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Abstract. Defeasible Logic is extended to programming languages for cognitive
agents with preferences and actions for planning. We define rule-based agent the-
ories that contain preferences and actions, together with inference procedures. We
discuss patterns of agent types in this setting. Finally, we illustrate the language
by an example of an agent reasoning about web-services.

1 Introduction

This paper combines two perspectives: (a) a cognitive account of agents that specifies
their mental attitudes; (b) modelling agents’ behaviour by means of normative concepts.
For the first approach, our background is the belief-desire-intention (BDI) architecture,
where mental attitudes are taken as primitives to give rise to a set of Intentional Agent
Systems [16,3]. This view is interesting especially when the behaviour of agents is the
outcome of a rational balance among their (possibly conflicting) mental states. The nor-
mative aspect is rather based on the assumption that normative concepts play a role to
characterize the idea of social co-ordination of autonomous agents [15]. The combina-
tion of these perspectives leads to an account of agents’ deliberation and behaviour in
terms of the interplay between mental attitudes and normative (external) factors such as
obligations.

Given this background, several rule-based approaches are available for program-
ming cognitive agents [5,9,4]. In this paper we extend the Defeasible Logic (DL) ap-
proach. As is well-known, DL is based on a logic programming-like language and it is a
simple, efficient but flexible non-monotonic formalism able to deal with many different
intuitions of non-monotonic reasoning and recently applied in many fields. In addi-
tion, several efficient implementations have been developed [14,2]. Here we propose a
non-monotonic logic of agency, based on the framework of [1], which extends the pre-
liminary work we presented in [7]. Indeed, DL is one of the most expressive languages
that allows for the definition of large sets of patterns called agent types. Moreover, it
is flexible to incorporate ideas from other languages, such as extension generation and
selection from BOID [5], or deliberation languages from 3APL [9,6].

However, as we argued in [7], it has two limits. First, DL, as well as its rival rule
based programming languages, is based on a uniform representation of rules, whereas
in artificial intelligence and in practical reasoning other complex structures have been
proposed. Most importantly, rule-based approaches are based on conditionals, whereas
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an alternative approach is based on comparative notions. Examples are preference log-
ics and CP nets instead of logics of desires and goals, ordered disjunctions instead of
default logics, betterness logics instead of logics of ideality, logics of sub-ideality in
deontic logic, etc. Second, it is not immediate how DL can deal with complex actions
discussed in action languages such as 3APL [9] and in recent incarnations of the BOID
architecture [8].

Some issues on agent programming languages should be addressed: how to detect
and resolve conflicts that include such preferences, and which kind of agent types can
be introduced to deal with preferences. We contribute to cognitive agent programming
languages by addressing the following question: How to use DL extended with actions
and graded preferences? This question breaks down in the following sub-questions: (a)
How to introduce preferences and actions for planning in DL? (b) How to detect and
resolve conflicts using preferences and actions? (c) How to define agent types based on
preferences and actions?

We provided in [7] some first intuitions on the question which kind of preferences
can be introduced in DL. In particular, we reconsidered the introduction of the⊗ opera-
tor of [11] in DL, given its advantages over other comparative notions. First, we argued
that it can be integrated with a rule based formalism (see also [10]). Second, it has
been applied to complicated problems in deontic logic [11]. Third, it allows to clearly
distinguish between conflicts and violations [10,11]. In fact, though these notions may
conflate, conflicts and violations have in general to be kept separate. Suppose you have
an agent doing B while an obligation states OBL¬B. Since the logic for OBL is usually
not reflexive5, the scenario does not lead necessarily to a logical conflict but a violation:
conflict-resolution strategies may require that OBL¬B is not overridden. This paper pro-
vides a further step as it provides a more extensive treatment of conflict-detection and
-resolution strategies. In addition, it discusses a more comprehensive classification of
agent types.

A second substantial step of this work is that it shows how DL can embed a machin-
ery for dealing with planning agents. In this regard, to attack the questions with respect
to complex actions in BOID, [8] separate conflict-detection from -resolution. They ask
the question whether two plans are conflicting or not, and they ask the question how to
resolve conflicts between plans. Analogously, we use the distinction between conflict-
detection and -resolution for the ⊗ constructions too. This asks for another way to deal
with the notion of conflict.

We will distinguish between goal (desires, intentions, obligations) generation and
plan generation. The goal generation generates goals based on existing beliefs, desires,
intentions and obligations, and the plan generation generates sequences of actions based
on these goals. As for the first aspect, rules will allow the derivation of new motivational
factors of an agent. We will divide the rules into rules for beliefs, desires, intentions,
and obligations. Provability for beliefs will not generate goals, since in our view they
concern the knowledge an agent has about the world: beliefs may contribute to derive
goals (desires, intentions, and obligations), but they are not in themselves motivations

5 As is well-known, in a non-reflexive modal logic A does not follow from X A, where X is a
modal operator.
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for action. As for the second aspect, the inference mechanism will be used to deduce
sequences of actions (plans) to achieve goals.

The layout of this paper is as follows. In Section 2 we introduce agents with prefer-
ences and actions in DL, and in Section 3 we show how to infer goal conclusions from
rules with preferences. In Section 4 we discuss how to integrate the previous frame-
work to reason about plans in DL. Finally, in Section 5 we extensively discuss conflicts
among rules and patterns called agent types.

2 Agents in defeasible logic

We focus on how mental attitudes and obligations jointly interplay in modelling agent’s
deliberation and behaviour.

Accordingly the formal language contains modal literals, preferences, and actions,
and is defined as follows:

Definition 1 (Language). Let M = {BEL,DES, INT,OBL} be a set of modal opera-
tors, P a set of propositional atoms, and Act = {α,β , . . .} a set of basic actions. The
set of literals is defined as L = P∪{¬p|p ∈ P}. If q is a literal, ∼q denotes the com-
plementary literal (if q is a positive literal p then ∼q is ¬p; and if q is ¬p, then ∼q is
p).

– The goal language Lgoal is the smallest set containing modal literals Xl and ¬Xl
when l ∈L is a literal and X ∈M is a modal operator, and⊗-expressions l1⊗. . .⊗ln
when l1, . . . , ln ⊆ L are n≥ 1 literals.

– The plan language Lplan is the smallest set containing Act (basic action plan), l?
for all literals l (test action plan), Achieve(ψ) for ψ ∈ L (abstract action plan), ε

(empty plan), and if π,π ′ ∈ Lplan, then π;π ′ (first do π then π ′), π|π ′ (choose either
π or π ′), π ‖ π ′ (do π and π ′ simultaneously), π∗ (repeat doing π) are in Lplan
(composite plans). As usual we assume ∀π ∈ Lplan : ε;π = π;ε = π .

An abstract action plan, Achieve(ψ), can be considered as the representation of a plan
which will achieve the goal ψ when it is executed. Moreover, we call a plan π a partial
plan if an abstract action occurs in π . A plan in which no abstract action occurs is called
a total plan. When the difference is irrelevant, we use the term plan to indicate either a
partial or a total plan.

For X ∈ {BEL, INT,DES,OBL}, we have that φ1, . . . ,φn →X ψ is a strict rule
such that whenever the premises φ1, . . . ,φn are indisputable so is the conclusion ψ .
φ1, . . . ,φn ⇒X∪{p} ψ is a defeasible rule that can be defeated by contrary evidence.
A rule φ1, . . . ,φn ;X ψ is a defeater that is used to defeat some defeasible rules by
supporting evidence to the contrary.

Definition 2 (Rules). A rule r consists of its antecedent (or body) A(r) (A(r) may be
omitted if it is the empty set), an arrow (→ for a strict rule,⇒ for a defeasible rule, and
; for a defeater), and its consequent C(r) (or head). In addition the arrow is labelled
either with a modal operator X ∈ {BEL,DES, INT,OBL} or p (only for defeasible
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rules6). If the arrow is labelled with BEL the rule is for belief, and similarly for the
other modal operators; if it is labelled with p, then the rule is a planning rule.

– A goal rule is a rule r, where A(r) is a set of literals or modal literals, and C(r) is
a literal for strict rules, and an ⊗-expression for defeasible rules and defeaters.

– A planning rule is a defeasible rule of the form φ1, . . . ,φn : ψ ⇒p π where π ∈ Lplan,
and φ1, . . . ,φn,ψ ∈ Lgoal are literals or modal literals.

– Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of strict
and defeasible rules in R by Rsd , the set of defeasible rules in R by Rd , and the set
of defeaters in R by Rdft. R[q] denotes the set of rules in R with consequent q. For
some i, 1≤ i≤ n, such that ci = q, R[ci = q] and rX

d [ci = q] denote, respectively, the
set of rules and a defeasible rule of type X with the head ⊗n

i=1ci.

The purpose of goal generation is to derive modalised literals (with the exception of
rules for beliefs, which are meant to constitute the reasoning core of the system). For
example, the application of p⇒INT q permits to infer INTq.

Accordingly, modalities will not occur in the consequents of rules to keep the system
manageable. We also impose that action symbols may occur only in planning rules.

Definition 3 (Defeasible agent theory). A defeasible agent theory is a structure D =
(F,RBEL,RDES,RINT,ROBL,Rp,>) where F is a finite set of facts, RBEL is a finite set of
rules for belief, RDES is a finite set of rules for desire, RINT is a finite set of rules for
intention, ROBL is a finite set of rules for obligation, Rp is a set of planning rules, and
>, the superiority relation, is a binary relation over the set of rules.

The superiority relation > says when one rule may override the conclusion of another
rule. Facts are indisputable statements.

Beside the superiority relation, which is used when we have contradictory or con-
flicting conclusions, we can establish a preference over and within complex conclusions
by using the operator ⊗.

In fact, the intuitive reading of a sequence like a⊗b⊗ c is that a is preferred, but if
¬a is the case, then b is preferred; if ¬b is the case, given ¬a, then the third choice is c.

Definition 4 (Preference operator). A preference operator ⊗ is a binary operator
satisfying the following properties: (1) a⊗ (b⊗ c) = (a⊗ b)⊗ c (associativity); (2)⊗n

i=1 ai = (
⊗k−1

i=1 ai)⊗ (
⊗n

i=k+1 ai) where exists j such that a j = ak and j < k (dupli-
cation and contraction on the right).

6 We assume that planning rules are only defeasible. Since their intuitive role is to infer the plans
that allow the achievement of the goals of their antecedents, it may seem odd that planning
rules may be defeaters, e.g., rules that only block inferences. Indeed, it could be argued that
a defeater φ1, . . . ,φn : ψ ; π intuitively can be just used to prevent the conclusion of a plan
π ′ that is is incoherent with regard to another plan which would lead to ψ . But the conceptual
plausibility of this reading strongly depends on the precise account we provide for the notion of
coherence of plans. Since we do not not commit ourselves to any specific interpretation of this
notion, we prefer not to consider this case here. We also assumed that planning rules cannot
be strict. Suppose to have two planning rules with the same antecedent a but with consequents
α and β . Intuitively, we could expect that these rules generate a new rule with the antecedent
a and with the consequent α|β . However, we will not discuss these cases to keep the system
manageable.
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The general idea of degree of preferences and ⊗ formulas are interpreted as prefer-
ence formulas like in [11] and are here extended to cover all motivational components
(but ⊗-expressions will not occur in planning rules). Let us see some examples to see
the intuitive meaning of such extension:

For beliefs, rule ¬SunShining ⇒BEL Raining⊗ Snowing says that the agent believes
that it is raining, but if it is not raining then it is snowing as the sun is not shining;

For desires, rule TimeForHoliday ⇒DES GoToAustralia⊗GoToSpain means that, if it
is time for holiday, the agent has the primary desire to go to Australia, but, if this is
not the case, her desire is to go to Spain;

For intentions, rule SunShining⇒INT Jogging⊗Walking says that the agent intends to
do jogging if the sun is shining, but, if, for some other reasons, this is not the case,
then she will have the intention to have a walk;

For obligations, rule Order ⇒OBL Pay⊗ PayInterest says that, if the agent sends a
purchase order, then she will be obliged to pay, but, in the event this is not done,
she will have to pay interest.

According to the reading proposed for ⊗, suppose we have a rule for obligation such as
a ⇒OBL b⊗ c: if a is given, it says that b is obligatory; but, if ¬b, then c is obligatory.
A similar intuition applies to the other types of rules.

Example 1. (Running example) Suppose an agent desires an application server. She can
buy two products from X or Y . She prefers X but, for working with Linux, she does not
intend to order X’s product. X requires a payment, within 2 days, of 300$, otherwise
X forbids to download the software. Y requires a payment of 600$ within 1 day, or,
as a second choice, a payment of 660$. The agent does not intend to pay to Y 660$.
Agent’s financial resources amount to 700$, which are available in 4 days. We also
know that the agent is a Linux user, and has a credit card and a bank account. With
X ∈ {BEL,DES, INT,OBL}, this piece of theory is used to derive goals.

F = {BAccount,CCard,700$In4days,UseLinux,DESApplserver}
RX = {r1 : 700$In4days⇒BEL ¬PayY600$1days, r2 : 700$In4days⇒BEL ¬PayX300$2days,

r3 : DESApplserver ⇒INT OrderX⊗OrderY, r4 : UseLinux⇒INT ¬OrderX

r5 : INTOrderY ⇒INT ¬PayY660$, r6 : INTOrderY ⇒OBL PayY600$1days⊗PayY660$,

r7 : INTOrderX ⇒OBL PayX300$2days⊗¬DownloadApplserverX}
>= {r4 > r3}

Making an order requires to send the order. However, the plan theory does not specify
how to achieve this goal with X . On the other hand, sending an order to Y requires
to provide agent’s data and send them. Y allows to pay either by bank transfer, which
requires to provide a digital signature, bank data of Y and to specify the amount of 660$,
or by credit card, which requires to send credit card data and specify the amount. It is
not possible to pay by a bank transfer and by credit card. The following piece of theory
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is considered for generating agent’s plans (bold symbols denote actions):

Rp = {r8 :> : OrderX ⇒p Achieve(SendOrderX), r9 :> : OrderY ⇒p Achieve(SendOrderY)

r10 :> : SendOrderY ⇒p ProvData;SendDataToY

r11 : BAccount : PayY660$⇒p Achieve(TransferY660$) ‖ ¬Achieve(Pay660$CCard)

r12 : CCard : PayY660$⇒p ¬Achieve(TransferY660$) ‖ Achieve(Pay660$CCard)

r13 :> : TransferY660$⇒p DigitalSign;ProvBankDataY;Spec660$

r14 :> : Pay660$CCard ⇒p SendToYCreditCardData ‖ Spec660$}
>= {r11 > r12}

3 Goal generation: inference with preferences

Definition 5 (Proofs). Given an agent theory D, a proof in D is a linear derivation, i.e,
a sequence of labelled formulas of the type +∆X q, −∆X q, +∂X q and −∂X q, where the
proof conditions defined in the rest of this section hold.

The meaning of the proof tags +∆ , −∆ , +∂ and −∂ is as follows: +∆X q means that q
is provable using only facts and strict rules for X , −∆X q means that it has been proved
that q is not definitely provable, +∂X q that q is defeasibly provable in D and −∂X q that
q is not defeasibly provable.

We start with some terminology. As explained in the previous section, the following
definition states the special status of belief rules, and that an introduction of a modal
operator corresponds to being able to derive the associated literal using the rules for the
modal operator.

Definition 6. Let # ∈ {∆ ,∂}, and P = (P(1), . . . ,P(n)) be a proof in D. A literal q is
#-provable in P if there is a line P(m) of P such that either

1. q is a literal and P(m) = +#BELq or
2. q is a modal literal X p and P(m) = +#X p or
3. q is a modal literal ¬X p and P(m) =−#X p.

A literal q is #-rejected in P if there is a line P(m) of P such that either

1. q is a literal and P(m) =−#BELq or
2. q is a modal literal X p and P(m) =−#X p or
3. q is a modal literal ¬X p and P(m) = +#X p.

The first type of tagged literals, denoted by ∆X , correspond to strict rules. The definition
of ∆X describes just forward chaining of strict rules:

+∆X : If P(i+1) = +∆X q then
(1) q ∈ F or
(2) ∃r ∈ RX

s [q] ∀a ∈ A(r) a is ∆ -provable or
(3) ∃r ∈ RBEL

s [q] ∀a ∈ A(r) Xa is ∆ -provable.

−∆X : If P(i+1) =−∆X q then
(1) q /∈ F and
(2) ∀r ∈ RX

s [q] ∃a ∈ A(r) : a is ∆ -rejected and
(3) ∀r ∈ RBEL

s [q] ∃a ∈ A(r) Xa is ∆ -rejected.
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For a literal q to be definitely provable we need to find a strict rule with head q, whose
antecedents have all been definitely proved previously. And to establish that q cannot be
proven definitely we must establish that for every strict rule with head q there is at least
one of antecedent which has been shown to be non-provable. Condition (3) says that a
belief rule can be used as a rule for a different modal operator in case all literals in the
body of the rules are modalised with the modal operator we want to prove. Thus, for
example, given the rule p,q→BEL s, we can derive +∆Y s if we have +∆Y p and +∆Y q.

Conditions for ∂X are more complicated since we have to consider ⊗-expressions.
We define when a rule is applicable or discarded. A rule for a belief is applicable if all
the literals in the antecedent of the rule are provable with the appropriate modalities,
while the rule is discarded if at least one the literals in the antecedent is not provable.
For the other types of rules we have to take complex derivations into account called
conversions [12]. In this paper we say there is a conversion from X to Y if a X rule
can also be used as a Y rule. We have thus to determine conditions under which a rule
for X can be used to directly derive a literal q modalised by Y . Roughly, the condition
is that all the antecedents a of the rule are such that +∂Y a. We represent all allowed
conversions by a conversion relation c (see also Section 5).

Definition 7. Let a conversion relation c be a binary relation between {BEL, INT,DES,
OBL}, such that c(X ,Y ) stands for the conversion of X rules into Y rules.

– A rule r in RBEL is applicable iff ∀a ∈ A(r), +∂BELa ∈ P(1..n) and ∀Xa ∈ A(r),
where X is a modal operator, +∂X a ∈ P(1..n).

– A rule r ∈ Rsd [ci = q] is applicable in the condition for ±∂X iff

1. r ∈ RX and ∀a ∈ A(r), +∂a ∈ P(1..n) and ∀Ya ∈ A(r) +∂Y a ∈ P(1..n), or
2. r ∈ RY and ∀a ∈ A(r), +∂X a ∈ P(1..n).

– A rule r is discarded if we prove either −∂BELa or −∂X a for some a ∈ A(r).

Example 2. Rule a, INTb⇒BEL c is applicable if we can prove +∂BELa and +∂INTb.

Remark 1. The notion of conversion is not strange. In many formalisms we can convert
from one type of conclusion into a different one. Take for example the right weaken-
ing rule of non-monotonic consequence relations, where it is possible to combine non-
monotonic consequence with classical consequences: B ` C and A |∼B imply A |∼C
[13]. Here, conversions will simply allow to obtain conclusions modalised by a certain
X through the application of rules which are not modalised by X .

Example 3. If we have a type of agent that allows a deontic rule to be converted into
a rule for intention, c(OBL, INT), then the definition of applicable in the condition
for ±∂INT is as follows: a rule r ∈ Rsd [ci = q] is applicable iff (1) r ∈ RINT and ∀a ∈
A(r), +∂a ∈ P(1..n) and ∀Xa ∈ A(r), +∂X a ∈ P(1..n), (2) or r ∈ RO and ∀a ∈ A(r),
+∂INTa ∈ P(1..n). In this second case, for example, given the rule p,q⇒OBL s, we can
derive +∂INTs if we have +∂INT p and +∂INTq.

Proof conditions for ±∂X are thus as follows:
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+∂X : If P(n+1) = +∂X q then
(1)+∆X q ∈ P(1..n) or

(2.1) −∆X∼q ∈ P(1..n) and
(2.2) ∃r ∈ Rsd [ci = q] such that r is applicable, and ∀i′ < i, −∂BELci′ ∈ P(1..n); and
(2.3) ∀s ∈ R[c j =∼q], either s is discarded, or∃ j′ < j such that +∂X c j′ ∈ P(1..n), or
(2.3.1) ∃t ∈ R[ck = q] s.t. r is applicable and

∀k′ < k, −∂BELck′ ∈ P(1..n) and t > s
−∂X : If P(n+1) =−∂X q then
(1) −∆X q ∈ P(1..n)) and either

(2.1) +∆X∼q ∈ P(1..n) or
(2.2) ∀r ∈ Rsd [ci = q], either r is discarded or∃i′ < i such that +∂BELci′ ∈ P(1..n), or
(2.3) ∃s ∈ R[c j =∼q], such that s is applicable and∀ j′ < j, −∂X c j′ ∈ P(1..n) and
(2.3.1) ∀t ∈ R[ck = q] either t is discarded, or

∃k′ < k such that +∂BELck′ ∈ P(1..n) or t 6> s

For defeasible rules we deal with ⊗ formulas. To show that q is provable defeasibly we
have two choices: (1) We show that q is already definitely provable; or (2) we need to
argue using the defeasible part of a theory D. For this second case, three (sub)conditions
must be satisfied. First, we require that there must be a strict or defeasible rule for
q which can be applied (2.1). Second, we need to consider possible reasoning chains
in support of ∼q, and show that ∼q is not definitely provable (2.2). Third, we must
consider the set of all rules which are not known to be inapplicable and which permit
to get ∼q (2.3). Essentially each such a rule s attacks the conclusion q. For q to be
provable, s must be counterattacked by a rule t for q with the following properties: (i) t
must be applicable, and (ii) t must be stronger than s. Thus each attack on the conclusion
q must be counterattacked by a stronger rule. In other words, r and the rules t form a
team (for q) that defeats the rules s. −∂X q is defined in an analogous manner.

Goals are obtained as +∂G or +∆G, G ∈ {DES, INT,OBL}. As it was said, prov-
ability for beliefs does not directly generate goals.

Example 4 (Running example; continued). Let us assume that the agent is realistic,
namely that beliefs override all motivational components (see Section 5). Below is the
set C of all conclusions we get using the rules in RX :

C = {¬PayY600$1days, ¬PayX300$2days, INTOrderY,

INT¬OrderX, INT¬PayY660$}

Since the agent desires an application server, from r3, r4, r4 > r3 and ⊗-elimination,
we have +∂INTOrderY . This makes r6 and r5 applicable, while r7 is not. However, the
agent will have 700 $ available within 4 days and so, since the agent is realistic, from r1
we get +∂BEL¬PayY600$1days, which is a violation of the primary obligation in r6. We
would obtain +∂OBLPayY660$, but this not the case since the theory does not provide
criteria for resolving the conflict between this conclusion and that of r5.
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4 Plan generation

A planning rule φ1, . . . ,φn : ψ ⇒p π may be intuitively read as a rule that allows for
the derivation of a plan π that permits to achieve a single goal ψ , given the beliefs
φ1, . . . ,φn. In other words, such a rule can be applied if φ1, . . . ,φn are believed, i.e. if they
are derivable from the agent’s beliefs, and ψ should be achieved, i.e. if ψ is derivable
from the agent’s goals. This implies that we will have various conclusions for goal
formulae and thus the following tagged literals: +∆G p,−∆G p, +∂G p,−∂G p where G∈
{DES, INT,OBL}. Similar to the definition of derivations of tagged literals, we define
the notion of provability of plans. In the following, we use AB(r) to denote the belief
conditions of the planning rule r, and AG(r) to denote its goal condition. For example,
for the planning rule r = φ : ψ ⇒p π , we have φ ∈ AB(r) and AG(r) = ψ . A plan π is
derivable if no plan π ′ is derivable which is incoherent with π . The notion of coherence
of plans is the counterpart of the notion of consistency of logical formulae which is used
for the provability of literals. The notion of coherence can be defined, for example, in
terms of resource conflicts or possibility of plan execution. We will not enter here into a
detailed discussion of this issue. However, we can formulate a very minimal condition
for compatible plans in terms of the belief and goal conditions of rules that generate
them. In particular, two plans are compatible iff the belief and goal conditions of the
rules applied to their derivations are consistent. This fact is already embedded in our
framework because the goal generation phase described in this paper provides criteria
for deriving consistent goals. The only exceptions are when facts (not derived goals) are
inconsistent or, we will see in Section 5, when the agent type adopted permits to obtain,
for example, that +∂OBLa and +∂INT¬a. In these cases, the superiority relation that
may apply specifically to planning rules can be decisive. In fact, given the possibility to
obtain +∂OBLa and +∂INT¬a, two planning rules> : a⇒p π and> :¬a⇒p π ′ turn out
to be both applicable. However, although for certain agent types +∂OBLa and +∂INT¬a
do not correspond to a conflict (OBLa and INT¬a are not necessarily in contradiction),
it may be argued that the plans leading to achieve a and ¬a are incoherent (intuitively
incompatible). Notice also that the plan language introduced in Section 2 does not admit
the negation of action symbols. So, in theory, logical inconsistency is not relevant as
regards the derivation of plans (the consequents of planning rules). However, we may
also have partial plans that include special abstract actions to achieve goals. In this case,
logical consistency of derived plans and the corresponding conflict resolution may play
a role as in the phase of goal generation.

Let us see first the basic proof conditions for the generation of total plans, i.e., plans
in which no abstract actions occur.

+Π : If P(i+1) = +Ππ then
(1) ∃r ∈ Rp[π] such that

(1.1) φ1, . . . ,φn ∈ AB(r) and AG(r) = ψ , and
(1.2) ∀k,1≤ k ≤ n, +∂BELφk ∈ P(1..i) and +∂Gψ ∈ P(1..i), and

(2) ∀s ∈ Rp[π ′] such that incoherent(π , π ′) either
(2.1) ∃φ ′ ∈ AB(s) :−∂BELφ ′ ∈ P(1..i) or
(2.2) ψ ′ ∈ AG(s) :−∂Gψ ′ ∈ P(1..i) or
(2.3) ∃t ∈ Rp[π] such that t > s and ∀φ ′′ ∈ AB(t) : +∂BELφ ′′ ∈ P(1..i) and

ψ ′′ ∈ AG(t) : +∂Gψ ′′ ∈ P(1..i).
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Thus, a total plan is defeasibly derivable if the conditions (1) and (2) hold. Condition
(1) states that a total plan π is defeasibly derivable at derivation step P(i + 1) if there
exists a planning rule with π as its consequent such that its belief and goal conditions
are defeasibly provable at derivations P(1..i). Condition (2) states that if there exists a
planning rule s such that its consequent is the total plan π ′ which is incoherent with plan
π , then either the belief and goal conditions of rule s are not defeasibly derivable or there
exists a preferred planning rule t with plan π as its consequent for which its beliefs and
goals are defeasibly derivable. Note that we assume that a planning rule is applicable
if its belief and goal conditions are defeasibly provable. We may also consider the case
where the belief and goal conditions are definitely provable.

Analogously, we define the non-provability of total plans −Ππ as follows:

−Π : If P(i+1) =−Ππ then
(1) ∀r ∈ Rp[π] either

(1.1) ∃φ ∈ AB(r) and −∂BELφ ∈ P(1..i) or
(1.2) AG(r) = ψ and −∂Gψ ∈ P(1..i), or

(2) ∃s ∈ Rp[π ′] such that incoherent(π ,π ′) and
(2.1) ∀φ ′ ∈ AB(s) : +∂BELφ ′ ∈ P(1..i) and
(2.2) ψ ′ ∈ AG(s) : +∂Gψ ′ ∈ P(1..i) and
(2.3) ∀t ∈ Rp[π] either t 6> s or ∃φ ′′ ∈ AB(t) :−∂BELφ ′′ ∈ P(1..i) or

ψ ′′ ∈ AG(t) :−∂Gψ ′′ ∈ P(1..i).

Thus, a total plan is not defeasibly provable if one of the conditions (1) or (2) holds.
Condition (1) states that a total plan π is not defeasibly derivable at derivation step
P(i+1) if the belief or goal conditions of all planning rules with π as its consequent are
not defeasibly provable at derivations P(1..i). Condition (2) states that if there exists a
planning rule (s) such that its consequent is the total plan π ′ which is incoherent with
plan π , then its belief and goal conditions are defeasibly derivable and, moreover, for
all more preferred planning rules t with the total plan π as its consequent it is the case
that their beliefs or goals are not defeasibly derivable.

This definition of plan provability should be modified to allow the derivation of
plans that are obtained from the application of planning rules to refine an existing par-
tial plan. In order to define this notion of plan provability, we first assume the function
occurs(ψ,π), which returns true if the abstract action Achieve(ψ) occurs in the par-
tial plan π , and the function sub(ψ,π ′,π ′′), which returns a plan by substituting the
abstract action Achieve(ψ) in π ′ with plan π ′′. For example, consider the partial plan
π = α;Achieve(ψ);β . Then, occur(ψ,π) = true and sub(ψ,π,γ|δ ) = α;(γ|δ );β . The
definition of defeasible provability of plans which involve abstract actions, indicated by
+Ωπ , can be defined as follows:

+Ω : If P(i+1) = +Ωπ then either
(1) +Ππ ∈ P(1..i), or
(2) +Ωπ ′ ∈ P(1..i) such that

(2.1) ∃r ∈ Rp[π ′′] and
(2.2) φ1, . . . ,φn ∈ AB(r) and AG(r) = ψ , and
(2.3) ∀k,1≤ k ≤ n, +∂BELφk ∈ P(1..i) and +∂Gψ ∈ P(1..i) and
(2.4) occurs(ψ,π ′) and sub(ψ,π ′,π ′′) = π .

Thus, a plan is defeasibly provable if one of the conditions (1) or (2) holds. Condition
(1) states that a plan is provable if it is provable directly by applying planning rules.
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Condition (2) states that a plan is derivable if there exists a partial plan which can be
refined by applying a rule.

Analogously, for plans that involve abstract actions we define the non-provability of
plans −Ωπ as follows:

−Ω : If P(i+1) =−Ωπ then
(1) −Ππ ∈ P(1..i), and
(2) +Ωπ ′ ∈ P(1..i) such that

(2.1) occurs(ψ,π ′) and sub(ψ,π ′,π ′′) = π and
(2.2) ∀r ∈ Rp[π ′′] :

(2.2.1) φ1, . . . ,φn ∈ AB(r) and ∃k, 1≤ k ≤ n, −∂BELφk ∈ P(1..i) or
(2.2.2) AG(r) = ψ and −∂Gψ ∈ P(1..i).

Thus, a plan is not defeasibly provable if the conditions (1) or (2) hold. Condition (1)
states that a plan is not provable if it is not directly provable and condition (2) states
that the plan is not provable through applications of planning rules to partial plans.

Example 5 (Running example; continued). Given the conclusions derived in Section 3,
let us consider the only positive goal, namely +∂INTOrderY . However, assume, as we
will do in Example 6, to have also +∂OBLPayY660$ and +∂INTPayY660$. These goals
make planning rules r9, r11 and r12 applicable, whereas INT¬OrderX makes r8 non-
applicable. r9 includes an abstract plan to be specified. This is possible via r10. On the
other hand, the agent has to pay 660$ to Y , but has to choose between two incompatible
plans: paying using the credit card of by bank transfer. Here r11 and r12 provide each
simultaneous partial plans that dictate to make a bank transfer and not paying by credit
card or the opposite. Since r11 > r12, the agent prefers the latter option. The derived
total plans are then

{ProvData;SendDataToY, DigitalSign;ProvBankDataY;Spec660$}

Finer criteria for dealing with provability in plans may be introduced when finer criteria
are used in the goal generation. If the agent is realistic and 1-stable, as we will see in
Section 5, then −∂INTOrderY; thus we cannot derive, too, any plan.

5 Conflict resolution and agent types
At which phase do agent types intervene in the treatment of conflicts, and how can they
be generalised to incorporate ⊗ formulas? Classically, agent types are characterised by
stating conflict resolution types in terms of orders of overruling between rules [5,12].
For example, an agent is realistic when rules for beliefs override all other components;
she is social when obligations are stronger than the other motivational components with
the exception of beliefs. Agent types can be characterised by stating that, for any types
of rules X and Y , for every r and r′ such that r ∈ RX [ci = q] and r′ ∈ RY [di = ∼q], we
have that r > r′.

Let us assume to work with realistic agents, namely, with agents for which, for
every r and r′, r ∈ RBEL[ci = q] and r′ ∈ RY [di = ∼q], Y ∈ {DES, INT,OBL} we have
that r > r′. Then let us see the agent types that can be identified in the framework
we have defined so far. Table 1 shows all possible cases and, for each kind of rule,
indicates all attacks on it. It should be read as follows. Each of the three main columns
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identifies a possible kind of conflict between two types X ,Y of applicable rules that
would permit to infer the literals p and ∼p labelled by X and Y respectively. The first
two sub-columns in each main column indicate whether both literals are derived (i.e.,
there is no real conflict, which is indeed a logical possibility since we are dealing with
modalities which do not enjoy reflexivity), or whether we have conflict where one rule
prevails over the other, or where the two rules defeat each other. Finally, the third sub-
column defines the agent type for which each conflict-detection and -resolution policy
is appropriate. Since we have to consider three kinds of rules for generating goals, we
have to analyse twelve combinations. (To save space, in Table 1 “s-” is an abbreviation
for “strongly-”; “indep.” abbreviates “independent”.)

rOBL
d [ci = p]/ rINT

d [c j =∼p] rOBL
d [ci = p]/ rDES

d [c j =∼p] rINT
d [ci = p]/ rDES

d [c j =∼p]
+∂OBL p +∂INT∼p s-indep. +∂OBL p +∂DES∼p indep. +∂INT p +∂DES∼p unstable
+∂OBL p −∂INT∼p s-social +∂OBL p −∂DES∼p social +∂INT p −∂DES p stable
−∂OBL p +∂INT∼p s-deviant −∂OBL p +∂DES∼p deviant −∂INT p +∂DES∼p selfish
−∂OBL p −∂INT∼p s-pragmatic −∂OBL p −∂DES∼p pragmatic −∂INT p −∂DES∼p slothful

Table 1. Agent Types: Basic Attacks

Independent and strongly-independent agents are free respectively to adopt desires
and intentions in conflict with obligations. As expected, for social and strongly-social
agents obligations override desires and intention. For pragmatic and strongly-pragmatic,
no derivation is possible and so the agent’s generation of goals is open to any other
course of action other than those specified in the rules considered. Stable and selfish
agents are those for which, respectively, intentions override desires or the opposite.
Unstable agents are free to adopt desires in conflict with intentions, while, for slothful
agents, conflicting desires and intentions override each other.

Table 1 does not cover all possible types of agent. In fact, the table focuses on
possible attacks that involve only two rules; in addition we will assume that belief rules
are always stronger than intentions, desires and obligations. This is motivated by the
intuition that belief rules describe specification of the environment where the agent is
situated. Table 2 completes the scenario and provides all possible combinations when
we deal with three rules, in particular, we consider all possible relationships between
obligation rules on one side and intention and desire rules on the other side. For example
we consider agent types where an obligation rule can be defeated by an intention rule
and, at the same time, it can defeat a desire rule (social-strongly social). This allows for
the specification of new agent types based on the basic types defined in Table 1.

rOBL
d [ci = p]/rINT

d [c j =∼p]/rDES
d [ck =∼p]

+∂OBL p +∂INT∼p +∂DES∼p hyper-independent
+∂OBL p +∂INT∼p −∂DES∼p social-strongly-independent
+∂OBL p −∂INT∼p +∂DES∼p social-independent
+∂OBL p −∂INT∼p −∂DES∼p hyper-social
−∂OBL p +∂INT∼p +∂DES∼p hyper-deviant
−∂OBL p +∂INT∼p −∂DES∼p social-strongly-deviant
−∂OBL p −∂INT∼p +∂DES∼p social-deviant
−∂OBL p −∂INT∼p −∂DES∼p hyper-pragmatic

Table 2. Agent Types: Other Attacks
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However, this taxonomy can be enriched thanks to the role that may be played
by ⊗-expressions. In fact, in traditional rules-based systems, conflict-detection returns
a boolean: either there is a conflict, or there is not. For ⊗ constructs, it seems that
we may need a finer distinction. For example, we can have degrees of violation. Of
course, if we define a conflict detection function that returns no longer booleans but a
more complex structure (e.g., an integer that returns 0 if no violation, 1 if violation of
primary obligation, 2 if violation of secondary obligation), then we have to write conflict
resolution methods which can somehow deal with this. Section 3 provides criteria to
solve conflict between rules including⊗ constructions. In this perspective, the role of⊗
can be made fruitful. In particular, the introduction of ⊗ is crucial if we want to impose
some constraints on the number of violations in deriving a goals. Goal generation can
be constrained, so that provability of a goal g is permitted only if getting g does not
require more than m violations for each rule with g in the head:

Definition 8 (Violation constraint on goals). Let m and X be an integer and a type of
rule, respectively. A theory D will be m-X-constrained iff, given the definition of +∂ ,
for all literals q, +∂X q iff (1) i′ ≤m; and (2) if 1≤ j′ ≤ j and s ∈ RX , then j′ ≤m; and
(3) k′ ≤ m. Otherwise, −∂X q.

Similar intuitions are applicable to directly constraint agent types, thus introducing
graded agent types: e.g., for any two rules r1 : rOBL

d [ci = p] and r2 : rDES
d [c j = ∼p]

we may reframe the type “social” of Table 1 stating that an m-social agent is such that

+∂OBL p/−∂DES∼p iff i≤ m

Thus the idea of agent type can also be generalised taking into account ⊗ constructs.
It is possible to integrate the above classifications by referring to the notion of con-

version [12]. Conversions do not have a direct relation with conflict resolution because
they simply affect the condition of applicability of rules. However, they indeed con-
tribute to define the cognitive profile of agents because they allow to obtain conclusions
modalised by a certain X through the application of rules which are not modalised by
X . According to this view, for example, we may have agent types for which, given
p⇒OBL q and +∂INT p we can obtain +∂INTq. Of course, this is possible only if we as-
sume a kind of norm regimentation, by which we impose that all agents intend what
is prescribed by deontic rules. This conversion, in particular, seems appropriate to
characterize some kinds of social agent. Other conversions, which, on the contrary,
should hold for all realistic agents are, for example, those that permit to obtain +∂X q,
X ∈ {DES, INT,OBL}, from p⇒BEL q and +∂X p [12]. Table 3 shows the conversions
and specify the agent types with respect to which each conversion seems to be appro-
priate. We assume to work at least with realistic agents. Since conversions are used only
indirectly for conflict resolution but are conceptually decisive for characterising agents,
they provide criteria to specify new agent types. Not all conversion types make sense
and so we consider only 9 cases out of 12 possible combinations.

c(BEL,OBL) realistic c(BEL, INT) realistic c(BEL,DES) realistic
c(OBL,DES) c-social c(OBL, INT) c-strongly-social c(DES,OBL) c-deviant
c(INT,DES) c-stable c(DES, INT) c-selfish c(INT,OBL) c-strongly-deviant

Table 3. Conversions
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At which phase do agent types intervene in the treatment of conflicts? Classic agent
types, violation constraints and conversions play their role mainly in the goal genera-
tion phase, because all these features mainly contribute to characterize the motivational
profile of the agent. Notice, however, that we could also introduce ⊗ in plans. With
plans, in fact, we would need as well a finer distinction than just assuming that either
two plans conflict or they do not; for example, in [8] no finer distinction was made.
In particular, ⊗ in planning rules could express non-deterministic effects of actions.
However, we prefer here not to do this, to keep the system manageable. This does not
mean that we cannot introduce finer criteria for dealing with provability in plans, but
this can be simply made just referring to derivation of the goals that occur, as results,
in the planning rules. As we have seen, a planning rule φ1, . . . ,φn : ψ ⇒p π permits to
infer plan π , a plan that is meant to produce the goal ψ given beliefs φ1, . . . ,φn. Plan π

is conceptually the condition for obtaining ψ . Thus, Definition 8 will allow the agent to
obtain π only if ψ or φ1, . . . ,φn do not require more than m violations for each X rule.
Example 6 (Running example; continued). Suppose the agent be strongly-social and
c-strongly-social, namely, that obligations override intentions and that we accept con-
version c(OBL, INT). So, we obtain the following additional goals:

{OBLPayY660$, INTPayY660$}

Since r6 is now stronger than r5, we obtain OBLPayY660$, while the second goal is de-
rived via r6 and conversion c(OBL, INT). This second means that we drop the previous
conclusion obtained in Example 4, i.e. that the agent intends the opposite.

Assume now that the theory is also 0-X-constrained, for X ∈ {INT,OBL}. This
means that no violation is permitted. If so, no new intention or obligation can be derived.

Finally, suppose the agent is realistic and 1-stable. Let us add to RX the rule r′ :
a ⇒DES ¬OrderY , and to F the fact a. Thus we would obtain DES¬OrderY , which is
in conflict with the conclusion that can be obtained from r3. Indeed this is the case since
an intention overrides a conflicting desire only if the former is a primary intention.

6 Conclusions
In this paper we extend DL with preferences and actions. We show how to detect and re-
solve conflicts using preferences and actions. Rule based languages follow the tradition
of production rules in knowledge based systems and logic programming. The extension
of production rules is based on the use of rule based systems in cognitive attitudes in
practical reasoning. Indeed, the new issue is the interaction among mental attitudes. Ex-
amples are Thomason’s BDP, programming languages based on the BOID architecture,
3APL, etc. In general, conditional approaches and preference based approaches have
been traditionally defined in terms of each other. For example, “if A then B” has been
defined as “A and B is preferred to A without B”, and “A is preferred to B” has been
defined as “if A or B, then A”. However, it may be unnatural to define preferences in
terms of conditionals, and it is more natural to define them directly. Moreover, special
preference-based formalisms may be more efficient, such as CP nets. Finally, the kind
of preferences which can be expressed in terms of conditionals is only limited to spe-
cial kinds. This explains why comparative notions are now a major topic of concern in
artificial intelligence and practical reasoning.
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Let us summarise some requirements for programming cognitive agents. First, the
interaction among mental attitudes needs fine-grained mechanisms to represent and re-
solve conflicts among rules. Second, the programming language has to distinguish be-
tween an abstract language that deals with interaction among mental attitudes, called
a deliberation language, and low level procedures to deal with definitions of conflicts
based on temporal and causal reasoning, resources, scheduling, and the like. Third,
ways to resolve conflicts must be described abstractly. Fourth, patterns of ways to deal
with conflicts and more generally patterns of agent behaviour must be described. Such
patterns have been called agent types. Fifth, the interaction between mental attitudes
and semantics of MAS communication–as defined e.g. by FIPA–should be realised.

In this paper we assumed that we can use the same deliberation language with pref-
erences as has been used by Dastani and van der Torre [8]. Moreover, we did not address
the issue of MAS communication, because the mental attitudes approach to communi-
cation has been attacked recently by social commitment approaches; a careful reconsid-
eration of this issue is beyond the scope of this paper [17] and is left for future research.
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