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ABSTRACT
The analysis of 3D rigid body transformations based on
camera images is of great significance in many research ar-
eas. Classical methods to recover 3D object information
often use a set of cameras that cover a static scene from
different view angles. Key areas in this context include
Structure from Motion, Motion from Structure and Cam-
era Calibration. This paper introduces a new approach to
analyse 3D rigid body transformations which we call inte-
gral projection. In this model, we are able to use frequency-
domain information to estimate parameters of the transfor-
mation. Simulations are presented which demonstrate our
initial successes.

1. INTRODUCTION

One of the most challenging research areas in computer vi-
sion is to gain 3D information about an object from cam-
era images of this object. In the case of a static object, at
least two cameras with different view angles are required to
compute depth maps that enable back-projection of the 2D
pixels, i.e., the transformation of a 2D pixel into the cor-
responding 3D voxel of the object [1]. On the other hand,
for dynamic scenes, the use of one camera only allows the
acquisition of 3D information, provided that at least two
frames of an image sequence from that camera are being
processed. Luong and Faugeras, amongst many others, have
shown how 3D structure and motion information can be es-
timated based on point correspondences [2].

Gaining structural information about the object or scene
based on rigid body transformations of a 3D object or scene
is known as Structure from Motion. A variety of approaches
have been proposed in this context [3, 4, 5]. An overview of
different methods can be found in [6]. On the other hand,
the aim of Motion from Structure is to extract 3D motion
parameters from camera images. In the dynamic case, a
sequence of images from one camera can be analysed to
determine the 3D motion parameters of a moving object. In
the static case, the images of a fixed scene from multiple
cameras can be used for camera calibration.

Finding the depth information of the image pixels relies
on an accurate determination of rigid body transformations,
i.e., the relative rotation and translation of the 3D object
with respect to the camera. The camera model determines
the relationship between the 3D voxels of the object and the
corresponding 2D pixels in the image plane. In computer
vision, the most commonly used projection models are ei-
ther parallel or perspective projections.

Transformations in the space domain that are composed
of rotations and translations correspond to pure rotations of
the spectral magnitudes in the frequency domain [7]. A spa-
tial translation yields a phase shift in the frequency domain.
However, common projection techniques such as parallel
projection are non-linear transformations between the 3D
voxel model and the 2D image model. As a consequence,
the transformation between the two Fourier spectra of the
images that result from the projections of the original and
the transformed object respectively is not straightforward.

We propose an integral projection model that is a linear
operation and establishes a straightforward relationship be-
tween the two image spectra. There is a correspondence
between parallel and integral projection which will be dis-
cussed in Section 2.1.

Section 2 introduces our model and shows its relevance
for rigid body transformations. An algorithm for estimating
transformation parameters is presented in Section 3. Initial
experimental results are shown in Section 4. We conclude
with an outlook on future research.

2. INTEGRAL PROJECTION

2.1. Concept and relationship to parallel projection

We will illustrate the integral projection scheme by project-
ing a simple 2D object into a 1D projection function. The
integral projection model determines the 1D projection val-
ues by integrating the 2D object along lines that run parallel
to the view axis. This model comprises two simplifications:
use of integration to perform the projection and use of par-
allel, rather than fan or perspective, projection.
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As we pointed out in Section 1, there is a duality between
Structure from Motion and Motion from Structure. Record-
ing static scenes with multiple identical cameras from dif-
ferent viewpoints is equivalent to recording dynamic scenes
or objects with one static camera. Without loss of generality,
the following considerations are based on the assumption
that we have one static camera that is recording a moving
object.

Suppose the 2D object in its original position is rep-
resented by f2(y, z). After an object transformation has
taken place, the object is represented by f ′

2(y, z). Integrat-
ing f2(y, z) and f ′

2(y, z) along lines that are parallel to the
view axis results in the 1D integral projection values. Fig-
ures 1 and 2 depict this situation. In both figures, the view
axis is the z-axis of the object coordinate system. The inte-
gral projections are 1D functions that reflect the integration
results as intensity values I(y) and I ′(y) respectively.
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Fig. 1. Integral projection of an object before transformation
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Fig. 2. Integral projection of an object after transformation

For the following considerations we will assume that
the objects in Figures 1 and 2 are delta-surface objects,
i.e. f2(y, z) and f ′

2(y, z) are non-zero only in points (y, z)
that belong to the object surface. We further assume that
f2(y, z) and f ′

2(y, z) are non-zero only for surface points
that are in the field of the view of a camera that is described
by a parallel camera model. These surface points are de-
picted in Figures 1 and 2. Under these assumptions, integral
projection is identical to parallel projection.

For general object geometries, object faces might become
obscured or revealed after object transformations. There-
fore, the delta surface functions f2(y, z) before and f ′

2(y, z)
after an object transformation are generally not only trans-

formed versions but differently shaped as shown in Fig-
ures 1 and 2. There will consequently be deviations between
applying an integral projection or a parallel projection to
the transformed surface function f2(y, z), even though both
projection models have identical results for the original sur-
face function f2(y, z).

However, the object faces that become obscured or re-
vealed after transformations can be expected to be relatively
small if the camera frame rate is high and the object trans-
formation between the frames is relatively small. There-
fore, the strong correspondence between parallel and inte-
gral projection is retained. Perspective projections can be
approximated by parallel projections if the distance of the
object to the camera is relatively large compared to the fo-
cal length.

2.2. Mathematical model
Suppose the 3D scene can be represented by a function
f3(x, y, z). The integral projection model determines the
2D pixel values by integrating f3(x, y, z) along lines that
are running parallel to the view axis. We consider an ideal
image plane with infinite extent and describe continuous im-
ages rather than digital images in our mathematical model.
Using our integral projection approach and assuming that
the z-axis of our object coordinate system is aligned with
the view axis of the camera, the corresponding 2D image
data will be

f2(x, y) =

∫

R

f3(x, y, z) dz. (1)

The Fourier spectra of f2(x, y) and f3(x, y, z) can be de-
noted as

F2(ξ, η) =

∫

R2

f2(x, y)e−j(ξx+ηy) dx dy (2)

F3(ξ, η, ζ) =

∫

R3

f3(x, y, z)e−j(ξx+ηy+ζz) dx dy dz. (3)

Thus, the relationship between the Fourier spectra F2(ξ, η)
and F3(ξ, η, ζ) is

F2(ξ, η) =

∫

R3

f3(x, y, z)e−j(ξx+ηy) dx dy dz

= F3(ξ, η, 0). (4)

Equation 4 is known as the projection-slice theorem [8]. An
important application of this theorem is found in tomogra-
phy [9] where it is deployed for recovering x-ray images. As
(4) shows, the spectrum of the image data is the ξ, η−plane
(where ζ = 0) of the corresponding spectrum of the 3D
object data. What does this relationship mean for 3D rigid
body transformations? This will be discussed in Section 2.3.



2.3. Effect of 3D rigid body transformations
For the following considerations, we introduce the vectors

∆ =
(

ξ, η, ζ
)T

(5)

and
Λ =

(

x0, y0, z0

)T
(6)

where ξ, η and ζ represent the 3D frequency components
of F3(ξ, η, ζ) in (3) and x0, y0 and z0 are the translational
components of the transformation with respect to the x, y, z

coordinate axes. Let us now consider that we have the two
2D integral projection images of a rigid body that is subject
to the following linear transformation

P ′ = RP + Λ (7)

with R representing the rotation matrix, P = (x, y, z)T a
point of the object and P ′ = (x′, y′, z′)T the corresponding
transformed point. After the transformation, the 3D spec-
trum that corresponds to the transformed object will be

F ′

3(∆) = e−j(ΛT ∆)F3(R
T ∆). (8)

According to (4), the 2D spectrum of the image is the ζ = 0
plane of the 3D spectrum of the object. Therefore, the two
spectra of the projection images before and after the trans-
formation of the object will show matching lines that run
through the origin of the coordinate systems of the spectra.
Figure 3 depicts this situation:

Fig. 3. Matching lines

The magnitudes of the two spectra along these lines will
be identical. The phases will show an offset which de-
pends upon the translational component of the transforma-
tion. Suppose we could detect matching lines in the 2D
Fourier spectra. What does this tell us about the rigid body
transformation that has taken place?

2.4. Analysis of the transformation parameters
Let us assume that (ξ, η) and (ξ′, η′) are corresponding fre-
quency locations along the matching lines of the spectrum
F2(ξ, η) of the first and the spectrum F ′

2(ξ
′, η′) of the sec-

ond image respectively. Equation 4 yields the following re-
lationship

F ′

2(ξ
′, η′) = F ′

3(ξ
′, η′, 0) (9)

and finally with (8)

F ′

2(ξ
′, η′) = ej(ξ′x0+η′y0)F2(ξ, η). (10)

Detecting the matching lines in the two 2D spectra would
yield two types of information. Firstly, by recovering the
phase shift factor ej(ξ′x0+η′y0) in equation (10), we gain in-
formation about the translational components x0 and y0 of
the object transformation. Even though x0 and y0 can not
be isolated from the phase shift factor, we can reveal infor-
mation about their relationship. Secondly, additional infor-
mation is contained in the angle pair (α, α′) of the match-
ing lines with respect to the ξ- and ξ′-axes of the frequency
spectra F2(ξ, η) and F ′

2(ξ
′, η′) respectively. What does this

angle pair tell us about the 3D rigid body transformation?
To answer this question, we will examine how (α, α′) de-

pend on the rotation of the object about an azimuth angle φ

and an elevation angle θ around the origin of the object co-
ordinate system. Defining our xyz-coordinate system such
that the elevation θ denotes the rotation of our object about
the x−axis and the azimuth φ about the y−axis, the corre-
sponding rotation matrix will be

R =





cos φ 0 − sin φ

sin φ sin θ cos θ cosφ sin θ

sinφ cos θ − sin θ cos φ cos θ



 (11)

Rotation matrix R transforms each voxel (x, y, z)T of the
object into a corresponding voxel (x′, y′, z′)T according to
(7). Equation 8 shows that R also establishes the transfor-
mation between corresponding frequency indices in the 3D
Fourier spaces of the original and the transformed object.
With respect to (4) and (9), the transformation of the fre-
quency pair ξ and η of the projection of the object into the
corresponding matching frequencies ξ′, η′ of the projection
of the transformed object is described by

(ξ′, η′, 0)T = R · (ξ, η, 0)T (12)

This yields the relationship between ξ and η along the
matching line depending on the angles φ and θ. Thus, the
angle α of the matching line with respect to the ξ−axis of
the spectrum can be found. Similarly, the angle α′ can be
determined from

(ξ, η, 0)T = RT · (ξ′, η′, 0)T . (13)

The results for α and α′ are

α = arctan

(

sin φ cos θ

sin θ

)

(14)

α′ = arctan

(

sinφ

cosφ sin θ

)

(15)

The corresponding equations for general rotations about all
three coordinate axes are not invertible, i.e., we cannot find



the three rotation angles from (α, α′). Various sets of 3D
rotation angles yield the same matching line angles (α, α′).
This can be illustrated by two intersecting planes within the
3D object coordinate system that both run through the ori-
gin. The first plane represents the z = 0 plane, the orienta-
tion of the second plane determines the matching line angles
(α, α′). Rotating the second plane about the axis that is de-
fined by the matching line of the first plane will not change
(α, α′). However, in analogy to the translational compo-
nents x0 and y0 where we were able to gain an equation de-
scribing their relationship, the angle pair (α, α′) constrains
the solution space for the 3D rotation angles.

3. AN ALGORITHM FOR ESTIMATING
TRANSFORMATION PARAMETERS

We propose a method that is based on a Fourier transfor-
mation to detect the matching lines in the spectra under
the integral projection assumption. The method performs a
complex division of the frequency values along a line in the
spectrum of the first image (projection of the original ob-
ject) and a second line in the spectrum of the second image
(projection of the transformed object). As can be derived
from (10), this division yields for matching lines

M2(ξ
′, η′) =

F3(ξ, η, 0)

F ′

3(ξ
′, η′, 0)

=
F2(ξ, η)

F ′

2(ξ
′, η′)

= e−j(ξ′x0+η′y0).

(16)
The values of F2(ξ, η) and F ′

2(ξ
′, η′) along the matching

lines can be expressed by one-dimensional functions F1(ρ)
and F ′

1(ρ) respectively. The substitutions

ξ = ρ cos(α), η = ρ sin(α) (17)

ξ′ = ρ cos(α′), η′ = ρ sin(α′) (18)

describe the relationship of the two-dimensional frequen-
cies (ξ, η), (ξ′, η′) and the one-dimensional frequency ρ

along matching lines. The variables α, α′ were introduced
in Section 2.4 and denote the angle of the matching lines
with respect to the ξ, ξ′-axes of the ξη, ξ′η′-frequency
coordinate systems. Using these substitutions, the spec-
tra F2(ξ, η), F ′

2(ξ
′, η′) and therefore M2(ξ

′, η′) can now
be transformed into one-dimensional representations F1(ρ),
F ′

1(ρ) and M1(ρ) which finally results in

M1(ρ) = M2(ρ cos(α′), ρ sin(α′))

= e−jρ(x0 cos(α′)+y0 sin(α′)) (19)

As can be easily seen from (19), the inverse Fourier trans-
form of M1(ρ) along matching lines yields a delta function.

m1(k) = F−1{M1(ρ)}

= δ(k − cos(α′)x0 − sin(α′)y0) (20)

The matching technique matches lines based on the pres-
ence of this delta impulse. Equation (20) shows that the lo-
cation of the delta impulse is determined by the translational
components x0 and y0. We compute m1(k) for different
values of (α, α′) and our objective function is max(m1(k)).

4. EXPERIMENTAL RESULTS

The analysis of the 3D motion parameters was implemented
in MATLABTM [10]. For generating image sequences, we
implemented an application in Visual C++ that is based on
OpenGL [11]. Our 3D test object was a flat surface area
of size 512 × 512 originally centered in the xy-plane of the
object coordinate system. As a texture, we mapped the well-
known Lena image onto this surface area. We used no light-
ing to avoid possible artifacts during the rotation. We pro-
jected the object into the 2D image coordinate system using
the orthographic projection type in OpenGL (Figure 4(a)).
We then rotated the surface area about the origin of the xyz-
object coordinate system by specifying various angles for
both the azimuth φ and the elevation θ and applied the same
projection as before. Figures 4(b) and 4(c) show the result-
ing images for a 3D rotation using φ = 60 ◦, θ = 0 ◦ and
φ = 45 ◦, θ = 20 ◦ respectively. As can be easily seen from
Figures 4(c) and 4(a), images that correspond to the rotated
orientation of the 3D object are generally sheared versions
of the images that correspond to the 3D object in its original
orientation.

(a) [0 ◦

, 0 ◦] (b) [60 ◦

, 0 ◦] (c) [45 ◦

, 20 ◦]

Fig. 4. Projections of Lena planes with various 3D orientations

In the matching algorithm, the sampling resolution along
the lines was one horizontal/vertical pixel distance, the an-
gular resolution was one degree. We used a bilinear inter-
polation scheme to determine the complex values of the fre-
quency data along the appropriate lines. We compared the
experimental results against the theoretically computed re-
sults and found a strong agreement.

Table 1. Angles [in ◦] of the matching lines for various rotation
angles [in ◦]

φ θ αt α′

t αe α′

e

0 60 0 0 0 0
60 0 90 90 90 90
15 15 44.0070 45.9930 44 46
30 30 40.8934 49.1066 41 49
45 20 62.7637 71.1183 63 72



Table 1 shows the theoretical values αt, α′

t and the ex-
perimental results αe, α′

e respectively. If either the azimuth
or the elevation angle was zero, the exact results were re-
ceived. Deviations between theoretical and test results are
caused by windowing effects. Table 1 shows that these de-
viations are small even for large rotation angles φ and θ.

Figures 5(A) and (B) show the peak distribution for the
rotation angles φ = 45 ◦ and θ = 20 ◦ as a result of the
IFFT-Detection method. Figure 5(B) plots the peak distribu-
tions inside the rectangular patch of Figure 5(A). The axes
represent the angles α and α′ from 0◦ to 360◦ for the two
images. The maximum peak can be clearly isolated. The
large components in the neighbourhood of the maximum
peak are due to correlation in the frequency data.
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Fig. 5. Evaluation of matching functions

5. CONCLUSION AND FUTURE WORK

In this research, we proposed an integral projection model
for the analysis of 3D rigid body transformations. As we
showed, there is a strong correspondence between the in-
tegral projection model and parallel projection. We devel-
oped an algorithm that extracts information about the ob-
ject transformation from two projected images of the ob-
ject. The algorithm evaluates a matching function to detect
matching lines in the image spectra.

Initial tests were based on the 3D rotation of a textured
plane in the 3D object space about various angles. The re-
sults of these tests corroborated the theoretical model very
well. The proposed matching technique proved to be very
suitable for the extraction of 3D transformation information.

Our future research in this area will be focused on op-
timising both the accuracy and the speed of the detection

methods. One of the main research challenges will be to ex-
ploit additional structure in the frequency domain in order
to extract more information on the 3D rigid body transfor-
mation.
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