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Abstract

The Lattice Solid Model is a particle based method
which has been successfully employed for simulating the
fracturing of rocks, the dynamics of faults, earthquakes
and gouge processes. However, results from initial simu-
lations demonstrate that models consisting of only thou-
sands of particles are inadequate to accurately reproduce
the micro-physics of seismic phenomenon. Instead, mod-
els with millions or tens of millions of particles are re-
quired to produce realistic simulations. Parallel comput-
ing architectures, such as the SGI Altix 3700, provide
the opportunity to solve much larger computational prob-
lems than traditional single processor systems. In order
to take advantage of high performance systems, a Mes-
sage Passing Interface version of the Lattice Solid Model
has been implemented. Benchmarks, presented in this pa-
per, demonstrate an 80% parallel efficiency for the par-
allel Lattice Solid Model on 128 processors of the SGI
Altix 3700. These results, for a two–dimensional wave
propagation problem, indicate the potential for the Lat-
tice Solid Model to simulate more computationally chal-
lenging three-dimensional geophysical processes.

1. Introduction

Most simulations based on particle dynamics models
such as the Discrete Element Model [4] and the Lattice
Solid Model (LSM) [10] have been performed using a
relatively small number of particles. Simulations of pro-
cesses requiring a large number of time steps, such as
gouge shear, have typically used between several hun-
dreds and a few thousand particles [12, 18]. Simula-
tions of processes which require a relatively small num-
ber of time steps, such as compression and fracturing

of solids [15], have used models containing tens of thou-
sands of particles.

However, recent laboratory experiments have shown
that the behavior of fault gouges has a strong depen-
dence on the particle shape and size distribution [8].
These experiments have also shown that there is a sig-
nificant difference in fault gouge behaviour between
2D and 3D models [5]. In addition, [5, 8] suggest that
those results explain the differences between results ob-
tained from laboratory experiment and those from cur-
rent numerical simulations. In order to perform realis-
tic simulations, which provide results directly compa-
rable to laboratory experiments, it will be necessary
to use three–dimensional simulation models with par-
ticle shapes and size ranges comparable to those used
in the laboratory experiments. Particle sizes between
1-800µm, used by [8], would suggest simulation mod-
els containing at least several million particles. This is
currently not feasible using serial simulation software
on a single CPU.

Results from Section 5 demonstrate high parallel ef-
ficiency achieved, using a Message Passing Interface
(MPI) implementation of the LSM, when solving a
two–dimensional wave propagation problem involving
approximately eight million particles. These results
demonstrate the potential for this parallel implemen-
tation of the LSM to solve more computationally chal-
lenging three–dimensional geophysics problems.

The remainder of the paper is organised as follows.
Section 2 presents an overview of the LSM and a discus-
sion of the parallel implementation. Section 3 gives a
brief overview of the Altix 3700 architecture. Section 4
describes the two–dimensional wave propagation prob-
lem which is solved to obtain the benchmark results
presented in Section 5.
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2. Overview of the Lattice Solid Model

2.1. Model

The LSM [10, 17] is a particle based model similar to
the Discrete Element Model (DEM) [4]. The model con-
sists of spherical particles which are characterized by
their radius r, mass m, position x and velocity v. The
particles interact with their nearest neighbours by im-
parting elastic and frictional forces. The particles can
be linked together by elastic bonds (see Figure 1), in
which case the elastic forces are attractive or repul-
sive, depending on whether the particles are closer or
more distant than an equilibrium distance. The linked
force Flinked

ij which particle i exerts on particle j is ex-
pressed as

Flinked
ij =

{
kij(rij − (r0)ij)eij , rij ≤ (rcut)ij ,

0, rij > (rcut)ij ,
(1)

where kij is the spring constant for the elastic interac-
tion between particles i and j, rij is the distance be-
tween the particles i and j, (rcut)ij the breaking dis-
tance for the link between the particles and e is a unit
vector in the direction of the interaction. The link be-

Figure 1. Attractive forces between linked particles.

Fij is the force applied to particle i due to the interac-

tion with particle j whereas Fji is the force applied to

particle j due to the interaction with particle i.

tween particle i and particle j is broken if the distance
between the particles exceeds the threshold breaking
distance (rcut)ij . If two particles are not linked together
(Figure 2) the elastic force Ffree

ij between the particles
i and j is purely repulsive and is given by

Ffree
ij =

{
kij(rij − (r0)ij)eij , rij ≤ (r0)ij ,

0 , rij > (r0)ij .
(2)

Figure 2. Repulsive forces between particles
which are not linked together.

An intrinsic friction between particles has been in-
corporated in the model [17]. Two unbonded interact-
ing particles can be in static or dynamic frictional con-
tact. The force on particle i, due to the dynamic fric-
tional contact with particle j, is expressed as

FD
ij = −µFn

ijeij
T , (3)

where µ is the coefficient of friction between the parti-
cles, Fn

ij is the magnitude of the normal force and eij
T

is a unit vector in the direction of the relative tangen-
tial velocity between the particles [11]. The total force
Fi on particle i can be calculated as

Fi =
∑

(ij)∈L

Flinked
ij +

∑
(ij)∈T

(
Ffree

ij + FD
ij

)
, (4)

where L is the set of linked pairs of particles and T is
the set of all pairs of particles which are in contact but
not linked.

Rotational dynamics can be simulated in the LSM
both by per-particle rotation [20, 21] where each sin-
gle particle has angular velocity ω and momentum I
or by collective rotation of groups of irrotational par-
ticles [13].

2.2. Parallel Implementation

There are two different approaches to the design of
parallel programs:

• a purely data parallel approach which keeps a sin-
gle thread of control within the program, and

• the explicitly distributed approach which also dis-
tributes the thread of control.

While the data-parallel approach has been successful
using a relatively small number of CPUs [13, 16], it is
not well suited for the parallelization of the LSM on
computer systems with large numbers of CPUs. The
results of performance and scalability tests [13] show
that a purely data-parallel implementation of the LSM
is likely to lead to a program which contains signifi-
cant serial overhead. Thus the second, explicitly dis-
tributed approach has been taken for the parallel im-
plementation of the LSM. Explicit message passing us-
ing MPI [9] as the underlying communication library
has been used to implement the inter-process commu-
nication. MPI is a well–defined, open standard, and
implementations exist which are tailored for optimum
performance on a wide variety of high performance and
desktop architectures.

The parallel process structure follows a modified
master-worker model. A master process provides a high
level of control and external communication I/O facil-
ities. The worker or slave processes perform the com-
putational work. This design minimizes the computa-
tion performed by the master process and also greatly
reduces the amount of communication between mas-
ter and worker processes. The master process performs
high level control and each worker process undertakes
local computations. In contrast to a pure master-slave



approach, direct communication between worker pro-
cesses is used instead of communication involving the
master process whenever possible (Figure 3).

Figure 3. Process structure of the parallel LSM.
The communication between the parallel pro-
cesses are implemented using MPI.

For molecular dynamics algorithms, which are
closely related to the LSM, three approaches for
the distribution of the work between the paral-
lel processes have been suggested [19]. The first ap-
proach is to partition only the computation and share
all data between the processors, i.e. each proces-
sor has direct access to all data. An efficient imple-
mentation of this approach, is appropriate for shared
memory computers. On distributed memory sys-
tems it would require the duplication of the whole
data set on each node. A second possibility is a par-
titioning scheme based on the particles, assigning
each particle to a particular processor for the en-
tire run time of a simulation, irrespective of the posi-
tion of the particle. This leads to the efficient use of
memory, but the handling of interactions between par-
ticles residing on different processors incurs a large
communication cost. The third choice is to parti-
tion the problem spatially between processors. A
worker processor will then perform the computa-
tions for all the particles which are located within the
subregion at the current time step. The communica-
tion cost of this approach is potentially smaller than
in the second approach as interactions between par-
ticles assigned to different processors can only occur
along the boundaries of the subregions. This third ap-
proach has been used in the current parallel imple-
mentation of the LSM.

The distribution of the particles, amongst the
worker processors, is based on a spatial partition-
ing of the geometrical domain. In addition to the par-
ticles located in a particular subregion, the data
set assigned to each processor also contains all par-
ticles interacting with any particle in the subre-
gion. Due to the short spatial range of the interac-
tions, the number of duplicated boundary-particles
is small in comparison to the total number of par-
ticles. The forces due to interactions which are as-
signed to more than one processor are computed by
each processor. This leads to a small amount of du-
plicated computation, but reduces the communication
cost.

3. The SGI Altix 3700 Architecture

The Earth Systems Simulator (ESS) situated at the
University of Queensland is a 208-processor SGI Al-
tix 3700 cache-coherent NUMA (ccNUMA), dis-
tributed shared-memory (DSM) “supercluster”. The
system hardware is based on the SGI Origin S2MP ar-
chitecture (see [7]) with SGI NUMAflex intercon-
nect technology (first used in the SGI Origin 3000
[3]), the Intel Itanium 2 processor, DDR SDRAM
DIMMs and supports a variety of PCI cards and adap-
tors. The system software administering the system
hardware is based on the SGI Advanced Linux Envi-
ronment with SGI ProPack, configured to operate as
one node under a single system image.

The 208 processor elements of the ESS are all Ita-
nium 2 Madison processors, each with a 3Mb L3 write-
back cache, 256Kb write-back L2 cache and 16Kb
write-through L1 cache, all of which are located on-
die. The ESS has 2Gb of memory local to each node
board.

The NUMAflex network of the ESS is implemented
in a dual-plane “fat tree” topology interconnecting
the basic building-block components (or “bricks”) in
a modular manner as shown in Figure 4. The com-
pute brick (or “C-brick”) consists of two node boards,
each supporting local SDRAM memory and two Ita-
nium 2 processors connected to an ASIC via a single
front side bus. The ASIC acts as a crossbar between the
local memory, processors, network and I/O interfaces
and is internally connected to the opposing ASIC of the
other node board in the C-Brick via a 6.4Gb/s full du-
plex NUMAlink 4 interconnect. The ASIC is also ex-
ternally connected to a router brick (or “R-brick”) by a
3.2Gb/s full duplex NUMAlink 3 interconnect. The R-
brick in-turn acts as a high-speed switch, routing net-
work packets between the C-bricks and other system
components including memory bricks (or “M-brick”s),
I/O expansion bricks (or “IX-brick”s), PCI expansion
bricks (or “PX-brick”s), data bricks (or “D-brick2”s)
and other R-bricks in the network. Refer to [3] for fur-
ther information on the topology.

The global shared memory addressing of the Al-
tix 3700 is implemented in the C-Brick ASIC, inter-
facing the snooping operations of the Itanium 2 pro-
cessor to NUMAflex protocol which is directory-based.
The ASIC maintains an internal directory containing
the most recent cache coherency information for each
cache-line the processor fetches. For each cache-line,
a bit vector flagging which other node boards have a
copy of the particular cache-line is maintained. This
arrangement permits direct cache-line status transac-
tions and updates, implemented by way of an invali-



Figure 4. The Dual Plane Fat Tree Topology

dation strategy [22]. An additional 3% of local mem-
ory is reserved for inactive directory entries not found
in the ASIC. Cache-line data and directory informa-
tion are loaded simultaneously, reducing delays in the
coherency scheme [22].

4. 2D Wave Propagation Problem

A two–dimensional wave propagation problem was
solved for increasing numbers of particles to examine
the scaling properties of the parallel LSM implemen-
tation on the SGI Altix 3700. A displacement source-
particle, located in the center of the lattice, was used to
propagate waves through the particle array. The type
of source displacement was similar to the one used in
[14] to test a serial implementation of the LSM and sim-
ilar to the type used in [1, 2] to test scaling properties
of the LSM implementation on other high-performance
architectures. The displacement dx in the x-direction
and the displacement dy in the y–direction of the source
particle are given by

dx = axe
(t−t0,x)2

bx , (5a)

dy = aye
(t−t0,y)2

by . (5b)

The constants chosen for the timing tests were ax =
ay = 0.1, bx = by = 0.5, t0,x = 5.0 and t0,y = 4.0. All
values are given in model units. Those parameters lead
to a characteristic wavelength of the source wavelet of
lp ≈ 12r0 for the P-wave and ls ≈ 7r0 for the S-wave.
Particles of radius r0 = 1 and mass m = 1 were ini-
tially (t = 0) arranged in a two–dimensional regular
triangular lattice. Figure 5 illustrates the radial propa-

Figure 5. Snapshot of the displacement field gen-
eratedbyPandS-waves in a regular lattice of 256
× 256 particles. The waves are generated by the
source displacement given in equations (5).

gation of the P-wave and S-wave, from the source par-
ticle in the centre of the lattice, at t = 100.

5. Performance Results

The results from the performance tests enable an as-
sessment of the parallel LSM and its potential to solve

computationally demanding three-dimensional geo-
physics problems on the Altix 3700. This section ex-
amines runtimes and the parallel efficiency of the LSM
when simulating the two-dimensional wave propaga-
tion problem described in Section 4.

The parallel run time Tp is the time elapsed be-
tween the moment computation is started and the mo-
ment the last processor finishes computation. The per-
formance gain achieved by parallelizing the program
can be described by the speedup S [6], which is de-
fined as the ratio between the parallel runtime on a
given number of CPUs and the serial runtime Ts. The
speedup is expressed as

S =
Ts

Tp
, (6)

where Ts is the runtime of the optimal serial algorithm
for the same problem. The parallel efficiency E is the
ratio between speedup S at a given number of CPUs
n and the number of CPUs. The efficiency value de-
scribes how well the additional CPUs are used for ac-
tual performance gain,

E =
S

n
=

Ts

Tpn
, 0 ≤ E ≤ 1 . (7)

The inequality is derived from the fact that the speedup
S can theoretically never exceed the number of CPUs
[6]. In practice, however, speedups larger than the num-
ber of processors (E > 1), so-called “super-linear”
speedups, are sometimes observed in parallel imple-
mentations. This is related to CPU hardware archi-
tectures involving multiple levels of high-speed cache.
Smaller datasets, which can reside entirely within a
high-speed cache have better performance character-
istics than large datasets which can only partially re-
side within a high-speed cache. Super-linear speedup
occurs when a large dataset is partitioned into a num-
ber of smaller datasets which are capable of residing
entirely within the caches of CPUs in the parallel ar-
chitecture.

In order to test the scaling of the parallel LSM
implementation, simulations were run for the two–
dimensional elastic wave propagation problem (Section
4) for increasing numbers of particles. As in [1, 2], the
problem size was scaled with the number of processors
used, i.e. the area of the rectangular region assigned
to a processor was constant. This problem scaling was
performed in order to avoid potential super-linear scal-
ing due to cache related effects. The lattice is geomet-



rically partitioned so that an area containing 256×256
particles is assigned to each processor.

Figure 6. Partitioning of spatial domain amongst
processors. Each square represents a worker pro-
cessor and the digit indicates the number of
neighbours of the processor.

A constant runtime, independent of the number of
processors, would be desired for ideal scaling of the al-
gorithm. However, the amount of communication for
each processor is dependent on the number of its neigh-
bour processors. The number of neighbours for a pro-
cessor is determined by the partitioning of the prob-
lem geometry. Figure 6 illustrates some examples of the
partitioning of the problem space amongst processors
for different problem sizes. This figure shows the spa-
tial partitioning of particles amongst processors and
the communication between neighbouring processors.
Each processor is represented as a rectangular area (an
area containing 256× 256 particles).

Figure 7 plots the runtime per timestep of the
particle force calculation (Equation (4)) for the two–
dimensional wave propagation problem. The error bars
indicate the minimum, mean and maximum runtime
per timestep over the 500 timesteps of each simula-
tion on the indicated number of CPUs. The times are

Figure 7. Runtimes for the particle force calcu-
lation in Equation (4) of the wave propagation
simulation. Error-bars indicate minimum, mean
andmaximum runtime per timestep over the 500
timesteps of each simulation.

recorded by the master process for each timestep. The
master process directs the slave processes to perform
the force calculations and waits until all slave processes
complete the computation. Therefore, each runtime is
the longest time taken, over all slave process, to com-
plete the force calculation for a single timestep. The
force calculation is CPU-bound, involving no particle–
data communication between worker processes. The
force calculation times grow rapidly up to 16 proces-
sors because of the increasing maximum number of par-
ticles per processor over all worker processors. Each
worker processor contains 256× 256 particles of its as-
signed rectangular region, plus an “overlap” of dupli-
cated boundary particles from neighbouring rectangu-

lar regions which are linked to particles within the as-
signed region. In Figure 6, it can be seen that simula-
tions for 16 or more CPUs contain processors that have
the maximum 4 neighbours. The mean runtimes for 32,
64 and 128 processors increase by less than 2% of the
16 processor mean runtime.

Figure 8. Runtimes for the exchange of
boundary-particle data. Error-bars indicatemini-
mum, mean and maximum runtime per timestep
over the 500 timesteps of each simulation.

Figure 8 plots the runtime per timestep for the ex-
change of boundary particle data. Again, the error
bars indicate minimum, mean and maximum runtime
per timestep over 500 timesteps. The runtime for ex-
changing the boundary–particle data consists of both
communication time and processing time for physically
sending and storing the boundary–particle data. In the
single processor case, there is no boundary–particle
data communication with neighbours. For 2 processors
there is the minimum possible amount of boundary–
particle data to exchange. The 4 processor simulation
involves each processor exchanging boundary-particle
data with two neighbouring processors. In the 8 proces-
sor case, four of the processors have three neighbours.
Another increase in boundary–particle data exchange
occurs for the 16 processor simulation. In this case and
the 32, 64 and 128 processor cases, there are proces-
sors which must exchange boundary information with
four neighbouring processors. For simulations involv-
ing 16, 32, 64 and 128 processors, the rate of increase
in boundary–particle data exchange time is greatly re-
duced.

A qualitative discussion of the scalability of the
LSM parallel communication implementation for differ-
ent communication architectures is given in [1]. There
it is revealed that the parallel implementation is un-
likely to scale well for architectures where the global
bandwidth is less than the sum of the per-processor
bandwidths. From the above timing results for the
boundary-particle data exchange, it appears that par-
allel LSM communication implementation scales well
with regard to the Altix 3700 communication archi-
tecture. Given the 3.2 GB/sec bidirectional bandwidth
between nodes, and, for 256×256 particles per proces-
sor, neighbouring processors exchange less than 100KB
of boundary-particle data, it is not expected that ac-
tual communication of data forms any significant over-
head.

Figure 9 plots the efficiency for the combined force



Figure 9. Parallel efficiency.

calculation and boundary–particle data exchange. The
efficiency decreases for increasing number of processors
due to the increases in force calculation times and com-
munication times for larger numbers of processors. The
plot shows an efficiency of approximately 80% for 128
processors (256× 256× 128 = 8388608 particles).

6. Conclusion

The parallel implementation of the LSM shows good
scaling for up to 128 processors on the SGI Altix 3700,
achieving a parallel efficiency ≈ 80% for a problem in-
volving over eight million particles. To date, this is the
largest number of particles for which a wave propaga-
tion simulation has been run using the parallel LSM
implementation. The experimental results are encour-
aging and suggest that the parallel implementation of
the LSM, running on the Altix 3700, will be capable
of performing three–dimensional simulations involving
millions of particles and enable realistic simulation of
geophysical processes.
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of coupled pore fluid-solid deformation problems. Pure
Appl. Geophys., 157:1889–1904, 2000.

[21] M. Winter, D. Place, and P. Mora. Incorporation of
particle scale rotational dynamics into the lattice solid
model. QUAKESReport#2,TheUniversity ofQueens-
land, 1997.



[22] M. Woodacre, D. Robb, D. Roe, and K. Feind. The SGI
Altix 3000 Global Shared-Memory Architecture. Silicon
Graphics, 2003.


