ba-
sically has the same semantics as transaction time.
Transaction time is the time that shows the status of
the data in a database, from when it is inserted in the
database to when it is logically deleted, if ever. With
respect to the Web, it represents the on-line availabil-
ity and versioning of resources in a Web site, even if
they are basically not created by transactions. This
notion of time requires storing the current time or
now to represent that the element is current and be-
long to the current database state that is not logically
deleted.

Another approach, basically represents the classi-
cal notion of valid time. It is a XML/XSL infrastruc-
ture, named ‘The Valid Web’, designed to represent
and manage temporal Web documents containing his-
torical information (Grandi & Mandreoli 2000). In
this approach timestamps are explicitly encoded by
the document authors to assign validity to informa-
tion content. Temporal documents can then be se-
lectively browsed in accordance with a user-supplied
temporal period of interest. This approach is further
extended in (Wang & Zaniolo 2002). The valid time
is the time when some fact is true in the real world.
In Web applications, it concerns the temporal validity
of the information carried by the contents of a Web
resource. It is obvious that this notion of time also
requires storing the current time or now. This is be-
cause it is expected to have facts that started to be
valid at certain past time, they are valid now, and
the end of their validity is unknown. The end time of
validity of facts follows the current time.

There are several other temporal dimensions that
have been also mentioned in the literature in relation
to XML: navigation time, which concerns the inter-
action of users during their browsing of Web sites.
Furthermore, a publication time, in the context of
legal documents, and efficiency time (Grandi, Man-
dreoli, Tiberio & Bergonzini 2003). Navigation time
and publication time do not require to store ‘now’ and
are relevant for this study.

2.2 Representation of temporal dimensions

There are basically two different approaches to repre-
sent temporal dimensions in XML.

• to represent timestamps by XML elements,

• to represent timestamps by the temporal at-
tributes of the XML elements.

For simplicity, in our running samples we will use
data from temporal relational databases but our dis-
cussion applies to any more complex nested XML
structure. We will consider valid time data but it
is applicable to any other temporal dimension that
requires to handle ‘now’. The running sample used
in this paper, which captures the history of Scott’s
positions, is shown in Table 1.

Name Position Vstart Vend
Scott A 2000-05-19 2001-03-12
Scott B 2001-03-12 2004-03-10
Scott C 2004-03-10 now

Table 1: Employment history

The first method represents a simple flat trans-
lation of relational attributes to XML elements, as
introduced in (Fernandez et al. 2000). In this model,
which we dubbed as the DIRECT model, each at-
tribute is represented by an element in XML. Accord-
ing to this approach, the XML structure representing
the data shown in Table 1 would look like:

<Employment>
<row>

<Name>Scott </Name>
<Position>A</Position>
<Vstart>2000-05-19</Vstart>
<Vend>2001-03-12</Vend>

</row>
<row>

<Name>Scott </Name>
<Position>B</Position>
<Vstart>2001-03-12</Vstart>
<Vend>2004-03-10</Vend>

</row>
<row>
<Name>Scott </Name>
<Position>B</Position>
<Vstart>2004-03-10</Vstart>
<Vend>now</Vend>

</row>
</Employment>

The second approach relies on XML ability to have
attributes within the elements. By adding attributes
to the element it becomes a complex type. But the
attributes themselves are always declared as a simple
type. This means that an element with attributes
always has a complex type definition. For example:

<Position Vstart="2000-05-19"
Vend="2001-03-12">A</Position>

This approach is suitable for storing XML tem-
poral data related to the representation and man-
agement of changes. Also, it is suitable to manage
temporal Web documents containing historical infor-
mation. Furthermore, this approach enables usage of
temporally grouped data model. Clifford et al. have
shown that the temporally grouped data model has
more expressive power and is more natural since it is
history oriented (Clifford et al. 1994).

It is possible to restrict data supplied for attributes
and also to ensure that they are supplied. When an
XML element or attribute has a type defined, it puts
a restriction on the element’s or attribute’s content.
For example, if an XML element is of type “xs:date”
and contains a string the element is not valid.

<xs:attribute name="Vstart" type="xs:date"
use="required"/>

Considering the running sample from Table 1 tem-
porally grouping data by Employee Name, will result
in data as represented in Table 2.

Temporally grouped data, presented in Table 2,
can be easily represented in XML using the attribute
approach:

<Employment Vstart="2000-05-19" Vend="now">
<Name Vstart="2000-05-19"

Name Position
2000-05-19 2000-05-19

A
2001-03-12

2001-03-12
Scott B

2003-02-15

2003-02-15
C

now now

Table 2: Temporally Grouped Valid Time History of
Employees

Vend="now">Scott </Name>
<Position Vstart="2000-05-19"

Vend="2001-03-12">A</Position>
<Position Vstart="2001-03-12"

Vend="2003-02-15">B</Position>
<Position Vstart="2003-02-15"

Vend="now">C</Position>
</Employment>

It is considered easy to perform different queries
using XQuery, for example to retrieve the snapshot
at the certain date on closed intervals in either of
approaches to add temporal dimensions to XML. But
it is an open question how to represent current time
or now in XML-temporal in order to efficiently and
accurately access open ended intervals, now-relative
XML-temporal data.

2.3 Modelling now-relative temporal data in
XML

In line with research in temporal databases applied to
relational technology, with respect to different repre-
sentations for now, we decided to evaluate same ap-
proaches in XML.

MAX

The often mentioned approach to represent current
time is to represent the current time as unrealistic
large date most often used ‘31-DEC-9999’, which in
XML to ensure the order has to be in format ‘YYYY-
MM-DD’ or ‘9999-12-31’. In the reminder of this pa-
per we will refer to this approach as MAX approach.

Considering the nature of XML and Native XML
databases, and the fact that data are stored as text,
there are several other different representations for
current time that could be of interest.

Null Data

Despite being ruled out as not suitable in relational
databases, as columns with NULL can not be effi-
ciently indexed, we decided to evaluate the NULL ap-
proach due to the specific nature of NULL in XML. In
the database world, null data means that data simply
is not there. Considering the XML, NULL can mean
that value is inapplicable or value is missing. XML
supports the concept of NULL data through optional
element types and attributes. If the value of an op-
tional element type or attribute is null, it simply is
not included in the document. As with databases, at-
tributes containing zero length strings and empty ele-
ments are not null: their value is a zero-length string.

Some Native XML databases offer the choice of
defining what constitutes NULL in an XML docu-
ment, including support for xsi:null attribute from
XML Schema.

Variables

Due to the nature of XML and Native XML databases
to store all data as text, it is possible to consider
variables such as ‘now’ or ‘UC’ (until changed) to be
stored as words ‘now’ or ‘UC’ to represent current
time. These variables can be simple stored as text in
native XML databases. Variables to represent current
time are widely recommended in the literature but
have not been appropriate for storing it in relational
temporal database environment, and this approach
has been ruled out. This is because date type can-
not accommodate such variables. In contrast XML
offers the possibility to create new complex data-type
that inherit properties of the data-types used to cre-
ate them. Thus it is possible to create a new tempo-
ral data-time as the union of normal time data-type
and the string ‘now’. In any case, even if XML has
data-types these are just defined as combinations of
Unicode characters, thus they are simply strings of
text.

A further advantage of the ‘now’ approach is that
opens the possibility to separate the time value repre-
sentation from the representation of now, for example
by introducing an empty and optional sub-element
<now/> of <vend>. Thus we can have:

<vend><now/></vend>

for the ending time of now. Accordingly queries
that require ‘now’ can traverse a path expression that
descents to now, e.g.,

//vend/now

while, for queries where this is not needed, the
expression

//vend < current-date()

is well-defined.
In addition, this strategy can take advantage of

DBMS offering element indexes beside word indexes.
In this case all <now/> will be included in an element
index and the index can be used to faster search. This
is in contrast with word indexes where ‘now’ can oc-
cur inside a sentence instead of as a special times-
tamp; consequently we have to check that the ele-
ments where ‘now’ occurs are of the right type.

3 Empirical study

In order to find the best choice for representing now in
XML we decided to test performance and accuracy of
all identified approaches. Testing was performed both
on XML structure where timestamps are represented
as XML elements (Direct model) and where times-
tamps are represented as attributes of XML elements
(on temporally grouped data). Also, we intended to
compare query response time and space usage for Di-
rect and grouped model.

During the experiment we identified that some of
the approaches to represent now do not yield the cor-
rect answer. This is the case if data contains closed
intervals where the ending point is bigger than the
current time. For that reason, we decided to include
in our tests checking whether the query yields the cor-
rect number of elements that satisfy the given condi-
tion.

3.1 Environment

The experimental results presented in this sec-
tion are computed on four 450MHZ CPU -
SUN UltraSparc II processor machine running

the open source Native XML eXist database
(eXist:http://exist.sourceforge.net/ 2004). During
the testing server did not have any other significant
load.

We decided to test the performance of a point
query that timeslices time line at the current time.
Point queries, as a special type of range queries, are
considered to be the most important query type for
temporal data. This is because it is expected that the
current state of reality will be queried most often.

Searching a native XML database is handled in dif-
ferent ways, depending on the vendor of the database.
Some native XML databases require the user to se-
lect the elements or attributes to be indexed. This
information is then used to build an index that the
searching mechanism can use to faster locate match-
ing documents. Other native XML databases simply
index all elements in a document, which obviously
causes the need for more storage space. Indexing all
elements in native XML databases has more sense
compared with indexing of all columns in a relational
database. While most of the XML native databases
use well proven B+-tree structures for indexing, spe-
cific demand of XML databases has forced introduc-
tion of different approaches such as: Reverse-Lookup
indexing and Forward Dictionary Segment Build-Up
indexing invented by QuiLogic, as well as traditional
indexing technologies like hashing. The native XML
eXist database, used for this experiment, uses B+-
tree structures for indexing. Users have option to de-
fine the elements and depth that should be indexed.

In our experiments index depth was set to three
and all elements were included in the index.

3.2 Data sets

In order to investigate the effect of different percent-
age of now-relative data we used different data distri-
butions. The start position of the intervals was always
uniformly distributed on the interval domain, while
the duration and percentage of now-relative data was
varied. The following data distributions have been
considered:

• Uniformly distributed interval start and uniform
distributed duration within the range [1,10000]
with 10% of uniformly distributed now-relative
data.

• Uniformly distributed interval start and uniform
distributed length within the range [1, 10000]
with 20% of uniformly distributed now-relative
data.

In relational environment 100.000 rows of sample
data was generated and then converted to XML for-
mat. Same sample data set represented in Direct
model required 400.000 elements while temporally
grouped model for same data, due to the grouping,
required only 154.256 XML elements. Part of data
for temporary grouped model is shown in Table 2.
For each approach to represent now we created two
XML files, one for temporally grouped model and one
for Direct model. XML files differ only on the sematic
to represent now. The resulting files were imported
into eXist XML Native database.

3.3 Query Sets

We focus on intersection queries and particularly on
Point queries as specific cases. The results for in-
tersection queries also hold for the containment and
enclosure queries, as those are a subset of the inter-
section query. We use two different query sets:

• Window: a set of queries sorted according to the
start point and with a fixed length. This query
set is covering the whole data space.

• Random: A set of random query intervals with
different answer size.

3.4 Results

All identified approaches to represent now have been
tested. For MAX approach, where current time is
stored as some unrealistically big date, we used 9999-
12-31. XML does not support data types in any
meaningful sense of the word, all data in an XML
document are stored as text. This is even if data rep-
resents another data type, such as date or integer.
For that reason, it was necessary to represent date in
format YYYY-MM-DD to ensure that dates can be
ordered into ordered list.

The XQuery code used to test the performance of
the MAX approach without referencing the current
time approach is:

for $b in doc("/db/now/dirmax.xml")/table/row
where $b/vend=’9999-12-31’ and

$b/vstart<xs:string(current-date())
return

<result> { $b } </result>

We found that without referencing to the current
time the query yields the wrong answer if data con-
tains closed intervals with ending point bigger than
the current date. These intervals are meaningful for
all temporal data. In order to get the correct answer,
considering the number of elements returned, there is
a need to compare ending point of the interval valid-
ity with the current time. This can be achieved using
the XQuery function current-date() that references
to the current time:

for $b in doc("/db/now/dirmax.xml")/
table/row

where $b/vend>=xs:string(current-date())
and $b/vstart<xs:string(current-date())

return
<result> { $b } </result>

Usage of user-defined functions ensures that the
query yields the correct answer when current time
is represented with MAX approach. A sample user-
defined function check now (expressed in XQuery) re-
turns vend, if the value is different from ‘9999-12-31’
and current-date otherwise.

declare function local:check_now
($n as xs:string) as

xs:string{ if ($n="9999-12-31") then
xs:string(current-date()) else $n };

for $b in doc("/db/now/dirmax.xml")/
table/row

where local:check_now($b/vend)>=
xs:string(current-date())

and $b/vstart<
xs:string(current-date())

return
<result> { $b } </result>

Usage of this user-defined function guarantees cor-
rect answers but suffers from extremely poor perfor-
mance as it cannot use indexes, so a sequential search
is required.

The nature of the XML native databases, all data
are stored as text, opens the possibility to store now
as the word “now”. This approach could not be con-
sidered for relational databases, since it is not possible
to store characters into date data type. Introduction

of variables in temporal relational databases leads to
the under researched area of Variable databases. In
XML it is possible to create a new complex data-type
as the union of normal time data-type and the string
‘now’. Because storing variables as text in XML is
straightforward we decided to test performance and
accuracy of representing current time with the vari-
able such as ‘now’. To indicate that the fact is cur-
rently valid the variable ‘now’ is assigned for the end-
ing point of their validity. The following XQuery was
used for performance and accuracy testing of variable
approach for representing current time.

for $b in doc("/db/now/dirnow.xml")/
table/row

where $b/vend>=’now’ and
$b/vstart<xs:string(current-date())

return
<result> { $b } </result>

Without referencing to the current time the vari-
able approach also does not yield correct answers if
data contains closed intervals with ending point big-
ger than the current date. Referencing to the current
time yields correct answer.

Because XML native databases have a different
view to NULL data than the relational databases we
decided to reconsider and test the performance and
accuracy of the NULL approach to represent current
time. Advantages of NULL are obviously from used
space point of view. Response time for NULL ap-
proach is very good in case of not referencing to the
current time but due to the wrong answer problem
it can not be considered. To get the correct answer
there is a need to reference to the current time with
user defined functions. Despite being previously sug-
gested as favorite in the literature, usage of user de-
fined functions performed very poorly.

For temporally grouped model we performed
queries on identified approaches to representing now
with and without referencing to the current time.
Same as for DIRECT model, any approach that does
not reference to the current time yields wrong answer
if data contains closed intervals of validity where the
ending point of validity is beyond the current time.
All such intervals are omitted and not included in the
answer. The sample query for MAX approach that
references to the current date function is as follows:

for $s in doc("/db/now/grmax.xml")/
table/row/

position[@vstart<xs:string(current-date())
and

@vend>=xs:string(current-date())]
return
<result> { $s/../name }

{$s }
</result>

Also, we performed a query that finds all employ-
ees that have current position and have started their
employment before the certain date. We performed
this experiment to investigate how answer size effects
the response time.

For NULL approach to represent current time it is
not possible to compare with the current time directly
because NULL is represented by the empty string and
it is not clear whether the empty string is bigger or
smaller than any string. Only possibility is to use
user defined functions.

Testing NULL with temporally grouped model
yielded totally wrong number of elements and had
a very long query response time so we did not include
the results in the above table.

Figure 1: MAX approach without reference to the current date

Figure 2: Temporally Grouped model - variable approach with reference to the current time

Approach Reference Query yields Timeslice Contained
current time correct answer query (sec) query (sec)

MAX No No 16.77 7.78
MAX Yes Yes 27.47 14.08
MAX with user defined function Yes Yes 100.48 98.98
’now’ No No 14.96 7.14
’now’ Yes Yes 23.88 12.25
NULL No No 22.08 9.13
NULL with user defined function Yes Yes 97.64 94.26

Table 3: Direct model - response time for different representations of now, 20 % of now-relative data

3.5 Analysis

It is significant to note that, if there is no reference
and comparison to the current time the query yields
the wrong answer, considering the number of elements
returned that satisfy the query criteria. This is be-
cause all elements with closed interval whose ending
time is bigger than the current time are not included
in the answer. Usage of user defined functions, which

was previously suggested as favorite in the literature,
has poor response time as index can not be used and
sequential search is required. Due to the nature of
Native XML databases, where all data is stored as
text, the current time can be stored as variable such
as ‘now’ or ‘UC’. Because the ASCI code of the men-
tioned variables is bigger than xs:string(current-
date()), the usage of variables yields correct answer
and at the same time uses less space. Surprisingly,

Approach Reference Query yields Timeslice Contained
current time correct answer query (sec) query (sec)

MAX No No 32.36 20.78
MAX Yes Yes 36.10 20.23
MAX with user defined function Yes Yes 104.43 94.18
’now’ No No 27.03 16.95
’now’ Yes Yes 31.84 18.52

Table 4: Temporally Grouped Model - response time for different representations of now, 20 % of now-relative
data

temporally grouped model has worse response time
than the Direct model, despite having more expres-
sive power and is more natural since it is history ori-
ented. This is due to more complex structure of ele-
ments. Grouped model is slower due to the complex-
ity of elements that consist of attributes vstart and
vend and index can not be used efficiently.

Faster response time when there is no reference
to the current time is partly due to the wrong and
smaller answer size and because in case of referencing
to the current time there is additional processing cost
for build-in function current-date() and need for
conversion of the date to the string.

Slightly better performance of the variable ap-
proach to represent current time in comparison to the
MAX approach is due to the smaller length of string
‘now’ comparing to the ‘9999-12-31’, which causes
smaller XML file size and also higher fanout of el-
ements in index nodes. Also, computational cost for
comparison is smaller due to the shorter length of the
string ‘now’.

4 Conclusion and future work

This study makes the following contributions to the
field:

• By investigating different representations of now
in XML, we presented a better understanding of
the significance of modelling current time, par-
ticularly how it influences the efficiency and ac-
curacy;

• We identified available approaches for adding
time dimension to XML;

• We empirically demonstrated that usage of user
defined functions to handle current time in XML,
which is previously recommended as favorite in
the literature, is basically inefficient and is obvi-
ously not appropriate;

• We showed that the flat translation of temporal
attributes to XML elements (DIRECT model), is
more efficient than the usage of attributes within
the XML elements.

• We identified available options to represent and
store current time in native XML databases and
empirically evaluated their suitability;

• We concluded that any approach to represent
‘now’ if not referencing to the current time yields
wrong answer.

• We introduced the notion of storing variables
such as ‘now’ or ‘UC’ as strings in XML na-
tive databases. Usage of variables at the same
time yields the correct answer and query re-
sponse time is good. Another advantage of using
variables is clear semantics, the meaning of the
word ‘now’ suggests of current time in contrast to
‘9999-12-31’ where the meaning is introduced by
convention. For those reasons storing variables

to represent current time can be considered as
the most appropriate approach in XML tempo-
ral.

The present paper shows that native XML
databases offer better support for temporal reason-
ing than relational databases and at the same time
they support richer data models. As we have argued,
temporal data is very frequent in real life application,
thus we believe that native XML database will present
a viable alternative to relational temporal database
when complex time dependent data has to be ma-
nipulated and recorded. On the contrary due to the
nature of XML data and the verbosity of XML, the
response time of the Native XML temporal databases
does no compare with the response time of relational
databases. This also indicates the need for further
research on efficient storage architecture and access
methods for Native XML temporal databases.

We intend to work on more efficient access method
for temporal XML data, based on the intrinsic nature
and format of temporal data types in XML databases.
We believe that the resulting access method will prove
useful not only in dealing with XML temporal data,
but also can be employed on XML data of different
nature.

References

Amagasa, T., Yoshikawa, M., & Uemura, S. (2000),
‘A Data Model for Temporal XML Documents’,
In Proc. of 11th Intl’ Conf. on Database and Ex-
pert Systems Applications (DEXA 2000), Lon-
don, England .

Carey, M., Kiernan, J., Shanmugasundaram, J. &
et al (2000), ‘XPERANTO: A middleware for
publishing objectrelational data as XML docu-
ments’, VLDB .

Chawathe, S. S., Abiteboul, S. & Widom, J.
(1999), ‘Managing Historical Semistructured
Data’, Theory and Practice of Object Systems
5(3), 143–162.

Clifford, J., Croker, A., Grandi, F. & Tuzhilin, A.
(1995), ‘On temporal grouping’, In Recent Ad-
vances in Temporal Databases, Springer Verlag
p. 194213.

Clifford, J., Croker, A. & Tuzhilin, A. (1994), ‘On
Completeness of Historical Relational Query
Languages’, 19(1), 64–116.

Date, C., Darwen, H. & Lorentzos, N. (2002), Tempo-
ral Data and the Relational Model, Morgan Kauf-
mann.

eXist:http://exist.sourceforge.net/ (2004).
*http://exist.sourceforge.net/

Fernandez, M., Tan, W. & Suciu, D. (2000),
‘Silkroute: trading between relations and XML’,
33(16), 723–745.

Funderburk, J., Kiernan, G., Shanmugasundaram, J.,
Shekita, E. & Wei, C. (2002), ‘XTABLES: Bridg-
ing Relational Technology and XML’, IBM Sys-
tems Journal 41(4).

Gao, D. & Snodgrass, R. T. (2003), ‘Syntax, Se-
mantics, and Query Evaluation in the τXQuery,
Temporal XML Query Language’, TR-72 A
TIMECENTER Technical Report .

Grandi, F. & Mandreoli, F. (2000), ‘The Valid Web:
an XML/XSL Infrastructure for Temporal Man-
agement of Web Document’, In Proc. of the Intl’
Conf. on Advances in Information Systems (AD-
VIS’2000), Izmir, Turkey .

Grandi, F., Mandreoli, F., Tiberio, P. & Bergonzini,
M. (2003), ‘A Temporal Data Model and System
Architecture for the Management of Normative
Texts (Extended Abstract)’, Proc. SEBD 2003 -
Natl’ Conf. on Advanced Database Systems, Ce-
traro, Italy pp. 169–178.

http://www.sqlx.org (2004).
*http://www.sqlx.org

Jensen, C. S. (2000),
‘http://www.cs.auc.dk/ csj/Thesis/pdf/’.
*http://www.cs.auc.dk/ csj/Thesis/pdf/

Ozsoyoglu, G. & Snodgrass, R. (1995), ‘Temporal and
real-time databases: A survey’, IEEE Trans. On
Knowledge and Data Engineering 7(4), 513–532.

Stantic, B., Khanna, S. & Thornton, J. (2004),
‘An Efficient Method for Indexing Now-relative
Bitemporal data’, In Proceeding of the 15th
Australasian Database conference (ADC2004),
Denidin, New Zealand 26(2), 113–122.

Torp, K., Jensen, C. S. & Bohlen, M. (1999), ‘Lay-
ered implementation of temporal DBMS con-
cepts and techniques’, A TimeCenter Technical
Report TR-2 .

Wang, F. & Zaniolo, C. (2002), ‘Preserving and
Querying Histories of XML-published Relational
Databases’, In Proc. of 2nd Intl’ Workshop
on Evolution and Change in Data Management
(ECDM 2002), Tampere, Finland pp. 26–38.

Wang, F. & Zaniolo, C. (2003), Temporal Queries in
XML Document Archives and Web Warehouses,
in ‘In Proceeding of the 10th International Sym-
posium on Temporal Representation and Rea-
soning (TIME-ICTL 2003), Cairns,Australia’,
pp. 47–55.

www3.ibm.com (2005), ‘In DB2 XML Extender’.
*http://www3.ibm.com/software/data
/db2/extenders/xmlext/

xml.com (2005), ‘Making the case for XML Native
databases’.
*http://www.xml.com/pub/a/2005/03/30/
native.html

XQuery 1.0: An XML query language (2004).
*http://www.w3.org/TR/xquery/

