
An Optimization for Query Answering on ALC Database

Pakornpong Pothipruk Guido Governatori

School of Information Technology and Electrical Engineering
University of Queensland, Australia 4072,

Email: pkp@itee.uq.edu.au

Abstract

Query answering over OWLs and RDFs on the Semantic
Web is, in general, a deductive process. To this end, OWL,
a family of web ontology languages based on description
logic, has been proposed as the language for the Seman-
tic Web. However, reasoning even on ALC, a description
logic weaker than OWL, faces efficiency problem. To ob-
viate this problem, at least for ALC, we propose a par-
tition approach that improves the efficiency by splitting
the search space into independent Aboxes. Each parti-
tion class, i.e., an Abox, can be queried independently.
The answer to a query is the simple combination of the
answers from each Abox. We prove the correctness of
this approach and we outline how to represent compactly
the content of each independent Abox. This work can be
seen as an optimization for querying a deductive semi-
structured database.

Keywords: Description Logic, Query Optimization, Web
Database.

1 Introduction

The Semantic Web, originated from an idea of the creator
of the Web Tim Berners-lee (Berners-Lee 1999), is an ef-
fort to bring back structure to information available on the
Web. The structures are semantic annotations that con-
form to an explicit specification (called ontology) of the
intended meaning of a piece of information. Thus the the
Semantic Web contains implicit knowledge, and informa-
tion on the Semantic Web is often incomplete since it as-
sumes open-world semantics. In this perspective query
answering on the Semantic Web is a deductive process
(Stuckenschmidt 2003).

RDF, a semi-structure data page, is a basic compo-
nent for the Semantic Web. Thus, in the Semantic Web
perspective, there are huge number of RDF data pages.
In addition, A family of web ontology languages (OWL)
based on Description Logic (DL) has been proposed as
the languages to represent and reason with the Seman-
tic Web. In the nutshell, querying the Semantic Web is
the process of reasoning over OWLs and RDFs, based on
DL reasoning. DL emphasizes clear unambiguous lan-
guages supported by complete denotational semantics and
tractable/intractable reasoning algorithms (McGuinness,
Fikes, Stein & Hendler 2003). Nevertheless, DL still faces
problems when applied in context of the Web. One of
them is the efficiency of query answering. Consequently,
there is an urgent need of optimizations for querying the
Semantic Web.
Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventeenth Australasian Database Conference
(ADC2006), Hobart, Australia. Conferences in Research and Practice
in Information Technology (CRPIT), Vol. 49. Gillian Dobbie and James
Bailey, Eds. Reproduction for academic, not-for profit purposes permit-
ted provided this text is included.

There are many works about DL reasoning optimiza-
tion. However, most of them focus only on ontology rea-
soning with out any data, i.e., DL-Tbox reasoning. In
fact, DL-Abox reasoning, which is the basis for query-
ing OWL and RDF on the Semantic Web, was seriously
studied by some researchers recently. At present, there
are only two prominent works for DL-Abox reasoning
optimization, i.e., Instance Store (Horrocks, Li, Turi &
Bechhofer 2004) and RACER (Haarslev & Möller 2002).
Nevertheless, none of above works can eliminate a chunk
of individuals at-a-time from retrieval reasoning. Thus, we
create optimization techniques that support this idea. We
present here a novel optimization technique for instance
checking, an Abox reasoning. We also introduce a tech-
nique of instance retrieval, another Abox reasoning.

2 Preliminary: Description Logic

The Semantic Web community implicitly adopted DL as a
core technology for the ontology layer. One of the reasons
behind this is that this logic have been heavily analyzed
in order to understand how constructors interact and com-
bine to affect tractable reasoning, see (Donini, Lenzerini,
Nardi & Nutt 1991). Technically, we can view the current
Semantic Web, not including rule, proof and trust layers,
as a DL knowledge base. Thus, answering a query posed
on the Semantic Web (RDF and ontology layers) can be
reduced to answering a query posed on a DL knowledge
base, not taking into account low-level operations, such as
name space resolution.

Description logic itself can be categorized into many
different logics, distinguished by the set of constructors
they provide. We focus on ALC description logic since it
is the basis of many DL systems.

The language of ALC consists of an alphabet of dis-
tinct concept names CN, role names RN, and individual
names IN, together with a set of constructors for building
concept and role expressions (Tessaris 2001).

Formally, a description logic knowledge base is a pair
K = 〈T ,A〉 where T is a Tbox, and A is an Abox. The
Tbox contains a finite set of axiom assertions. Axiom as-
sertions are of the form

C v D |C .= D,

where C and D are concept expressions. Concept expres-
sions are of the form

A | > | ⊥ | ¬C |CuD |CtD | ∃R.C | ∀R.C,

where A is an atomic concept or concept name in CN,
R is a role name in RN, > (top or full domain) is the
most general concept, and ⊥ (bottom or empty set) is the
least general concepts. The Abox contains a finite set
of assertions about individuals of the form a : C or C(a)
(concept membership assertion) and (a,b) : R or R(a,b)
(role membership assertion), where a, b are names in IN.

The semantics of description logic are defined in
terms of an interpretation I = (∆I ,•I), consisting of a
nonempty domain ∆I and a interpretation function •I .
The interpretation function maps concept names into sub-
sets of the domain (AI ⊆ ∆I), role names into subsets of
the Cartesian product of the domain (RI ⊆ ∆I ×∆I), and
individual names into elements of the domain. The only
restriction on the interpretations is the so called unique
name assumption (UNA), which imposes that different in-
dividual names must be mapped into distinct elements of
the domain. Given a concept name A (or role name R), the
set denoted by AI (or RI) is called the interpretation, or
extension, of A (or R) with respect to I.

The interpretation is extended to cover concepts built
from negation (¬), conjunction (u), disjunction (t), exis-
tential quantification (∃R.C) and universal quantification
(∀R.C) as follows:

(¬C)I = ∆
I \CI

(CuD)I = CI ∩DI

(CtD)I = CI ∪DI

(∃R.C)I =
{

x ∈ ∆
I |∃y.〈x,y〉 ∈ RI ∧ y ∈CI

}
(∀R.C)I =

{
x ∈ ∆

I |∀y.〈x,y〉 ∈ RI → y ∈CI
}

An interpretation I satisfies (entails) an inclusion ax-
iom CvD (written I |=CvD) if CI ⊆DI , and it satisfies
an equality C .= D if CI = DI . It satisfies a Tbox T if it
satisfies each assertion in T . The interpretation I satisfies
a concept membership assertion C(a) if aI ∈CI , and sat-
isfies a role membership assertion R(a,b) if (aI ,bI)∈RI .
I satisfies an Abox A (written I |= A) if it satisfies each
assertion inA. If I satisfies an axiom (or a set of axioms),
then we say that it is a model of the axiom (or the set of ax-
ioms). Two axioms (or two sets of axioms) are equivalent
if they have the same models. Given a knowledge base
K = 〈T ,A〉 we will say that the knowledge bases entails
an assertion α (written K |= α) iff for every interpretation
I, if I |=A and I |= T , then I |= α .

The DL Abox can be viewed as a semi-structured
database, consisting of a collection of RDF data, while
the DL Tbox contains a set of constraints for the data in
Abox. Thus, the Tbox can be compared to data modeling
in database, e.g., Entity-Relationship data model. How-
ever, the semantics of description logics are defined in
terms of an interpretation which differentiate description
logics from databases. In addition, the domain of interpre-
tation can be chosen arbitrarily, and it can be infinite. The
non-finiteness of the domain and the open-world assump-
tion are distinguishing features of description logics with
respect to the modeling languages in the database. Even
description logics, as modeling languages, overlap to a
large extent with modeling languages in database (Baader,
Calvanese, McGuinness, Nardi & Patel-Schneider 2003),
the particular feature of description logics is in the reason-
ing capabilities that are associated with it. In other words,
while modeling has general significance, the capability of
exploiting the description of the model to draw conclu-
sions about the problem at hand is a particular advantage
of modeling using description logics. In the next section,
we introduce basic reasoning tasks in description logics.

2.1 Reasoning in Description Logic

A description logic knowledge base basically supports two
major kinds of reasoning tasks, i.e., Tbox reasoning (on-
tology reasoning), and Abox reasoning (data reasoning
with ontology). Note that, both kinds of reasonings are
based on satisfiability problem. Also, keep in mind that,
like other logic system, the knowledge base contains im-
plicit knowledge that can be made explicit through infer-
ences.

2.1.1 Reasoning for Tbox

In description logic, basic reasoning services for concepts
in Tbox T consist of (Baader et al. 2003):
• Knowledge base consistency: a Tbox T is consistent

iff it is satisfiable, i.e., there is at least a non empty
model for T . An interpretation I is a model for T if
it satisfies every assertion in T .

• Satisfiability: a concept C is satisfiable with respect
to T if there exists a model I of T such that CI is
nonempty. I is also a model of C.

Definition 1 (Satisfiability w.r.t. Knowledge base) A
concept expression C is satisfiable with respect to a
knowledge base Σ if there exists a model I of Σ such
that CI is nonempty, (∃I,I |= Σ∧I |= C). I is also
a model of C.

Note that the Definition 1 resembles the definition of
entailment, but not the same. Thus, we also present
here the definition of entailment and its complement
for the sake of clarity.

Definition 2 (Entailment) A concept C is entailed by
a knowledge base Σ (Σ |= C) if, for every models I of
Σ, each I is also a model of C (∀I,I |= Σ→I |= C).

Definition 3 (Non-entailment) A concept C is not
entailed by a knowledge base Σ (Σ 6|= C) if there ex-
ists model I of Σ such that I is not a model of C, i.e.,
CI is empty (∃I,I |= Σ∧I 6|= C).

However, entailment problem can be reduced to sat-
isfiability problems.

Definition 4 (Entailment Reduction to Unsatisfia-
bility) A concept C is entailed by a knowledge base
Σ (Σ |= C) iff Σ∪ {¬C} is unsatisfiable, i.e has no
model, or ∀I,I |= Σ→I 6|= ¬C.

Definition 5 (Non-entailment Reduction to Satisfi-
ability) A concept C is not entailed by a knowledge
base Σ (Σ 6|= C) iff Σ∪{¬C} is satisfiable, i.e., model
exists, or ∃I,I |= Σ∧I |= ¬C.

• Subsumption: a concept D subsumes a concept C
with respect to T (C vT D or T |= C v D) if CI ⊆
DI for every model I of T .

• Equivalence: two concepts C and D are equivalent
with respect to T (C .=T D or T |= C .= D) if CI =
DI for every model I of T .

• Disjointness: two concepts C and D are disjoint with
respect to T if, for every model I of T , CI ∩DI = /0.

If the Tbox T is clear from the context, we can drop
the qualification “with respect to T ”. In the special case
where Tbox is empty, we simply write , |= C v D if D
subsumes C, and , |= C .= D if C and D are equivalent.

Subsumption, equivalence and disjointness tests can be
reduced to concept (un)satisfiability test, which is, in turn,
can be achieved through tableaux algorithm (see section
2.1.3). Consequently, concept satisfiability test is the key
inference for Tbox reasoning.
• Subsumption: C is subsumed by D (C v D) iff Cu
¬D is unsatisfiable with respect to T .

• Equivalence: C and D are equivalent (C .= D) iff both
Cu¬D and Du¬C are unsatisfiable with respect to
T .

• Disjointness: C and D are disjoint iff CuD is unsat-
isfiable with respect to T .

However, in the description logic without full negation,
e.g.,AL, subsumption and equivalence cannot be reduced
to unsatisfiability test.

2.1.2 Reasoning for Abox

Recall that Abox consists of only two kinds of assertion:
concept membership assertion of the form C(a) and role
membership assertion of the form R(a,b). Hence Abox
alone cannot be seen as a knowledge base, it must be cou-
pled with Tbox. Consequently, Abox reasoning will al-
ways be done with respect to a Tbox.

In description logic, basic reasoning services for Abox
consist of (Baader et al. 2003):

• Instantiation test or instance check: determine
whether an assertion is entailed by Abox A or not.
Since, in this work, we consider only ALC which
does not contain any role constructor to form com-
plex roles, role membership assertion test will be
easy, i.e., simply find the occurrence of that role as-
sertion in the Abox. At the time of writing, instance
check generally refers to only concept membership
assertion testing. To check for a concept member-
ship assertion, we just check whether the assertion
is entailed by the Abox. The assertion is entailed by
Abox (A |=C(a)) if every interpretation that satisfies
A, i.e., every model of A, also satisfies C(a).

• Realisation: given an individual a and a set of con-
cepts, find the most specific concept C from the set
such that A |= C(a).

• Retrieval: given an Abox A and concept C, find all
individuals a such that A |= C(a).

• Abox consistency: Abox A is consistent iff it is
consistent with respect to Tbox T . Consequently,
we must use Tbox in this reasoning, i.e., for ALC,
expanding the Abox with unfolded Tbox concepts
(Tessaris 2001). Unfolded concept or expanded con-
cept C′ is obtained by replacing names in the descrip-
tion of the original concept C with their descriptions
in T . Note that C is satisfiable with respect to T iff C′
is satisfiable, i.e., the original concept and the consis-
tency preserving expanded/unfolded concept are in
fact equivalent, C .=T C′ (Horrocks 1997). Therefore
expansion of A with respect to T (the Abox A′) can
be obtained by replacing each concept assertion C(a)
in A with the assertion C′(a). In every model of T ,
a concept C and its expansion C′ are interpreted in
the same way. Hence, A is consistent with respect to
T iff A′ is consistent. A′ is consistent iff it is sat-
isfiable, i.e., there is at least a nonempty model for
A′. Note that A′ also represents the whole knowl-
edge base Σ = 〈T ,A〉.

Theorem 6 (Expanded Abox) Given a satisfiable Tbox
T , an Abox A is satisfiable with respect to T iff its ex-
pansion A′ is satisfiable.

Proof see (Baader et al. 2003)

It is easy to see that Theorem 7 logically follows from
Theorem 6.

Theorem 7 (Expanded Abox Entailment) Given a satis-
fiable Tbox T , a knowledge base Σ = 〈T ,A〉 entails a con-
cept expression Q (〈T ,A〉 |= Q) iffA′ entails Q (A′ |= Q).

Realisation and retrieval can be reduced to instanti-
ation test. They can be done through series of instan-
tiation tests. In addition, we can reduce instantiation
test to consistency problem for Abox since A |= C(a) iff
A∪ {¬C(a)} is inconsistent. Concept satisfiability can
also be reduced to Abox consistency test since C is sat-
isfiable iff {C(a)} is consistent, where a is an arbitrary
individual name.

At this point, it turns out that there is one main in-
ference problem, i.e., consistency check for Abox, to
which all other reasoning services can be reduced. Since

tableaux algorithms can be used to solve such test, thus
all of the reasoning services in description logic can be
achieved through the application of tableaux algorithm
(Baader et al. 2003). In addition, most of the practical
description logic systems, such as FACT (Horrocks 1997)
and RACER (Haarslev & Möller 2002), exploit tableaux
algorithm as the basis for their reasoning. In fact, tableaux
becomes the de-facto standard for reasoning in description
logic. We will explain tableaux in section 2.1.3.

2.1.3 Tableaux algorithm

Traditionally, tableaux algorithm was designed to prove
the satisfiability of a concept expression. The main idea
behind this algorithm (Baader & Hollunder 1991) is based
on notational variant of the first order tableaux calculus. In
fact, a tableaux algorithm tries to prove the satisfiability
of a concept expression C by demonstrating a nonempty
model of C. It constructively builds a model for a given
concept. If it can build a model, then the concept is satis-
fiable.

First, we will present tableaux algorithm for testing the
satisfiability of a Tbox concept and describe its operation.
Then, we will show how this algorithm can also be applied
to Abox consistency test. However, this topic is intended
to illustrate the general principles only. For proof of ter-
mination, soundness and completeness of the algorithm,
consult (Baader et al. 2003).

Before we proceed with the algorithm, we need to in-
troduce an appropriate data structure for representation of
each tableau. The original paper by Schmidt-Schauβ and
Smolka (Schmidt-Schauß & Smolka 1991), and also many
other papers on tableaux algorithms for description logic
(Baader et al. 2003), exploit a notion of a constraint sys-
tem for this purpose. A constraint system is a set of con-
straints, which are syntactic elements of the forms:

• x : C concept constraint

• 〈x,y〉 : R role constraint

• x 6= y inequality constraint

Although the syntax is similar to the one for Abox as-
sertions, there is a difference in the meaning of the x and
y terms. Since we are going to test the satisfiability of a
Tbox concept expression, no individual is involved. Con-
sequently, x and y are not individuals, but variables, so the
unique name assumption does not apply to them unless
stated explicitly by an inequality constraint. The presence
of at-most number restriction may lead to the identifica-
tion of different individual names. However, our consid-
ered description logic does not contain at-most number re-
striction constructor, thus we do not need inequality con-
straint here. A constraint system can be seen as a graph
where the nodes are individual variable names, and the
edges corresponds to role names. Each node has associ-
ated concept expressions which are, in fact, constraints of
the variable corresponded to the node.

To test satisfiability of a concept expression C with
respect to Tbox T , firstly, unfold the concept expres-
sions with their definitions defined in T , and get the
new expanded concept C′. Next, transform the con-
cept expression into a negation normal form (NNF), i.e.,
push negation signs as far as possible into the descrip-
tion, using combination of de Morgan’s law and usual
rules for quantifiers, for example ¬∃R.C = ∀R.¬C and
¬∀R.C = ∃R.¬C. The concept expression is in negation
normal form if negations apply only to concept names,
not to any compound terms. For example the concept
C = ¬∃R.Au¬(∃R.Dt∀S.¬D) can be transformed into
NNF, C0 = ∀R.¬Au∀R.¬Du∃S.D. Now, we get a new
concept expression as a constraint system S.

The process of constructing a model proceeds by com-
pleting (or extending) a constraint system S, using a set of

consistency preserving transformation-completion (or ex-
pansion) rules in figure 2.1.3. These rules modify a con-
straint system by adding or rewriting the constraints. Ap-
ply these rules to the constraint system until no more rules
apply. When no rule is applicable, the constraint system is
said to be completed if there is no obvious contradiction,
so called clash, i.e., {x : A,x : ¬A} or {x :⊥}, occurs. The
concept C′ is consistent iff there exists a completed con-
straint system, i.e., a nonempty model. Since C .=T C′, the
concept C is consistent with respect to T iff the expanded
concept C′ is consistent.

The→u -rule
Condition: x : C1uC2 is in S, and both x : C1and x : C2 are
not in S.
Action: S = S∪{x : C1,x : C2}

The→t -rule
Condition: x : C1 tC2 is in S, and neither x : C1nor x : C2
is in S.
Action: S′ = S∪{x : C1}, S′′ = S∪{x : C2}

The→∀ -rule
Condition: x : ∀R.C is in S, 〈x,y〉 : R is in S, and y : C is
not in S.
Action: S = S∪{y : C}

The→∃ -rule
Condition: x : ∃R.C is in S,
and there is no z such that both 〈x,z〉 : R and z : C are in S.
Action: S = S∪{〈x,y〉 : R,y : C} where y is new variable
name.

Figure 1: Completion rules for ALC satisfiability test

Note that the only rule that is non-deterministic is the
disjunction rule (→t). For more detail proof of these
rules, see (Donini, Lenzerini, Nardi & Schaerf 1996).

In order to test Abox consistency using tableaux al-
gorithm, we simply allow x and y in constraint system
notation to be able to represent individual name. Con-
sequently, concept constraint and role constraint in a con-
straint system become concept membership assertion and
role membership assertion in Abox respectively. The al-
gorithm is the same as above, except, instead of a concept
expression, we try to prove satisfiability of the whole ex-
panded Abox A′.

2.2 Reasoning Complexity and Optimization

Since, all basic reasoning services can be reduced to satis-
fiability problem, which, in turn, can be achieved through
tableaux algorithm, complexity of reasoning services pro-
vided in almost description logic systems are based on
complexity of tableaux algorithm. Recall that description
logic was invented because of inefficiency of first-order
logic. In fact, description logic is one of two major ap-
proaches for mitigation of inefficiency of reasoning for
logic. Its prominent significance is that trade-offs between
expressive power and efficiency of reasoning were studied
throughout a decade.

We denote problem that is solvable using algorithm
with polynomial time (PTIME) worst-case complexity as
tractable problem, and intractable problem otherwise.
Normally, tractable is preferred. However, there is worse
class of problem, undecidable problem. We says the
problem is undecidable if there is no solving algorithm
that terminates, and decidable otherwise. To the best of
our knowledge, the most expressive description logic that

its concept satisfiability problem is decidable in PTIME
worst-case complexity is ALN .

Logics with PTIME worst-case complexity have been
criticized for their too limited expressive power (Doyle &
Patil 1991). Thus we need the language that is more ex-
pressive. Consequently, we choose ALC which is expres-
sive enough, since it is a subset of mostly every expressive
description logics (Donini & Massacci 2000).

3 The Efficiency Issue

In DL, there are two standard types of queries allowed,
i.e., boolean query and non-boolean query, which are in
turn instance checking (or instantiation test) and retrieval
Abox reasoning services respectively.

A boolean query Qb refers to a formula of the form

Qb← QExp,

where QExp is an assertion about individual, e.g.,

Qb← Tom : (Parent u∃hasChild.Employee)

The query will return one of the member of the boolean
set {True,False}. Qb will return True if and only if ev-
ery interpretation that satisfies the knowledge base K also
satisfies QExp, and return False otherwise.

A non-boolean query Qnb refers to a formula of the
form

Qnb← QExp,

where QExp is a concept expression, e.g.

Qnb← Parent u∃hasChild.Employee

In this case the query will return one of the member of
the set {⊥,M}, where ⊥ refers to the empty set, andM
represents a set of models {M1, . . . ,Mm}, where each of
them satisfies QExp with respect to the knowledge base
K. The query will returnM if and only if there exists at
least one such model, otherwise return ⊥.

A non-boolean query (retrieval) can be trivially trans-
formed into a set of boolean queries for all candidate tu-
ples, i.e., retrieving sets of tuples can be achieved by re-
peated application of boolean queries with different tuples
of individuals substituted for variables. However, answer-
ing a boolean query is in fact an entailment problem. For
example, answering the boolean query:

Qb← Tom : (Parent u∃hasChild.Employee),

is the problem of checking whether

K |= Tom : (Parent u∃hasChild.Employee).

In a DL (supporting full negation, e.g., ALC), boolean
query or instance checking can be reduced to knowledge
base satisfiability test: K |= C(a) iff K∪{¬C(a)} is un-
satisfiable.

(Donini & Massacci 2000) gave a tableaux algorithm
for solving ALC satisfiability problem with respect to a
Tbox. They proved that their algorithm has EXPTIME-
complete worst-case complexity. To the best of our knowl-
edge, this is the latest known result of complexity proof
for the ALC satisfiability problem with respect to a Tbox.
Nevertheless, the ontology language OWL, in particular
OWL-DL, of the Semantic web technology is based on
SHOIQ(D) which is even more expressive than ALC.
Since the query answering is in fact an instance checking
(or a retrieval reasoning service) which can be reduced to
a satisfiability problem. It is easy to verify that the exist-
ing DL reasoning services are still not enough to be used
solely with the Semantic web technology. One way to mit-
igate the problem is to optimize the algorithm more and
more. We propose an optimization technique for answer-
ing a query over a description logic knowledge base. This
technique is coherent with nature of the Web in that it sup-
ports multiple-Abox environment, which is corresponding
to multiple data source environment in the Web.

4 The Approach

This contribution focuses on finding an answer to the
question: “How can we (efficiently) answer a query in
ALC based-Semantic Web system, given single ontology
T , and multiple data sourcesAs, examining the minimum
number of data sources?”. We refer to an Abox as a data
source.

The idea of this section is based on the observation that
2m > 2n + 2p, where m = n + p for n, p > 1. This means
that if we can split the search space into independent parts,
query the parts independently from each other, and com-
bine the answers, then we have a considerable improve-
ment of the performance of the query system. This idea
agrees with the understanding of the Semantic Web as a
collection of sometime “unrelated” data sources. In addi-
tion we propose to attach to each data source a data source
description (or source description), a compact representa-
tion of the content of the data page. This idea is similar
to the intuition behind indexes in databases. In the same
way that type of indexes is more or less appropriate for
particular queries, source descriptions depend on the type
of queries. On the other hand, as we will see in the rest of
this section, the relationships among data sources are not
influenced by queries. They are determined by the struc-
ture of the data itself.

In this approach, the knowledge base architecture is
shown in the following figure:

Figure 2: The Knowledge Base Architecture

The intuition here is to associate to every Abox A a
source description SD(A), and to supplement the infer-
ence engine with information about the mutual dependen-
cies of the Aboxes in the system, in order to determine
which Aboxes are relevant and must be queried.

The first step is to associate to every Abox its domain.

Definition 8 Given an Abox A, let HA be the Herbrand
universe of A (i.e., the set of all the individual occurring
in expression in A). For any interpretation I, ∆IA, the
domain of A is defined as follows:

∆
I
A =

{
d ∈ ∆

I |a ∈ HA∧aI = d
}

.

Definition 9 (Multiple Assertional Knowledge Base)
Given a set Ā of Aboxes A1, . . . ,Ak, i.e.,
Ā= {A1, . . . ,Ak} and a Tbox T , the multiple assertional
knowledge base is the knowledge baseK= 〈T ,A〉, where
A is the Abox obtained from the union of all the Aboxes
in Ā, i.e., A=A1∪A2∪ . . .∪Ak.

A consequence of the above definition is that the inter-
pretation domain of A is equivalent to the union of inter-
pretation domains of the A js (∆IA =

⋃
1≤ j≤k ∆IA j

). Since
CI ⊆ ∆I by definition, thus, for arbitrary C, CIA =

⋃
CIA j

,

for j ∈ {1, . . . ,k} and CA j is the concept C that occurs in
a concept membership assertion in A j.

We approach the problem in 5 steps:

1. Determine dependencies among data sources, and
group data sources which are dependent on each
other together.

2. Associate each data source (or group of data sources)
with a source description.

3. When one queries the knowledge base, exploit a pro-
cedure to find irrelevant data sources (or groups of
data sources) with respect to the query, taking into
account source descriptions and the query. Eliminate
the irrelevant data sources (or groups of data sources)
from query answering process, yielding a set of pos-
sible relevant data sources (or groups of data sources)
to be queried.

4. For each remaining data source (or group of data
sources) from the previous step, apply the existing
query answering procedure to each of them, yielding
answer from each of them.

5. Simply combine answers from the queried data
sources (or groups of data sources) together, since
each data source (or group of data sources) is inde-
pendent with the other.

Since a reasoning procedure for simple query answering
in the fourth step exists (Tessaris 2001), we will focus on
other steps, which are in fact the steps of the data source
space partitioning and reduction using source description.

The approach can be implemented by the following al-
gorithm.

Algorithm 1 partitioned QA(query,A):
depset = {}
answer = False
for all Am ∈ Ā do

AG(Am) = create abox graph(Am)
end for
for all 2-combinations {Ai,A j} of A do

if find abox dependency(AG(Ai),AG(A j)) = True
then add dep(Ai,A j) to depset

end if
end for
Ag = combine dependent abox(A,depset)
create source description(Ag)
for all Ah ∈ Ag do

if query relevancy(SD(Ah),query) = True then
answer = answer ∨ instance checking(Ah,query)

end if
end for

First, since an AboxAi can overlap with another Abox
A j, we must consider multiple Aboxes at the same time.
However, we will not treat all of the Aboxes as a single
Abox, because, in this case, the associated reasoning is
computational expensive. Consequently, we need some
additional procedure to determine dependencies among
Aboxes since we need to know which Aboxes should be
considered together. In other word, we need to group de-
pendent Aboxes together and treat them as a new single
Abox consisting of multiple dependent Aboxes. To make
this clear, we need to formally define the dependency be-
tween Aboxes in the context of Abox reasoning.

Firstly, we will introduce graph notation for an Abox.

Definition 10 (Abox Graph) An Abox graph for an Abox
A, AG(A), consists of a set N of nodes (vertexes), a set E
of edges (arcs), and a function f from E to {(a,b) | a,b ∈
N}. Each edge, label ed Ri, represents exactly a role name
of a role membership assertion Ri(a,b) ∈ A. Hence, each

node represents exactly one individual name. An Abox
graph is a directed multigraph.

The create abox graph function will produce an Abox
graph AG(Am) for each Abox Am. We will say that an
Abox A is connected if its Abox graph AG(A) is weakly
connected.

Definition 11 (Abox Dependency) Given two connected
Aboxes A1 and A2, where A = A1 ∪A2; A1 and A2 de-
pend on each other if the graph of Abox A is (weakly)
connected, and independent otherwise.

Proposition 12 Let A1 and A2 be two independent
Aboxes in multiple assertional knowledge base. Let ∆IA1

and ∆IA2
be the domains of A1 and A2, then:

• ∆IA1
∩∆IA2

= /0;

• for any concept C, CIA1
∩CIA2

= /0, where CIAi
is the

extension of C in ∆IAi
.

If A is unconnected, i.e., A1 and A2 are independent on
each other, then it means that A1 and A2 do not share any
common node (individual) because AboxesA1 andA2 are
already connected by themselves. Thus, we can use Abox
graphs to determine Abox dependency.

For any unordered pair of Aboxes {Ai,A j}, we de-
termine the Abox dependency between the two Aboxes
(Ai and A j). According to the definition, Abox depen-
dency can be detected using the connectivity of the Abox
graph of A, i.e., AG(A), where A = Ai ∪A j. Thus,
we can exploit any UCONN (undirected graph connec-
tivity problem) algorithm for this purpose. The function
find abox dependency(AG(Ai),AG(A j)) returns True if
two Aboxes Ai and A j depend on each other, and False
otherwise. If the function returns True, then we add
dep(Ai,A j) to the set “depset”, i.e., the set that stores de-
pendency value of each pair of Aboxes. Then we virtu-
ally combine dependent Aboxes together as a group by the
function combine dependent abox(A,depset). The Abox
Āwill becomeAg, i.e., the set of already-grouped Aboxes
and ungrouped Aboxes. Each Abox in Ag is independent
of each other.

Next, we need to show two things:

1. if two Aboxes depend on each other, then a DL rea-
soning service, in particular instance checking and
retrieval, needs to take into account the two Aboxes
together;

2. if two Aboxes are independent of each other, then a
DL reasoning over the two Aboxes can be done sep-
arately over each of them.

The following theorem supports the last step in our ap-
proach. It provides the reason why we can simply combine
the answer from each Ai ∈ Ag together. In other words
it states that the the instance checking (a query answer-
ing) problem over Ag can be reduced to separate instance
checking problems over each Ai.

Theorem 13 (Independent Abox for Boolean Query)
Given two connected Aboxes A1 and A2, where
A = A1 ∪A2, If A1 and A2 are independent on each
other, then for any boolean query Q and Tbox T ,
〈T ,A〉 |=Q if and only if 〈T ,A1〉 |=Q or 〈T ,A2〉 |=Q.

Proof First, we prove the only if direction, and we will
assume that both A1 and A2 are consistent with K, since
if one of them is not then the theorem trivially holds.

Since A1 and A2 are independent on each other, by
Proposition 12, we have ∆I1 ∩∆I2 = /0, where ∆I1 and ∆I2
are the domains of A1 and A2 respectively.

Suppose 〈T ,A1〉 6|=Q and 〈T ,A2〉 6|=Q. These mean
∃I1 such that I1 |=A1, I1 |= T , I1 |= ¬Q, and ∃I2 such
that I2 |= A2, I2 |= T and I2 |= ¬Q. Note that I1 and
I2 are arbitrary interpretations of A1 and A2 respectively
with the only constraint of being interpretations of T .

Since A = A1 ∪A2 and ∆I1 ∩∆I2 = /0, we can create
an interpretation I of A such that I is the union of the
interpretation I1 of A1 and the interpretation I2 of A2
(I = I1 ∪ I2). More precisely, I = 〈∆I ,•I〉 is defined
as follows:

(i) ∆I = ∆I1 ∪∆I2 becauseA=A1∪A2, where ∆I is the
domains of A

(ii) For any constant a,

aI =
{

aI1 if a occurs in A1
aI2 if a occurs in A2

(iii) For any concept C, CI = CI1 ∪CI2

(iv) For any role R, RI = RI1 ∪RI2

Since ∆I1 ∩∆I2 = /0, then it is immediate to verify that I
is indeed an interpretation, and I |= T , since I1 |= T and
I2 |= T .

Since I1 |=¬Q and I2 |=¬Q, from (iii), we can imme-
diately verify I |= ¬Q, i.e., (¬Q)I = (¬Q)I1 ∪ (¬Q)I2 ,
where I is the interpretation of A. From (ii), (iii) and
(iv), we can also infer that (A)I = (A1)I1 ∪ (A2)I2 , i.e.,
I |=A.

SinceA1 andA2 are assumed to be consistent by them-
selves, we only need to prove that there is no clash be-
tween A1 and A2. For an arbitrary concept C, by general
definition in description logic, we get CI ⊆ ∆I . In addi-
tion, we get (¬C)I = (∆I\CI) ⊆ ∆I . Thus, for arbitrary
C, CI1 ⊆ ∆I1 and (¬C)I2 ⊆ ∆I2 . Since ∆I1 ∩∆I2 = /0, there-
fore, CI1 ∩ (¬C)I2 = /0, which infers that no clash can oc-
cur between A1 and A2.

Thus for the interpretation I of A, we have (A)I 6= /0
and (¬Q)I 6= /0, i.e., I |= A∧I |= ¬Q which is the def-
inition of A 6|= Q. Therefore, A |= Q only if A1 |= Q or
A2 |=Q which infers 〈T ,A〉 |=Q only if 〈T ,A1〉 |=Q or
〈T ,A2〉 |=Q.

For the if direction, we assume that either 1) 〈T ,A1〉 |=
Q or 2) 〈T ,A2〉 |=Q. In both cases, by monotonicity, we
obtain 〈T ,A1∪A2〉 |=Q which is 〈T ,A〉 |=Q. 2

In the second step of the approach, we associate each
Abox (or group of Aboxes) with a source description, us-
ing create source description(Ag). A source description
can be view as a surrogate of each data source. Surrogate
refers to a brief representation of an information source
that is designed to convey an indication of the information
source’s intent (Goodchild 1998). A good surrogate has
two major properties: (1) it corresponds to some common
understanding in the user’s community, and (2) it can be
organized in a way that is searchable.

Source descriptions are used to determine the rele-
vancy of each Abox Ah ∈ Ag with respect to a query.
Source descriptions depend on the type of the query. For
boolean queries, the source description of each AboxAh ∈
Ag can be a simple list of all individuals appearing in the
AboxAh. The idea is if the query does not satisfy SD(Ah)
(necessary and sufficient conditions), it is guaranteed that
the query over AboxAh will fail, i.e., it returns False. This
is done by the function query relevancy(SD(Ah),query).
This function returns False if the query does not sat-
isfy SD(Ah), i.e., the Abox Ah is fully irrelevant to the
query, and will contribute nothing to the answer of the
query. The function works by extracting an individual
from the query, then checking if it is in the source de-
scription SD(Ah) or not. If it is, then it queries the Abox

Ah, using normal boolean query answering procedure in-
stance checking(Ah,query).

This can be formalised as follows:
Definition 14 Let A be an Abox, the boolean query
source description for A (SDb(A)) is the the Herbrand
universe of A, i.e., SDb(A) = HA.

We can now prove soundness and completeness of the
proposed algorithm.
Theorem 15 (Soundness and Completeness) Let Q be
a boolean query. Let A 6]Q represents when
query relevance(SDb(A),Q) returns False, i.e., A is not
relevant the queryQ, and letA]Q represents otherwise. If
A 6]Q then 〈T ,Ā−{A}〉 |=Q if and only if 〈T ,Ā〉 |=Q.
Proof SupposeA 6]Q. This means a 6∈ SDB(A), whereQ
is C(a).

First, we prove the only if direction. Suppose 〈T ,Ā−
{A}〉 |= Q. However, Ā− {A} ⊆ Ā. By monotonicity,
we obtain 〈T ,Ā〉 |=Q.

Therefore, 〈T ,Ā−{A}〉 |=Q only if 〈T ,Ā〉 |=Q.
For the if direction, suppose 〈T ,Ā〉 |= Q. We, then,

prove by case.
Case 1: Q is a tautology. It is immediate to verify that

〈T ,Ā−{A}〉 |=Q is true.
Case 2: Q is not a tautology. From Lemma 16, we

obtain 〈T ,A〉 6|= Q. In addition, 〈T ,Ā〉 |= Q is equal
to 〈T ,Ā − {A} ∪ {A}〉 |= Q. By Theorem 13, we get
〈T ,Ā− {A}〉 |= Q or 〈T ,A〉 |= Q. Since 〈T ,A〉 6|= Q,
we obtain 〈T ,Ā−{A}〉 |=Q.

These cases cover all possibilities. Therefore, 〈T ,Ā−
{A}〉 |=Q if 〈T ,Ā〉 |=Q.

Therefore, ifA 6]Q then 〈T ,Ā−{A}〉 |=Q if and only
if 〈T ,Ā〉 |=Q. 2

Lemma 16 Let Q be a boolean query C(a). If a 6∈
SDB(A) and Q is not a tautology, then 〈T ,A〉 6|=Q.
Proof Suppose a 6∈ SDB(A). By definition, this means
a 6∈ ∆IA. In other words, there is no a in A, i.e., C(a) is
definitely not inA. SuppposeQ is not a tautology. At this
state, we want to prove 〈T ,A〉 6|= C(a) which is equal to
proving that 〈T ,A〉∪{¬C(a)} is satisfiable. Since 〈T ,A〉
is consistent, 〈T ,A〉∪{¬C(a)} will be unsatisfiable only
if either C(a) is in A or C(a) is a tautology. Since neither
of them is true, 〈T ,A〉∪ {¬C(a)} is satisfiable. Conse-
quently, we prove 〈T ,A〉 6|= C(a).

Therefore, if a 6∈ SDB(A) andQ is not a tautology, then
〈T ,A〉 6|=Q. 2

Finally, in the last step we simply combine the answers
together using disjunction. Again this step is justified by
Theorem 13.

5 Example for the Approach

Suppose we have a knowledge bases K = 〈T ,A〉, where
the data is distributed over four Aboxes, i.e., A = A1 ∪
A2∪A3∪A4.

Suppose the Tbox T is as follows:
T = {Male .= ¬Female,

Man .= HumanuMale,

Woman .= HumanuFemale,

Father .= Manu∃hasChild.Human,

Mother .= Womanu∃hasChild.Human,

Parent .= FathertMother,

Employee .= Humanu∃workFor.Org,

Org .= Pro f itableOrgtCharityOrg,

Pro f itableOrg .= ¬CharityOrg,

Pro f itableOrg .= CompanytPartnershiptSoleProprietorship

NewspaperCompany .= Companyu∃publish.Newspaper}

Suppose that the four Aboxes are as follows:

A1 = {Man(John),Man(Clark),Woman(Chloe),
SoleProprietorship(BKKDelight),hasChild(John,Clark),
workFor(Clark,DailyPlanet),attend(Clark,MetroNews05),
hasChild(John,Chloe),workFor(Chloe,BKKDelight),
enrolAt(Chloe,DKE)}

A2 = {ResearchGroup(DKE),School(ENG),University(UQ),
Workshop(MetroNews05), partO f (DKE,ENG),
f acultyO f (ENG,UQ), locatedIn(UQ,Australia)}

A3 = {NewspaperCompany(DailyPlanet),Workshop(MetroNews05),
NewspaperCompany(Inquisitor), locatedIn(DailyPlanet,USA),
sponsoredBy(MetroNews05,DailyPlanet),
sponsoredBy(MetroNews05, Inquisitor),
sponsoredBy(MetroNews05,DKE)}

A4 = {CharityOrg(WorldHel p),CharityProgram(T suHel p),
CharityProgram(QuakeHel p),
locatedIn(WorldHel p,Germany),
create(WorldHel p,T suHel p),create(WorldHel p,QuakeHel p)}

We simply create the Abox graph for each Abox, yield-
ing four Abox graphs: AG(A1), AG(A2), AG(A3), and
AG(A4). For every combination of two Aboxes of A, we
determine the Abox dependency between them using the
find abox dependency function. The function will com-
bine the two Aboxes together, and apply UCONN algo-
rithm to the graph of the combined Abox.

If the graph is connected, then the two Aboxes depend
on each other. We, then, add dep(Ai,A j) to the set depset
as they are dependent, i.e., the function returns True. We
get

depset = {dep(A1,A2),dep(A1,A3),dep(A2,A3)}

Since we know that A1 depends on A2, and also on A3,
we virtually group them together, i.e., we will consider
the data in both three Aboxes together. This is done by the
combine dependent abox(A,depset) function. As a result
we have Ag = {A123,A4}, where A123 = A1∪A2∪A3.

At this stage, we create source description for each
Abox in Ag, using the create source description(Ag) pro-
cedure:

• SD(A123)= (DailyPlanet,Australia, Inquisitor,
ENG,DKE,Chloe,MetroNews05,
Clark,USA,BKKDelight,John,UQ)

• SD(A4) = (Malaysia,T suHel p,WorldHel p,
QuakeHel p)

Suppose, we have a boolean query John : (Parent u
∃hasChild.Employee). For every Ah ∈Ag, we determine
relevancy with respect to the query, using the procedure
query relevancy(SD(Ah),query). The procedure will ex-
tract “John” from the query, and search whether “John” is
in SD(Ah) or not. In this case, “John” is in SD(A123), but
not in SD(A4). Consequently, we simply query A123, us-
ing the instance checking(Ah, query) function. The result
from instance checking test of the query in A123 is True.
Thus, answer = False ∨ True = True, which is the same
result as when we query the whole Abox A.

6 Complexity Analysis

Each Abox Graph can be trivially generated in O(n2),
where n is the number of assertions in Abox A. The
next part is Abox dependency determination. We need
k(k − 1)/2 comparisons (2-combinations) of unordered
pair of Aboxes, where k is the number of Aboxes in A.
Each comparison needs UCONN algorithm. UCONN can

Tone
Highlight

Tone
Text Box
Ah,not just A

be solved by DFS in O(v2), where v is the number of indi-
viduals in each Abox.

For source description, the cre-
ate source description(Ag) procedure requires not
more than O(n2) for all Aboxes, since it can be imple-
mented using the quick sort algorithm. To determine the
relevancy of an Abox to a query, we call the function
query relevancy(SD(Ah),query) that operates in O(n)
for sequential search. Finally, we simply use the in-
stance checking(Ah,query) function to find the answer
for each Abox, and simply combine the answer.

Till now, our space partitioning and reduction ap-
proach exploits at most PTIME algorithms in each part,
i.e., the Abox dependency part and the source description
part. Overall, our algorithm can be operated in PTIME,
not including the instance checking part. Since the in-
stance checking part is known to be solved in EXPTIME-
complete, assuming P 6= EXPTIME, the overall algorithm
still operates in EXPTIME, but with a reduced exponent.
The Abox dependency part will partition the search space,
thus the exponent will be reduced if there are at least two
partitions, e.g., the time complexity is reduced from 2m

to 2n + 2p, where m = n + p. The source description part
will further reduce the exponent if there are some Aboxes
which can be eliminated from the process, e.g., the time
complexity is reduced from 2m to 2q, where q < m.

7 The Extension

We intend to extend our work to non-boolean query an-
swering (Abox retrieval) optimization. The space par-
titioning, Theorem 13, can be easily extended to cover
Abox retrieval reasoning services. The main differences
will be with the source description. Furthermore, we will
investigate possible extensions of Theorem 13 to more ex-
pressive DLs.

In the nutshell, a source description of an Abox A for
retrieval (SD(A)) consists of several types of source de-
scriptions. In the basic setting, we shall have SDC(A) and
SDR(A). SDC(A) is a set of least common subsumers or
LCSs of concepts appeared in concept membership asser-
tions in the Abox A. SDR(A) is a set of roles appeared
in role membership assertions in the Abox A. Let Q be a
non-boolean query, C,D be concept expressions, and Ah
be an Abox. The source description usage is different for
each form of Q, for example:

• For the case Q ← C, Ah is relevant to Q if ∃s ∈
SDC(Ah),Qv s

• For the case Q←CuD, Ah is relevant to Q if Ah is
relevant to C and Ah is relevant to D.

• For the case Q←CtD, Ah is relevant to Q if Ah is
relevant to C or Ah is relevant to D.

• For the case Q← ∃R.C, Ah is relevant to Q if R ∈
SDR(Ah) and Ah is relevant to C.

• For the case Q← ¬C, Ah is relevant to Q if Ah is
irrelevant to C.

These operations can be recursive. Hence, we can achieve
a methodology for determine relevancy of the Abox Ah
with respect to the arbitrary-formed non-boolean query Q.
Note that the correctness of the above methodology fol-
lows from the independent Abox theorem, extended for
non-boolean query.

8 Summary and Discussion

The optimization approach presented in this work is based
on the procedure normally adopted for deduction over a
description logic knowledge base (the query answering

process over such knowledge base is a deduction process).
In particular we refer to the tableaux algorithm. Tradition-
ally, tableaux algorithm was designed to prove the satisfi-
ability problem. The main idea behind this algorithm is
based on a notational variant of the first order tableaux
calculus. In fact, a tableaux algorithm tries to prove the
satisfiability of a concept expression C by demonstrating a
nonempty model of C. It constructively builds a model for
a given concept. The process of constructing a model pro-
ceeds by completing a constraint system (Tessaris 2001),
using a set of consistency-preserving completion (or ex-
pansion) rules. The process will continue if it can extend
the existing constraint system. In ALC reasoning with T
and A, the process will proceed via a role membership
assertion. The idea behind our work is to specify the con-
dition where we guarantee that the reasoning process over
A1 will never proceed to A2 if A1 and A2 are indepen-
dent from each other. This optimization, in particular,
the space partitioning part, can be seen as a divide-and-
conquer technique. A general disadvantage of this kind of
technique is the parts overlap. However, in this work we
proposed a methodology to avoid overlapping part, thus, it
does not suffer from such disadvantage of the divide-and-
conquer technique.

Apparently, the major drawback of this approach is ob-
viously the additional cost from Abox dependencies and
source descriptions determination. But the cost is still in
PTIME, as shown in previous section. One may argue that
our space partitioning approach would support the reduc-
tion in apparent worst-case complexity for query answer-
ing, but at a high price in practice, in particular for a large
knowledge base. However, this is not a scholarly argu-
ment, because the larger the knowledge base is, the less
the relative cost is (recall that the normal query answering
is in EXPTIME while the additional cost is in PTIME).
Thus, our approach should behave well in practice. The
only issue that we must give additional attention to is a
design of effective Abox dependency information distri-
bution, minimizing information exchange between nodes
in the network, where each node represents an Abox. In
addition, if the data pages do not change frequently, then
there is no need to recompute the dependency of the Abox.
In addition data source can be organised in indexes for fast
retrieval.

One may also argue that this work is based on ALC
description logic which is weaker than OWL. We accept
this argument since at first we want to consider OWL-DL.
However, OWL-DL is based on SHOIQ(D) description
logic which is, in fact, the extension of ALC. In the his-
tory of description logic, the least expressive language was
investigated first. Then, the result were extended to cover
more expressive languages consecutively. Consequently,
we consider ALC first. We will, then, investigate the ex-
tension to cover OWL, in particular, OWL-DL, later.

This approach can be applied to a system which al-
lows only one ontology (or Tbox). Though the Semantic
Web technology tends to exploit multiple ontologies. In
ontology-based integration of information area (Wache,
Vögele, Visser, Stuckenschmidt, Schuster, Neumann &
Hübner 2001), we can divide the exploitation of ontology
into 3 approaches: single-ontology approach, e.g., SIMS
(Arens, Hsu & Knoblock 1996), multiple-ontologies ap-
proach, e.g., OBSERVER (Mena, Kashyap, Sheth &
Illarramendi 1996), and hybrid-ontology approach, e.g.,
COIN (Goh 1997). The single ontology approach allows
only one ontology in the system while multiple-ontologies
approach allows many ontologies in the system. The
multiple-ontologies approach requires additional mapping
specifications between each pair of ontologies. Since such
mappings are infact ontologies themselves (Akahani, Hi-
ramatsu & Kogure 2002), we need additional n(n− 1)/2
ontologies for such an approach, where n is number of
existing ontologies in the system. In hybrid-ontology ap-
proach, a global ontology and additional n mapping spec-
ifications (between global ontology and each local ontol-

ogy) are required. Hence the single-ontology approach
can be viewed as generalization of the other two ap-
proaches. Thus, we follow such approach. In addition,
since the aim of our work is to study how to query mul-
tiple data sources, thus we do not need to add complexity
arisen from ontology mapping in the last two approaches.
Simple single-ontology approach, but not trivial for query
answering, is enough. Note that we can extend our work to
include multiple ontologies later when the research about
ontology binding and ontology mapping and ontology in-
tegration is more mature.

This approach can be applied to a system which allows
multiple data sources (or Aboxes). We can think of an
Abox as an RDF document. In addition RDF databases
try to partition RDF triples in disjoint graphs , where each
graph can be understood as a data page of our approach.
However, recent research has shown that there are several
semantic problems when people tried to layer an ontol-
ogy language, i.e., OWL, on top of the RDF layer (Pan
& Horrocks 2003). Such problems stem from some fea-
tures/limitations of RDF, e.g., no restriction on the use of
built-in vocabularies, and no restriction on how an RDF
statement can be constructed since it is just a triple. Thus,
this implies that the ontology layer may be not compati-
ble with the RDF layer of the Semantic Web. However,
there is a work proposing additional layer on top of the
RDF layer, i.e., RDF(FA) (Pan & Horrocks 2003). This
layer corresponds directly to Aboxes, thus RDF(FA) may
be very useful in the future.

There are few works related to our work, i.e., Instance
Store (Horrocks et al. 2004) and RACER (Haarslev &
Möller 2002). Both works propose retrieval optimization
techniques. Hence, our approach seems to be the first ap-
proach for Abox instance checking optimization. Instance
Store imposes an unnatural restriction on Abox, i.e., en-
forcing Abox to be role-free. This is a severe restric-
tion since role names are included even for FL− (ALC
without atomic negation), a DL with limited expressive
power. RACER proposes several innovative Abox rea-
soning optimization techniques. However, RACER allows
single Abox, while our approach allows multiple Aboxes.
Thus after we apply our techniques to reduce the reasoning
search space, we can apply RACER techniques to reduce
it further. Consequently, the approach taken in RACER
seems to be complementary to ours. We will investigate
the combination of our approach and RACER approach in
the future.

References

Akahani, J., Hiramatsu, K. & Kogure, K. (2002), Coordi-
nating heterogeneous information services based on
approximate ontology translation, in ‘Proceedings
of AAMAS-2002 Workshop on Agentcities: Chal-
lenges in Open Agent Systems’, pp. 10–14.

Arens, Y., Hsu, C. & Knoblock, C. A. (1996), ‘Query pro-
cessing in the sims information mediator’, Advanced
Planning Technology .

Baader, F., Calvanese, D., McGuinness, D., Nardi, D.
& Patel-Schneider, P., eds (2003), The Description
Logic Handbook: Theory, Implementation, and Ap-
plications, Cambridge University Press, New York.

Baader, F. & Hollunder, B. (1991), A terminological
knowledge representation system with complete in-
ference algorithm, in ‘The Workshop on Processing
Declarative Knowledge’, pp. 67–86.

Berners-Lee, T. (1999), Weaving the Web : the Original
Design and Ultimate Destiny of the World Wide Web
by its Inventor, HarperSanFrancisco, San Francisco.

Donini, F. M., Lenzerini, M., Nardi, D. & Nutt, W.
(1991), The complexity of concept languages, in

J. Allen, R. Fikes & E. Sandewall, eds, ‘Proceed-
ings of the Second International Conference on Prin-
ciples of Knowledge Representation and Reasoning
(KR-91)’, Massachusetts, pp. 151–162.

Donini, F. M., Lenzerini, M., Nardi, D. & Schaerf, A.
(1996), ‘Reasoning in description logics’, Founda-
tion of Knowledge Representation pp. 191–236.

Donini, F. M. & Massacci, F. (2000), ‘Exptime tableaux
for ALC’, Artificial Intelligence 124(1), 87–138.

Doyle, J. & Patil, R. (1991), ‘Two theses of knowledge
representation: Language restrictions, taxonomic
classification, and the utility of representation ser-
vices’, Artificial Intelligence Journal 48, 261–297.

Goh, C. H. (1997), Representing and Reasoning about
Semantic Conflicts in Heterogeneous Information
Sources, PhD thesis, MIT.

Goodchild, A. (1998), Database Discovery in the Orga-
nizational Environment, PhD thesis, University of
Queensland.

Haarslev, V. & Möller, R. (2002), Optimization strategies
for instance retrieval, in ‘Proceedings of the Interna-
tional Workshop on Description Logics (DL 2002)’.

Horrocks, I. (1997), Optimising Tableaux Decision Proce-
dures for Description Logics, PhD thesis, University
of Manchester.

Horrocks, I., Li, L., Turi, D. & Bechhofer, S. (2004),
The instance store: Description logic reasoning with
large numbers of individuals, in ‘International Work-
shop on Description Logics (DL 2004)’, pp. 31–40.

McGuinness, D. L., Fikes, R., Stein, L. A. & Hendler, J.
(2003), Daml-ont: An ontology language for the se-
mantic web, in D. Fensel, J. Hendler, H. Lieberman
& W. Wahlster, eds, ‘Spinning the Semantic Web:
Bringing the World Wide Web to its Full Potential’,
MIT Press.

Mena, E., Kashyap, V., Sheth, A. & Illarramendi, A.
(1996), Observer: An approach for query processing
in global information systems based on interoper-
ability between pre-existing ontologies, in ‘Proceed-
ings of the 1st IFCIS: International Conference on
Cooperative Information Systems (CoopIS ’96)’.

Pan, J. Z. & Horrocks, I. (2003), Rdfs(fa): A dl-
ised sub-language of rdfs, in ‘Proceedings of the
2003 International Workshop on Description Logics
(DL2003)’.

Schmidt-Schauß, M. & Smolka, G. (1991), ‘Attributive
concept descriptions with complements’, Artificial
Intelligence 48(1), 1–26.

Stuckenschmidt, H. (2003), ‘Query processing on the se-
mantic web’, Künstliche Intelligenz 17.

Tessaris, S. (2001), Questions and Answers: Reasoning
and Querying in Description Logic, PhD thesis, Uni-
versity of Manchester.

Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H.,
Schuster, G., Neumann, H. & Hübner, S. (2001),
Ontology-based integration of information - a survey
of existing approaches, in ‘Proceedings of the IJCAI-
01 Workshop: Ontologies and Information Sharing’,
pp. 108–117.

	Introduction
	Preliminary: Description Logic
	Reasoning in Description Logic
	Reasoning for Tbox
	Reasoning for Abox
	Tableaux algorithm

	Reasoning Complexity and Optimization

	The Efficiency Issue
	The Approach
	Example for the Approach
	Complexity Analysis
	The Extension
	Summary and Discussion

