
A Formal Ontology Reasoning with Individual
Optimization: A Realization of the Semantic Web

Pakornpong Pothipruk and Guido Governatori

School of ITEE, University of Queensland, Australia
[pkp,guido]@itee.uq.edu.au

Abstract. Answering a query over a group of RDF data pages is a trivial pro-
cess. However, in the Semantic Web, there is a need for ontology technology.
Consequently, OWL, a family of web ontology languages based on description
logic, has been proposed for the Semantic Web. Answering a query over the Se-
manticWeb is thus not trivial, but a deductive process. However, the reasoning
on OWL with data has an efficiency problem. Thus, we introduce optimization
techniques for the inference algorithm. This work demonstrates the techniques
for instance checking and instance retrieval problems with respect to ALC de-
scription logic which covers certain parts of OWL.

1 Motivation

The Semantic Web, originated from an idea of the creator of the Web Tim Berners-lee
[3], is an effort to bring back structure to information available on the Web. The struc-
tures are semantic annotations that conform to an explicit specification (called ontology)
of the intended meaning of a piece of information. Thus the the Semantic Web contains
implicit knowledge, and information on the Semantic Web is often incomplete since it
assumes open-world semantics. In this perspective query answering on the Semantic
Web is a deductive process [13].

A family of web ontology languages (OWL) based on Description Logic (DL) has
been proposed as the languages to represent and reason with the Semantic Web. DL em-
phasizes clear unambiguous languages supported by complete denotational semantics
and tractable/intractable reasoning algorithms [10]. Nevertheless, DL still faces prob-
lems when applied in context of the Web. One of them is the efficiency of query an-
swering.

There are many works about DL reasoning optimization. However, most of them
focus on DL-Tbox reasoning. In fact, DL-Abox reasoning, which is the basis for query
answering over the Semantic Web, was seriously studied by some researchers recently.
At present, there are only two prominent works for DL-Abox reasoning optimization,
i.e., Instance Store [9] and RACER [8]. Instance Store uses a DL reasoner to classify
Tbox and a database to store Abox. The database is also used to store a complete real-
ization of the Abox. However, this approach only works with roll-free Abox. Thus an
Abox reasoning over OWL or SHOIQ(D) will be reduced to an Abox reasoning over
ALCO(D) without existential and universal quantifications, a very weak DL. Thus, this
approach is inappropriate in practice. Another approach, RACER, proposes several op-
timization techniques for retrieval (an Abox reasoning), e.g., binary instance retrieval

M. Kitsuregawa et al. (eds)
Web Information Systems Engineering. WISE 2005.
LNCS 3806, pp. 119–132, 2005.
c© Springer 2005.

The original publication is available at www.springerlink.com.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14983051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.springerlink.com

120 Pakornpong Pothipruk and Guido Governatori

and dependency-based instance retrieval techniques. These techniques try to eliminate
an individual, to be (SAT) tested, at-a-time.

Nevertheless, it would be better if we have another technique that can eliminate a
chunk of individuals at-a-time from retrieval reasoning. Thus, we create optimization
techniques that support this idea. In addition, we also introduce a novel optimization
technique for instance checking, an Abox reasoning. We address the efficiency issue by
a space partitioning and reduction approach.

2 Description Logic

The Semantic Web community implicitly adopted DL as a core technology for the on-
tology layer. One of the reasons behind this is that this logic has been heavily analyzed
in order to understand how constructors interact and combine to affect tractable reason-
ing, see [4]. Technically, we can view the current Semantic Web, not including rule,
proof and trust layers, as a DL knowledge base. Thus, answering a query posed on the
Semantic Web (RDF and ontology layers) can be reduced to answering a query posed
on a DL knowledge base, not taking into account low-level operations, such as name
space resolution.

Description logic itself can be categorized into many different logics, distinguished
by the set of constructors they provide. We focus on ALC description logic since it is
the basis of many DL systems.

The language of ALC consists of an alphabet of distinct concept names CN, role
names RN, and individual names IN, together with a set of constructors for building
concept and role expressions [14].

Formally, a description logic knowledge base is a pair K = 〈T ,A〉 where T is a
Tbox, and A is an Abox. The Tbox contains a finite set of axiom assertions. Axiom
assertions are of the form

C v D |C .= D,

where C and D are concept expressions. Concept expressions are of the form

A | > | ⊥ | ¬C |CuD |CtD | ∃R.C | ∀R.C,

where A is an atomic concept or concept name in CN, R is a role name in RN, >
(top or full domain) is the most general concept, and ⊥ (bottom or empty set) is the
least general concepts. The Abox contains a finite set of assertions about individuals
of the form a : C or C(a) (concept membership assertion) and (a,b) : R or R(a,b) (role
membership assertion), where a, b are names in IN.

The semantics of description logic is defined in terms of an interpretation I =
(∆I ,•I), consisting of a nonempty domain ∆I and an interpretation function •I . The
interpretation function maps concept names into subsets of the domain (AI ⊆ ∆I), role
names into subsets of the Cartesian product of the domain (RI ⊆ ∆I ×∆I), and indi-
vidual names into elements of the domain. The only restriction on the interpretations is
the so called unique name assumption (UNA), which imposes that different individual
names must be mapped into distinct elements of the domain. Given a concept name A
(or role name R), the set denoted by AI (or RI) is called the interpretation, or extension,
of A (or R) with respect to I.

Formal Ontology Reasoning with Individual Optimization 121

The interpretation is extended to cover concepts built from negation (¬), conjunc-
tion (u), disjunction (t), existential quantification (∃R.C) and universal quantification
(∀R.C) as follows:

(¬C)I = ∆
I \CI

(CuD)I = CI ∩DI

(CtD)I = CI ∪DI

(∃R.C)I =
{

x ∈ ∆
I |∃y.〈x,y〉 ∈ RI ∧ y ∈CI

}
(∀R.C)I =

{
x ∈ ∆

I |∀y.〈x,y〉 ∈ RI → y ∈CI
}

An interpretation I satisfies (entails) an inclusion axiom CvD (written I |=CvD)
if CI ⊆ DI , and it satisfies an equality C .= D if CI = DI . It satisfies a Tbox T if
it satisfies each assertion in T . The interpretation I satisfies a concept membership
assertion C(a) if aI ∈CI , and satisfies a role membership assertion R(a,b) if (aI ,bI)∈
RI . I satisfies an AboxA (written I |=A) if it satisfies each assertion inA. If I satisfies
an axiom (or a set of axioms), then we say that it is a model of the axiom (or the set
of axioms). Two axioms (or two sets of axioms) are equivalent if they have the same
models. Given a knowledge base K = 〈T ,A〉 we will say that the knowledge bases
entails an assertion α (written K |= α) iff for every interpretation I, if I |= A and
I |= T , then I |= α .

3 The Efficiency Issue

In DL, there are two standard types of queries allowed, i.e., boolean query and non-
boolean query, which are in turn instance checking (or instantiation test) and retrieval
Abox reasoning services respectively.

A boolean query Qb refers to a formula of the form

Qb← QExp,

where QExp is an assertion about an individual, e.g.,

Qb← Tom : (Parent u∃hasChild.Employee)

The query will return one of the member of the boolean set {True,False}. Qb will
return True if and only if every interpretation that satisfies the knowledge base K also
satisfies QExp, and return False otherwise.

A non-boolean query Qnb refers to a formula of the form

Qnb← QExp,

where QExp is a concept expression, e.g.

Qnb← Parent u∃hasChild.Employee

In this case the query will return one of the member of the set {⊥,M}, where ⊥ refers
to the empty set, andM represents a set of models {M1, . . . ,Mm}, where each of them

122 Pakornpong Pothipruk and Guido Governatori

satisfies QExp with respect to the knowledge base K. The query will returnM if and
only if there exists at least one such model, otherwise return ⊥.

A non-boolean query (retrieval) can be trivially transformed into a set of boolean
queries for all candidate tuples, i.e., retrieving sets of tuples can be achieved by re-
peated application of boolean queries with different tuples of individuals substituted for
variables. However, answering a boolean query is in fact an entailment problem. For
example, answering the boolean query:

Qb← Tom : (Parent u∃hasChild.Employee),

is the problem of checking whether

K |= Tom : (Parent u∃hasChild.Employee).

In a DL (supporting full negation, e.g., ALC), boolean query or instance checking can
be reduced to knowledge base satisfiability test: K |= C(a) iff K∪{¬C(a)} is unsatisfi-
able.

[5] gave a tableaux algorithm for solvingALC satisfiability problem with respect to
a Tbox. They proved that their algorithm has EXPTIME-complete worst-case complex-
ity. To the best of our knowledge, this is the latest known result of complexity proof
for the ALC satisfiability problem with respect to a Tbox. Nevertheless, the ontology
language OWL, in particular OWL-DL, of the Semantic web technology is based on
SHOIQ(D) which is even more expressive than ALC. Since the query answering is
in fact an instance checking (or a retrieval reasoning service) which can be reduced to a
satisfiability problem. It is easy to verify that the existing DL reasoning services are still
not enough to be used solely with the Semantic web technology. One way to mitigate
the problem is to optimize the algorithm even more. We propose an optimization tech-
nique for answering a query over a description logic knowledge base. This technique is
coherent with nature of the Web in that it supports multiple-Abox environment, which
corresponds to multiple data source environment in the Web.

4 Space Partitioning and Reduction Approach

This work focuses on finding an answer to the question: “How can we (efficiently)
answer a query in a description logic, in particular ALC, based-Semantic Web system,
given single ontology T , and multiple data sourcesAs, examining the minimum number
of data sources?”. We refer to an Abox as a data source. Due to the space limitation, we
present the result for boolean query only.

The idea of this section is based on the observation that 2m > 2n + 2p, where m =
n + p for n, p > 1. This means that if we can split the search space into independent
parts, query the parts independently from each other, and combine the answers, then
we have an improvement of the performance of the query system. This idea agrees with
the understanding of the Semantic Web as a collection of sometime “unrelated” data
sources. In addition we propose to attach to each data source a data source description
(or source description), a compact representation of the content of the data page. This
idea is similar to the intuition behind indexes in databases. In the same way that type

Formal Ontology Reasoning with Individual Optimization 123

of indexes is more or less appropriate for particular queries, source descriptions depend
on the type of queries. On the other hand, as we will see in the rest of this section, the
relationships among data sources are not influenced by queries. They are determined by
the structure of the data itself.

4.1 The Knowledge Base

The intuition here is to associate to every Abox A a source description SD(A), and to
supplement the inference engine with information about the mutual dependencies of
the Aboxes in the system, in order to determine which Aboxes are relevant and must be
queried.

The first step is to associate to every Abox its domain.

Definition 1. Given an Abox A, let HA be the Herbrand universe of A (i.e., the set
of all the individual occurring in expression in A). For any interpretation I, ∆IA, the
domain of A is defined as follows:

∆
I
A =

{
d ∈ ∆

I |a ∈ HA∧aI = d
}

.

Definition 2 (Multiple Assertional Knowledge Base). Given a set Ā of Aboxes
A1, . . . ,Ak, i.e., Ā = {A1, . . . ,Ak} and a Tbox T , the multiple assertional knowledge
base is the knowledge base K = 〈T ,A〉, where A is the Abox obtained from the union
of all the Aboxes in Ā, i.e., A=A1∪A2∪ . . .∪Ak.

A consequence of the above definition is that the interpretation domain of A is equiv-
alent to the union of interpretation domains of the A js (∆IA =

⋃
1≤ j≤k ∆IA j

). Since
CI ⊆ ∆I by definition, thus, for arbitrary C, CIA =

⋃
CIA j

, for j ∈ {1, . . . ,k} and CA j is
the concept C that occurs in a concept membership assertion in A j.

4.2 The Algorithm

We approach the problem in 5 steps:

1. Determine dependencies among data sources, and group data sources which are
dependent on each other together.

2. Associate each data source (or group of data sources) with a source description.
3. When one queries the knowledge base, exploit a procedure to find irrelevant data

sources (or groups of data sources) with respect to the query, taking into account
source descriptions and the query. Eliminate the irrelevant data sources (or groups
of data sources) from query answering process, yielding a set of possible relevant
data sources (or groups of data sources) to be queried.

4. For each remaining data source (or group of data sources) from the previous step,
apply the existing query answering procedure to each of them, yielding answer
from each of them.

5. Simply combine answers from the queried data sources (or groups of data sources)
together, since each data source (or group of data sources) is independent with the
other.

124 Pakornpong Pothipruk and Guido Governatori

Since a reasoning procedure for simple query answering in the fourth step exists [14],
we will focus on other steps, which are in fact the steps of the data source space parti-
tioning and reduction using source description.

The approach can be implemented by the following algorithm.

Algorithm 1 partitioned QA(query,A):
depset = {}
answer = False
for all Am ∈ Ā do

AG(Am) = create abox graph(Am)
end for
for all 2-combinations {Ai,A j} of A do

if find abox dependency(AG(Ai),AG(A j)) = True then
add dep(Ai,A j) to depset

end if
end for
Ag = combine dependent abox(A,depset)
create source description(Ag)
for all Ah ∈Ag do

if query relevancy(SD(Ah),query) = True then
answer = answer ∨ instance checking(Ah,query)

end if
end for

First, since an Abox Ai can overlap with another Abox A j, we must consider mul-
tiple Aboxes at the same time. However, we will not treat all of the Aboxes as a sin-
gle Abox, because, in this case, the associated reasoning is computational expensive.
Consequently, we need some additional procedure to determine dependencies among
Aboxes since we need to know which Aboxes should be considered together. In other
word, we need to group dependent Aboxes together and treat them as a new single Abox
consisting of multiple dependent Aboxes. To make this clear, we need to formally define
the dependency between Aboxes in the context of Abox reasoning.

Firstly, we will introduce graph notation for an Abox.

Definition 3 (Abox Graph). An Abox graph for an AboxA, AG(A), consists of a set N
of nodes (vertexes), a set E of edges (arcs), and a function f from E to {(a,b) | a,b∈N}.
Each edge, label ed Ri, represents exactly a role name of a role membership assertion
Ri(a,b) ∈A. Hence, each node represents exactly one individual name. An Abox graph
is a directed multigraph.

The create abox graph function will produce an Abox graph AG(Am) for each Abox
Am. We will say that an Abox A is connected if its Abox graph AG(A) is weakly
connected (see its definition in any discrete mathematics textbook).

Definition 4 (Abox Dependency). Given two connected Aboxes A1 and A2, where
A = A1 ∪A2; A1 and A2 depend on each other if the graph of Abox A is (weakly)
connected, and independent otherwise.

Formal Ontology Reasoning with Individual Optimization 125

Proposition 1. LetA1 andA2 be two independent Aboxes in multiple assertional knowl-
edge base. Let ∆IA1

and ∆IA2
be the domains of A1 and A2, then:

– ∆IA1
∩∆IA2

= /0;
– for any concept C, CIA1

∩CIA2
= /0, where CIAi

is the extension of C in ∆IAi
.

If A is unconnected, i.e., A1 and A2 are independent on each other, then it means that
A1 andA2 do not share any common node (individual) because AboxesA1 andA2 are
already connected by themselves. Thus, we can use Abox graphs to determine Abox
dependency.

For any unordered pair of Aboxes {Ai,A j}, we determine the Abox dependency
between the two Aboxes (Ai and A j). According to the definition, Abox dependency
can be detected using the connectivity of the Abox graph of A, i.e., AG(A), where
A =Ai∪A j. Thus, we can exploit any UCONN (undirected graph connectivity prob-
lem) algorithm for this purpose. The function find abox dependency(AG(Ai),AG(A j))
returns True if two Aboxes Ai and A j depend on each other, and False otherwise. If
the function returns True, then we add dep(Ai,A j) to the set “depset”, i.e., the set that
stores dependency value of each pair of Aboxes. Then we virtually combine depen-
dent Aboxes together as a group by the function combine dependent abox(A,depset).
The Abox Ā will become Ag, i.e., the set of already-grouped Aboxes and ungrouped
Aboxes. Each Abox in Ag is independent of each other.

Next, we need to show two things:

1. if two Aboxes depend on each other, then a DL reasoning service, in particular
instance checking and retrieval, needs to take into account the two Aboxes together;

2. if two Aboxes are independent of each other, then a DL reasoning over the two
Aboxes can be done separately over each of them.

The following theorem supports the last step in our approach. It provides the reason
why we can simply combine the answer from each Ai ∈ Ag together. In other words
it states that the the instance checking (a query answering) problem over Ag can be
reduced to separate instance checking problems over each Ai.

Theorem 1 (Independent Abox and Instance Checking). Given two connected Aboxes
A1 and A2, where A = A1 ∪A2, If A1 and A2 are independent on each other, then
for any boolean query Q and Tbox T , 〈T ,A〉 |= Q if and only if 〈T ,A1〉 |= Q or
〈T ,A2〉 |=Q.

Proof. First, we prove the only if direction, and we will assume that both A1 and A2
are consistent with K, since if one of them is not then the theorem trivially holds.

Since A1 and A2 are independent on each other, by Proposition 1, we have ∆I1 ∩
∆I2 = /0, where ∆I1 and ∆I2 are the domains of A1 and A2 respectively.

Suppose 〈T ,A1〉 6|=Q and 〈T ,A2〉 6|=Q. These mean ∃I1 such that I1 |=A1, I1 |=
T , I1 |= ¬Q, and ∃I2 such that I2 |= A2, I2 |= T and I2 |= ¬Q. Note that I1 and I2
are arbitrary interpretations ofA1 andA2 respectively with the only constraint of being
interpretations of T .

Since A =A1∪A2 and ∆I1 ∩∆I2 = /0, we can create an interpretation I of A such
that I is the union of the interpretation I1 of A1 and the interpretation I2 of A2 (I =
I1∪I2). More precisely, I = 〈∆I ,•I〉 is defined as follows:

126 Pakornpong Pothipruk and Guido Governatori

(i) ∆I = ∆I1 ∪∆I2 because A=A1∪A2, where ∆I is the domains of A
(ii) For any constant a,

aI =
{

aI1 if a occurs in A1
aI2 if a occurs in A2

(iii) For any concept C, CI = CI1 ∪CI2

(iv) For any role R, RI = RI1 ∪RI2

Since ∆I1 ∩∆I2 = /0, then it is immediate to verify that I is indeed an interpretation, and
I |= T , since I1 |= T and I2 |= T .

Since I1 |= ¬Q and I2 |= ¬Q, from (iii), we can immediately verify I |= ¬Q, i.e.,
(¬Q)I = (¬Q)I1 ∪ (¬Q)I2 , where I is the interpretation of A. From (ii), (iii) and (iv),
we can also infer that (A)I = (A1)I1 ∪ (A2)I2 , i.e., I |=A.

SinceA1 andA2 are assumed to be consistent by themselves, we only need to prove
that there is no clash betweenA1 andA2. For an arbitrary concept C, by general defini-
tion in description logic, we get CI ⊆ ∆I . In addition, we get (¬C)I = (∆I\CI)⊆ ∆I .
Thus, for arbitrary C, CI1 ⊆ ∆I1 and (¬C)I2 ⊆ ∆I2 . Since ∆I1 ∩ ∆I2 = /0, therefore,
CI1 ∩ (¬C)I2 = /0, which infers that no clash can occur between A1 and A2.

Thus for the interpretation I of A, we have (A)I 6= /0 and (¬Q)I 6= /0, i.e., I |=
A∧I |= ¬Q which is the definition of A 6|=Q. Therefore, A |=Q only if A1 |=Q or
A2 |=Q which infers 〈T ,A〉 |=Q only if 〈T ,A1〉 |=Q or 〈T ,A2〉 |=Q.

For the if direction, we assume that either 1) 〈T ,A1〉 |= Q or 2) 〈T ,A2〉 |= Q. In
both cases, by monotonicity, we obtain 〈T ,A1∪A2〉 |=Q which is 〈T ,A〉 |=Q. 2

In the second step of the approach, we associate each Abox (or group of Aboxes)
with a source description, using create source description(Ag). A source description
can be view as a surrogate of each data source. Surrogate refers to a brief representation
of an information source that is designed to convey an indication of the information
source’s intent [7]. A good surrogate has two major properties: (1) it corresponds to
some common understanding in the user’s community, and (2) it can be organized in a
way that is searchable.

Source descriptions are used to determine the relevancy of each AboxAh ∈Ag with
respect to a query. Source descriptions depend on the type of the query. For boolean
queries, the source description of each Abox Ah ∈ Ag can be a simple list of all in-
dividuals appearing in the Abox Ah. The idea is if the query does not satisfy SD(Ah)
(necessary and sufficient conditions), it is guaranteed that the query over Abox Ah will
fail, i.e., it returns False. This is done by the function query relevancy(SD(Ah),query).
This function returns False if the query does not satisfy SD(Ah), i.e., the Abox Ah is
fully irrelevant to the query, and will contribute nothing to the answer of the query. The
function works by extracting an individual from the query, then checking if it is in the
source description SD(Ah) or not. If it is, then it queries the Abox Ah, using normal
boolean query answering procedure instance checking(Ah,query).

This can be formalised as follows:

Definition 5. Let A be an Abox, the boolean query source description for A (SDb(A))
is the the Herbrand universe of A, i.e., SDb(A) = HA.

Formal Ontology Reasoning with Individual Optimization 127

We can now prove soundness and completeness of the above choice of source de-
scriptions.

Theorem 2 (Soundness and Completeness of Instance Checking Optimization).
Let Q be a boolean query. Let A 6]Q represents when query relevance(SDb(A),Q)
returns False, i.e., A is not relevant the query Q, and let A]Q represents otherwise. If
A 6]Q then 〈T ,Ā−{A}〉 |=Q if and only if 〈T ,Ā〉 |=Q.

Proof. Suppose A 6]Q. This means a 6∈ SDB(A), where Q is C(a).
First, we prove the only if direction. Suppose 〈T ,Ā− {A}〉 |= Q. However, Ā−

{A} ⊆ Ā. By monotonicity, we obtain 〈T ,Ā〉 |=Q.
Therefore, 〈T ,Ā−{A}〉 |=Q only if 〈T ,Ā〉 |=Q.
For the if direction, suppose 〈T ,Ā〉 |=Q. We, then, prove by case.
Case 1: Q is a tautology. It is immediate to verify that 〈T ,Ā−{A}〉 |=Q is true.
Case 2: Q is not a tautology. From Lemma 1, we obtain 〈T ,A〉 6|= Q. In addition,

〈T ,Ā〉 |= Q is equal to 〈T ,Ā − {A}∪ {A}〉 |= Q. By Theorem 1, we get 〈T ,Ā −
{A}〉 |=Q or 〈T ,A〉 |=Q. Since 〈T ,A〉 6|=Q, we obtain 〈T ,Ā−{A}〉 |=Q.

These cases cover all possibilities. Therefore, 〈T ,Ā−{A}〉 |=Q if 〈T ,Ā〉 |=Q.
Therefore, if A 6]Q then 〈T ,Ā−{A}〉 |=Q if and only if 〈T ,Ā〉 |=Q. 2

Lemma 1. Let Q be a boolean query C(a). If a 6∈ SDB(A) and Q is not a tautology,
then 〈T ,A〉 6|=Q.

Proof. Suppose a 6∈ SDB(A). By definition, this means a 6∈ ∆IA. In other words, there
is no a in A, i.e., C(a) is definitely not in A. Supppose Q is not a tautology. At this
state, we want to prove 〈T ,A〉 6|=C(a) which is equal to proving that 〈T ,A〉∪{¬C(a)}
is satisfiable. Since 〈T ,A〉 is consistent, 〈T ,A〉∪{¬C(a)} will be unsatisfiable only
if either C(a) is in A or C(a) is a tautology. Since neither of them is true, 〈T ,A〉∪
{¬C(a)} is satisfiable. Consequently, we prove 〈T ,A〉 6|= C(a).

Therefore, if a 6∈ SDB(A) and Q is not a tautology, then 〈T ,A〉 6|=Q. 2

Finally, in the last step we simply combine the answers together using disjunction.
Again this step is justified by Theorem 1.

5 A Comprehensive Example

Suppose we have a knowledge basesK= 〈T ,A〉, where the data is distributed over four
Aboxes, i.e., A=A1∪A2∪A3∪A4.

Suppose the Tbox T is a follows:

T = {Man .= ¬Female,Woman .= HumanuFemale,Man .= HumanuMale,

Mother .= Womanu∃hasChild.Human,Father .= Manu∃hasChild.Human,

Parent .= MothertFather,Organization .= Pro f it tCharity,

Employee .= Humanu∃workAt.Organization,

Pro f it .= CompanytPartnershiptSoleOwnerCharity .= ¬Pro f it,

CommunicationCompany .= Companyu∃provideService.CommunicationService,

CommunicationService .= MobileServicetTelephoneServicet InternetService}

128 Pakornpong Pothipruk and Guido Governatori

Suppose that the four Aboxes are as follows:

A1 = {Man(Tom),Man(Peter),Woman(Mary),SoleOwner(T haiOrchid),

hasChild(Tom,Peter),workAt(Peter,AIS),attend(Peter,MobileSys2003),

hasChild(Tom,Mary),workAt(Mary,T haiOrchid),studyAt(Mary, IT EE)}
A2 = {Department(IT EE),Faculty(EPSA),

University(UQ),Con f erence(MobileSys2003), partO f (IT EE,EPSA),

f acultyIn(EPSA,UQ), locatedIn(UQ,Australia)}
A3 = {CommunicationCompany(AIS),Con f erence(MobileSys2003),

CommunicationCompany(DTAC), locatedIn(AIS,T hailand),

sponsor(MobileSys2003,AIS),sponsor(MobileSys2003,DTAC),

hold(IT EE,MobileSys2003)}
A4 = {Charity(PinTao),CharityPro ject(MMM),CharityPro ject(TOLS),

locatedIn(PinTao,Malaysia), propose(PinTao,MMM), propose(PinTao,TOLS)}

We simply create the Abox graph for each Abox, yielding four Abox graphs: AG(A1),
AG(A2), AG(A3), and AG(A4). For every combination of two Aboxes of A, we de-
termine the Abox dependency between them using the find abox dependency function.
The function will combine the two Aboxes together, and apply UCONN algorithm to
the graph of the combined Abox.

If the graph is connected, then the two Aboxes depend on each other. We, then, add
dep(Ai,A j) to the set depset as they are dependent, i.e., the function returns True. We
get

depset = {dep(A1,A2),dep(A1,A3),dep(A2,A3)}

Since we know that A1 depends on A2, and also on A3, we virtually group them to-
gether, i.e., we will consider the data in both three Aboxes together. This is done by the
combine dependent abox(A,depset) function. As a result we have Ag = {A123,A4},
where A123 = A1∪A2∪A3.

At this stage, we create source description for each Abox in Ag, using the cre-
ate source description(Ag) procedure:

– SD(A123) = (AIS,Australia,DTAC,EPSA, IT EE,Mary,
MobileSys2003,Peter,T hailand,T haiOrchid,Tom,UQ)

– SD(A4) = (Malaysia,MMM,PinTao,TOLS)

Suppose, we have a boolean query Tom : (Parent u∃hasChild.Employee). For ev-
ery Ah ∈ Ag, we determine relevancy with respect to the query, using the procedure
query relevancy(SD(Ah),query). The procedure will extract “Tom” from the query, and
search whether “Tom” is in SD(Ah) or not. In this case, “Tom” is in SD(A123), but
not in SD(A4). Consequently, we simply query A123, using the instance checking(Ah,
query) function. The result from instance checking test of the query in A123 is True.
Thus, answer = False ∨ True = True, which is the same result as when we query the
whole Abox A.

Formal Ontology Reasoning with Individual Optimization 129

6 Complexity Analysis

Each Abox Graph can be trivially generated in O(n2), where n is the number of asser-
tions in AboxA. The next part is Abox dependency determination. We need k(k−1)/2
comparisons (2-combinations) of unordered pair of Aboxes, where k is the number of
Aboxes in A. Each comparison needs UCONN algorithm. UCONN can be solved by
DFS in O(v2), where v is the number of individuals in each Abox.

For source description, the create source description(Ag) procedure requires not
more than O(n2) for all Aboxes, since it can be implemented using the quick sort
algorithm. To determine the relevancy of an Abox to a query, we call the function
query relevancy(SD(Ah),query) that operates in O(n) for sequential search. Finally, we
simply use the instance checking(Ah,query) function to find the answer for each Abox,
and simply combine the answer.

Till now, our space partitioning and reduction approach exploits at most PTIME
algorithms in each part, i.e., the Abox dependency part and the source description part.
Overall, our algorithm can be operated in PTIME, not including the instance checking
part. Since the instance checking part is known to be solved in EXPTIME-complete,
assuming P 6= EXPTIME, the overall algorithm still operates in EXPTIME, but with a
reduced exponent. The Abox dependency part will partition the search space, thus the
exponent will be reduced if there are at least two partitions, e.g., the time complexity is
reduced from 2m to 2n + 2p, where m = n + p. The source description part will further
reduce the exponent if there are some Aboxes which can be eliminated from the process,
e.g., the time complexity is reduced from 2m to 2q, where q < m.

7 The Extension

We intend to extend our work to non-boolean query answering (Abox retrieval) op-
timization. The space partitioning, Theorem 1, can be easily extended to cover Abox
retrieval reasoning services. The main differences will be with the source description.
Furthermore, we will investigate possible extensions of Theorem 1 to more expressive
DLs.

In the nutshell, a source description of an Abox A for retrieval (SD(A)) consists
of several types of source descriptions. In the basic setting, we shall have SDC(A) and
SDR(A). SDC(A) is a set of least common subsumers or LCSs of concepts appeared
in concept membership assertions in the Abox A. SDR(A) is a set of roles appeared
in role membership assertions in the Abox A. Let Q be a non-boolean query, C,D be
concept expressions, and Ah be an Abox. The source description usage is different for
each form of Q, for example:

– For the case Q←C, Ah is relevant to Q if ∃s ∈ SDC(Ah),Qv s
– For the case Q←CuD,Ah is relevant to Q ifAh is relevant to C and Ah is relevant

to D.
– For the case Q←CtD, Ah is relevant to Q if Ah is relevant to C or Ah is relevant

to D.
– For the case Q← ∃R.C, Ah is relevant to Q if R ∈ SDR(Ah) and Ah is relevant to

C.

130 Pakornpong Pothipruk and Guido Governatori

– For the case Q←¬C, Ah is relevant to Q if Ah is irrelevant to C.

These operations can be recursive. Hence, we can achieve a methodology for determine
relevancy of the Abox Ah with respect to the arbitrary-formed non-boolean query Q.
Note that the correctness of the above methodology follows from the independent Abox
theorem, extended for non-boolean query.

8 Discussion and Related Works

The optimization approach presented in this work is based on the procedure normally
adopted for deduction over a description logic knowledge base (the query answering
process over such knowledge base is a deduction process). In particular we refer to
the tableaux algorithm. Traditionally, tableaux algorithm was designed to prove the
satisfiability problem. The main idea behind this algorithm is based on a notational
variant of the first order tableaux calculus. In fact, a tableaux algorithm tries to prove
the satisfiability of a concept expression C by demonstrating a nonempty model of C. It
constructively builds a model for a given concept. The process of constructing a model
proceeds by completing a constraint system [14], using a set of consistency-preserving
completion (or expansion) rules. The process will continue if it can extend the existing
constraint system. In ALC reasoning with T and A, the process will proceed via a role
membership assertion. The idea behind our work is to specify the condition where we
guarantee that the reasoning process over A1 will never proceed to A2 if A1 and A2
are independent from each other. This optimization, in particular, the space partitioning
part, can be seen as a divide-and-conquer technique. A general disadvantage of this kind
of technique is the parts overlap. However, in this work we proposed a methodology to
avoid overlapping part, thus, it does not suffer from such disadvantage of the divide-
and-conquer technique.

Apparently, the major drawback of this approach is obviously the additional cost
from Abox dependencies and source descriptions determination. But the cost is still in
PTIME (⊆ PSPACE), as shown in previous section. One may argue that our space par-
titioning approach would support the reduction in apparent worst-case complexity for
query answering, but at a high price in practice, in particular for a large knowledge base.
However, this is not a scholarly argument, because the larger the knowledge base is, the
less the relative cost is (recall that the normal query answering is in EXPTIME while
the additional cost is in PTIME). Thus, our approach should behave well in practice.
The only issue that we must give additional attention to is a design of effective Abox
dependency information distribution, minimizing information exchange between nodes
in the network, where each node represents an Abox. In addition, if the data pages do
not change frequently, then there is no need to recompute the dependency of the Abox.
In addition data source can be organised in indexes for fast retrieval.

This approach can be applied to a system which allows only one ontology (or Tbox).
Though the Semantic Web technology tends to exploit multiple ontologies. In ontology-
based integration of information area [15], we can divide the exploitation of ontology
into 3 approaches: single-ontology approach, e.g., SIMS [2], multiple-ontologies ap-
proach, e.g., OBSERVER [11], and hybrid-ontology approach, e.g., COIN [6]. The
multiple-ontologies approach requires additional mapping specifications between each

Formal Ontology Reasoning with Individual Optimization 131

pair of ontologies. Since such mappings are infact ontologies themselves [1], we need
additional n(n−1)/2 ontologies for such an approach, where n is number of existing on-
tologies in the system. In hybrid-ontology approach, a global ontology and additional n
mapping specifications (between global ontology and each local ontology) are required.
Hence the single-ontology approach can be viewed as generalization of the other two
approaches. Thus, we follow such approach. In addition, since the aim of our work is to
study how to query multiple data sources, thus we do not need to add complexity arisen
from ontology mapping in the last two approaches. Simple single-ontology approach,
but not trivial for query answering, is enough. Note that we can extend our work to in-
clude multiple ontologies later when the research about ontology binding and ontology
mapping and ontology integration is more mature.

This approach can be applied to a system which allows multiple data sources (or
Aboxes). We can think of an Abox as an RDF document. In addition RDF databases
try to partition RDF triples in disjoint graphs , where each graph can be understood as
a data page of our approach. However, recent research has shown that there are several
semantic problems when people tried to layer an ontology language, i.e., OWL, on top
of the RDF layer [12]. Such problems stem from some features/limitations of RDF,
e.g., no restriction on the use of built-in vocabularies, and no restriction on how an RDF
statement can be constructed since it is just a triple. Thus, this implies that the ontology
layer may be not compatible with the RDF layer of the Semantic Web. However, there
is a work proposing additional layer on top of the RDF layer, i.e., RDF(FA) [12]. This
layer corresponds directly to Aboxes, thus RDF(FA) may be very useful in the future.

There are few works related to our work, i.e., Instance Store [9] and RACER [8].
Both works propose retrieval optimization techniques. Hence, our approach seems to
be the first approach for Abox instance checking optimization. Instance Store imposes
an unnatural restriction on Abox, i.e., enforcing Abox to be role-free. This is a severe
restriction since role names are included even for FL− (ALC without atomic nega-
tion), a DL with limited expressive power. RACER proposes several innovative Abox
reasoning optimization techniques. However, RACER allows single Abox, while our
approach allows multiple Aboxes. Thus after we apply our techniques to reduce the
reasoning search space, we can apply RACER techniques to reduce it further. Conse-
quently, the approach taken in RACER seems to be complementary to ours. We will
investigate the combination of our approach and RACER approach in the future.

Acknowledgements

This work was partially supported by the University of Queensland Early Career Re-
searcher Grant no. 2004001458 on “A System for Automated Agent Negotiation with
Defeasible Logic-Based Strategies”.

References

1. J. Akahani, K. Hiramatsu, and K. Kogure. Coordinating heterogeneous information services
based on approximate ontology translation. In Proceedings of AAMAS-2002 Workshop on
Agentcities: Challenges in Open Agent Systems, pages 10–14, 2002.

132 Pakornpong Pothipruk and Guido Governatori

2. Y. Arens, C. Hsu, and C. A. Knoblock. Query processing in the sims information mediator.
Advanced Planning Technology, 1996.

3. T. Berners-Lee. Weaving the Web : the Original Design and Ultimate Destiny of the World
Wide Web by its Inventor. HarperSanFrancisco, San Francisco, 1999.

4. F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept languages.
In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning (KR-91), pages 151–
162, Massachusetts, 1991.

5. F. M. Donini and F. Massacci. Exptime tableaux forALC. Artificial Intelligence, 124(1):87–
138, 2000.

6. C. H. Goh. Representing and Reasoning about Semantic Conflicts in Heterogeneous Infor-
mation Sources. PhD thesis, MIT, 1997.

7. A. Goodchild. Database Discovery in the Organizational Environment. PhD thesis, Univer-
sity of Queensland, 1998.

8. V. Haarslev and R. Möller. Optimization strategies for instance retrieval. In Proceedings of
the International Workshop on Description Logics (DL 2002), 2002.

9. I. Horrocks, L. Li, D. Turi, and S. Bechhofer. The instance store: Description logic reasoning
with large numbers of individuals. In International Workshop on Description Logics (DL
2004), pages 31–40, 2004.

10. D. L. McGuinness, R. Fikes, L. A. Stein, and J. Hendler. Daml-ont: An ontology language
for the semantic web. In D. Fensel, J. Hendler, H. Lieberman, and W. Wahlster, editors,
Spinning the Semantic Web: Bringing the World Wide Web to its Full Potential. MIT Press,
2003.

11. E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. Observer: An approach for query pro-
cessing in global information systems based on interoperability between pre-existing ontolo-
gies. In Proceedings of the 1st IFCIS: International Conference on Cooperative Information
Systems (CoopIS ’96), 1996.

12. J. Z. Pan and I. Horrocks. Rdfs(fa): A dl-ised sub-language of rdfs. In Proceedings of the
2003 International Workshop on Description Logics (DL2003), 2003.

13. H. Stuckenschmidt. Query processing on the semantic web. Künstliche Intelligenz, 17, 2003.
14. S. Tessaris. Questions and Answers: Reasoning and Querying in Description Logic. PhD

thesis, University of Manchester, 2001.
15. H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and

S. Hübner. Ontology-based integration of information - a survey of existing approaches.
In Proceedings of the IJCAI-01 Workshop: Ontologies and Information Sharing, pages 108–
117, 2001.

