
Jurix’05: The Eighteenth Annual Conference
Marie-Francine Moens
IOS Press, 2003

1

Norm Modifications in Defeasible Logic

G. Governatori a,1, M. Palmirani b R. Riveret b A. Rotolo b G. Sartor b

a School of ITEE, University of Queensland
b CIRSFID, University of Bologna

Abstract. This paper proposes a framework based on Defeasible Logic (DL) to
reason about normative modifications. We show how to express them in DL and
how the logic deals with conflicts between temporalised normative modifications.
Some comments will be given with regard to the phenomenon of retroactivity.

Keywords. Norm modifications, Defeasible Logic

1. Introduction

This paper proposes a logical framework based on DL to deal with norm-modifications.
We have different types of modifications according to how they affect the law. The im-
pact might concern, e.g., the law text, its scope, or the time of its force, efficacy, or ap-
plicability [3]. So we can identify at least three categories of modifications: (1) textual
changes, (2) change of the norm scope, and (3) temporal changes. Textual changes inter-
vene when a law is repealed, replaced, integrated or relocated. Changes of scope might
be consequent on derogation or extension. Temporal changes impact on the date in force,
date of efficacy or date of application of the destination norm. As a first step, in this paper
we will focus on three kinds of modifications: substitution (which replaces some textual
components of a provision with other textual components, or a provision with another
provision), derogation (the derogating provision limits the effects of the derogated pro-
vision), and annulment (which cancels ex tunc a provision and prevents it to produce any
normative effect).

In particular, we are interested in logically investigating the following issues: (A)
Conditional modifications, which apply under, and are conditioned to, the occurrence of
some uncertain events. (B) The notion of conflict between textual modifications and the
logical strategies for solving them. (C) The concept of time-forking of modifications; in-
deed, there are modifications affecting the effects previously obtained by other modifica-
tions. This is the case, in particular, when we have retroactive modifications. Retroactive
modifications lead to the forking (branching) of the versioning chain of modifications in
order to keep trace both of the past modifications and of the new versioning chains (see
[2]). The system is based on the following building blocks or assumptions, which are
needed in DL to correctly represent the dynamics of normative systems. (1) Normative
Conditionals: It is possible to distinguish between different kinds of normative condi-
tional. Here we will identify the following types of normative rules [1]: (1.1) Rules for
persistent obligations, which, if applicable, permit to infer literals to be modalised by

1Correspondence to: Guido Governatori, School of ITEE, The University of Queensland, Brisbane,
Australia, QLD 4072, email: guido@itee.uq.edu.au.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14983035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 G. Governatori et al. / Norm Modifications in Defeasible Logic

obligations that persist unless some other, subsequent, and incompatible events or states
of affairs terminate them. For example, the obligation of paying the damages in a car
crash will hold until such damages have been paid. (1.2) Rules for co-occurrent obliga-
tions, which allow for the inference of obligations which hold on the condition and only
while the antecedents of these rules hold. For example, the obligation not speak loud
in the church will hold only when the agent is in the church. (1.3) Rules for counts-as
links, which express the idea of institutional power. For example, if i signs a document
on behalf of her boss j, such a document is as it were signed by j only if i has been em-
powered to do this: i’s signature counts as j’s signature [1]. Here we will simply view the
counts-as link as a normative conditional whose consequences are not necessarily deon-
tic. In this context, modifying meta-norms, namely rules regulating norm-modifications,
will be represented as counts-as rules. (2) Time: Norm application and modification take
place along the axis of time. Since we will operate in a temporalised setting, we will
not only impose that obligations be temporalised, but also that rules and any literal are
labelled by time instants. In particular, a rule is represented as (a : t ⇒ b : t ′) : t ′′. Instants
t and t ′ indicate the time at which a and b hold, while t ′′ is the time of the rule being in
force. We will assume here the time to be linear and discrete. (3) Normative provisions:
In general, complex normative provisions have an internal structure and can be decom-
posed into a number of nested units. Here we will assume that the rules of our logical
theory correspond to the atomic normative provisions constituting complex provisions.
This simplification will keep the system manageable.

2. Basic Formal Language

DL is a simple and flexible sceptical non-monotonic formalism that has proven able to
represent various aspects of normative reasoning. We adapt here the machinery devel-
oped in [1] to represent temporalised normative positions to reason both on the normative
provisions in a legal systems and the meta-norms describing the modifications of legal
texts.

Our language is based on a (numerable) set of atomic proposition Prop = {p,q, . . .},
a set of rule labels {r1,r2, . . .}, a discrete totally ordered set of instants of time T =
{t1, t2, . . .}, the modal operator Obl of obligation, and the negation sign ¬. A plain lit-
eral is either an atomic proposition or the negation of it. If l is a plain literal then Obll
and ¬Obll are modal literals. A literal is either a plain literal or a modal literal. Given
a literal l with ∼l we denote the complement of l, that is, if l is a positive literal p then
∼l = ¬p, and if l = ¬p then ∼l = p. Finally we introduce the notion of temporal lit-
erals. A temporal literal is a pair l : t where l is a literal and t is an instant of time. In-
tuitively the meaning of a temporal literal l : t is that l holds at time t. Knowledge in
DL can be represented in two ways: facts and rules. Facts are indisputable statements,
represented either in form of states of affairs (literal and modal literal) and actions that
have been performed. For example, “John is a minor”. In the logic, this might be ex-
pressed as Minor(John). A rule is a relation between a set of of premises (conditions of
applicability of the rule) and a conclusion. In this paper the admissible conclusions are
either normative provisions (obligations, permissions) or rules themselves, in addition
the conclusions and the premises will be qualified with the time when they hold. We
consider two classes of rules: counts-as rules and deontic rules. Counts-as rules describe
the inference mechanism of the institution on which norms are formalised and can be
used to establish definitions as well as conditions for the creation and modification of



G. Governatori et al. / Norm Modifications in Defeasible Logic 3

other rules. Deontic rules on the other hand give the conditions under which normative
qualifications (obligations and permissions) hold.

Beside the above classification rules can be partitioned according to their strength
into strict rules (denoted by →), defeasible rules (denoted by ⇒) and defeaters (denoted
by ;). Strict rules are rules in the classical sense: they are monotonic and whenever
the premises are indisputable so is the conclusion. Defeasible rules, on the other hand,
are non-monotonic: they can be defeated by contrary evidence. Finally defeaters are the
weakest rules: they do not support conclusions, but can be used to block the derivation of
opposite conclusions. Thus we define the set of rule Rules using the following recursive
definition:

• a rule is either a counts-as rule or a deontic rules or the empty rule ⊥, where
• If r is a rule and t ∈ T , then r : t is a temporalised rule. (The meaning of a

temporalised rule is that the rule is in force at time t).
• Let A be a finite set of temporal literals, C be a temporal literal and r a tempo-

ralised rule, then A ↪→C, A ↪→ r and A ↪→∼r are counts-as rules (henceforth we
use ↪→ as a metavariable for either → when the rule is a strict rule, ⇒ when the
rule is a defeasible rule, and ; when the rule is a defeater).

• Let A be a finite set of temporal literals and C be a temporal plain literal. Then
A ↪→O C is a deontic rule (henceforth we use ↪→O as a metavariable for either→O
when the rule is a strict rule,⇒O when the rule is a defeasible rule, and ;O when
the rule is a defeater).

For a rule r we will use A(r) to indicate the body or antecedent of the rule and C(r) for
the head or consequent of the rule. The above inductive definition makes it possible to
have nested rules, i.e., rules occurring inside other rules. However, it is not possible for
a rule to occur inside itself. Thus for example, the following is a rule

p : tp,Oblq : tq ⇒ (Oblp : tp ⇒O s : ts) : tr (1)

(1) means that if p is true at time tp and q is obligatory at time tq, then the deontic rule
Oblp : tp ⇒O s : ts is in force at time tr. The intuition we want to represent is that deontic
rules are meant to introduce obligations. We do not admit deontic literals and rules as
conclusions of deontic rules since the meaning of modalised rules and nested deontic
modalities is not clear. Every temporalised rule is identified by it rule label and its time.
Formally we can express this relationship by establishing that every rule label r is a
function r : T 7→ Rules.

Thus a temporalised rule r : t returns the value/content of the rule ‘r’ at time t.
This construction allows us to uniquely identify rules by their labels, and to replace
rules by their labels when rules occur inside other rules. In addition there is no risk
that a rule includes its label in itself. For example if we associate the temporal rule
(Oblp : tp ⇒O s : ts) : tr to the pair r1 : tr then we can concisely rewrite (1) as

p : tp,Oblq : tq ⇒ r1 : tr (2)

We have to consider two temporals dimension for norms in a normative systems. The
first dimension is when the norm is effective in the normative system, and the second
when the norm is in force in the normative system. So far temporalised rule capture only



4 G. Governatori et al. / Norm Modifications in Defeasible Logic

one dimension, the effectiveness one. To cover the other dimension we introduce the
notion of temporalised rule with viewpoint. A temporalised rule with viewpoint is an
expression s@t where s is a temporalised rule, and t ∈T . Thus the expression r1 : t1@t2
represents a rule r1 in force at time t2 and effective from time t1.

An issue we need to consider here is that we have two different types of normative
conditionals: conditionals that initiate an action or a state of affairs which persists until
an interrupting event occurs, and conditionals where the conclusion is co-occurrent with
the premises. To represent this distinction we introduce a further distinction of rules,
orthogonal to the previous one, where rules are partitioned in persistent and transient
rules. A persistent rule is a rule whose conclusion holds at all instants of time after
the conclusion has been derived, unless interrupting events occur; transient rules, on
the other hand, establish the conclusion only for a specific instant of time. We use the
following notation to differentiate the various types of rules: with ↪→t

O we represent a
transient deontic rule, ↪→p

O a persistent deontic rule, ↪→t a transient counts-as rule, and
↪→p a persistent counts-as rule.

Given a set R of rules, we denote the set of strict rules in R by Rs, the set of strict and
defeasible rules in R by Rsd , the set of defeasible rules in R by Rd , and the set of defeaters
in R by Rdft. R[q : t] denotes the set of rules in R with consequent q : t. We will use Rc

for the set of counts-as rules, RO to denote the set of deontic rules. The set of transient
rules is denoted by Rt and the set of persistent rules by Rp. Finally we assume a set of
rule modifiers. A rule modifier is a function m : T ×Rules 7→T ×Rules.

The combination of the above two constructions allows us to use rule modifiers on
rule labels. Thus m(r1 : t1) : t2 returns the rule obtained from r1 as such as time t1 after the
application of the modification corresponding to the function m and the results refers to
the content of the rule at time t2. Given this basic notion of rule modifier, we can define
some functional predicates, i.e. specific norm-modifications: Annulment, PSubstitution
and TSubstitution (partial and total substitution), and Derogate (derogation). Let see their
intuitive reading. Recall that A(r) denotes the set of literals occurring in the antecedent
of a rule r and C(r) denotes the consequent of r. Suppose r ∈ R is a generic defeasible
rule (either counts-as or deontic) such as (a1 : y1, . . .an : yn ⇒ b : j) : t.

Then Annulment(mr,r) : t ′ says that r is annulled at t ′ by the meta-rule mr.
Let Ar and Cr specify the substitutions of literals to be applied, within the rule r,

respectively in its antecedent and in its consequent. Where l ≥ 1 and l +m≤ n,

PSubstitution(mr,r,Ar(a′l : xl/al : yl , . . . ,a′l+m : xl+m/al+m : yl+m)) : t ′

PSubstitution(mr,r,Cr(b′ : k/b : j)) : t ′

say, respectively, that we operate, at t ′ through mr, a substitution which replaces a subset
or all literals in the antecedent of r with other literals a′l : xl , . . . ,a′l+m : xl+m, and b : j
with b′ : k in the consequent of r. The new version of r will hold at t ′.

TSubstitution(mr,r′/r,A(r′) = {d1 : s1, . . . ,do : so},C(r′) = e : z) : t ′

indicates total substitution of r, i.e. that r is replaced, at t ′ through mr, by rule r′ holding
at t ′ and having the antecedent and consequent as specified in the predicate1.

1To simplify the discussion, we will assume that r′ will have the same strength of r.



G. Governatori et al. / Norm Modifications in Defeasible Logic 5

Let D and E indicate the additional literals used, respectively in the antecedent of r′

and r′′, to specify how to derogate to r. Then

Derogate(mr,r,r′,r′′,D(q1 : z1, . . . ,qm : zm),E (b′ : k)) : t ′

indicates derogation to r. Derogation may affects “spatial” condition of application of a
norm r or its conceptual range of application. In the first case, a norm r holding at the
national level may be derogated by a norm r′ in the event we operate, for example, within
a regional context. In the second case, derogation may affect the conceptual range of r.
In the first sense, for example, if r states that the tax rate in Italy corresponds to 30%
of total income, a rule r′ will state that, if one is resident in Emilia Romagna, under the
same conditions, the tax rate will be 25% of the total income. In both cases, anyway, we
have to identify logical exceptions of r. Thus the predicate says that r is derogated, at
t ′ through mr, by a rule r′ holding at t ′, which last includes in its antecedent the same
conditions of r plus some additional conditions q1 : z1, . . . ,qm : zm. Also, such a rule r′

produces the effect b′ rather than b. However, under r’s conditions and q1 : z1, . . . ,qm : zm

we should also block the application of the rule r: this is done by rule r′′, a counts-as rule,
which holds as well at t ′ and that will have in the consequent the negation of the label
corresponding to r. Let us now characterise the modifiers that correspond to the above
predicates.

If r : (a1 : y1, . . .an : yn ⇒ b : j) : t

• the modifier corresponding to Annulment(mr,r) : t ′ assigns the empty rule r : (⊥) :
t ′ to r as holding at t. The rule r is thus dropped at t ′ from the system and so, at t ′,
r is not in force;

• the modifier corresponding to

PSubstitution(mr,r,A(a′l : xl/al : yl , . . . ,a′l+m : xl+m/al+m : yl+m)) : t ′

assigns, to r at t, the following rule

r : ((A(r)−{al : yl , . . . ,al+m : yl+m})∪{a′l : xl , . . . ,a′l+m : xl+m}⇒ b : j) : t ′

while the modifier corresponding to PSubstitution(mr,r,C (b′ : k/b : j)) : t ′ as-
signs, to r at t, the rule r : (a1 : y1, . . .an : yn ⇒ b′ : k) : t ′;

• the modifier corresponding to

TSubstitution(mr,r′/r,A(r′) = {d1 : s1, . . . ,do : so},C(r′) = e : z) : t ′

assigns, to r at t, the rule r′ : (d1 : s1, . . . ,do : so ⇒ e : z) : t ′;
• the expression Derogate(mr,r,r′,r′′,E (q1 : z1, . . . ,qm : zm),F (b′ : k) : t ′ corre-

sponds to applying two distinct modifiers. The first modifier assigns, to r at t, the
rule r′ : (A(r)∪{q1 : z1, . . . ,qm : zm}⇒ b′ : k) : t ′; the second assigns, to r at t, the
rule r′′ : (A(r)∪{q1 : z1, . . . ,qm : zm}⇒∼(r : j) : t ′.



6 G. Governatori et al. / Norm Modifications in Defeasible Logic

Modifications Conditions

Annulment(mr,r) : t′

PSubstitution(mr′,r,Ar(a′l : xl/al : yl , . . . ,a′l+m : xl+m/al+m : yl+m)) : t′′ t′ = t′′

Annulment(mr,r) : t′

PSubstitution(mr′,r,Cr(b′ : k/b : j)) : t′′ t′ = t′′

Annulment(mr,r) : t′

TSubstitution(mr′,r′/r,A(r′) = {d1 : s1, . . . ,do : so},C(r′) = e : z) : t′′ t′ = t′′

Annulment(mr,r′) : t′

TSubstitution(mr′,r′/r,A(r′) = {d1 : s1, . . . ,do : so},C(r′) = e : z) : t′′ t′ = t′′

Annulment(mr,r) : t′

Derogate(mr′,r,r′,r′′,D(q1 : z1, . . . ,qm : zm),E (b′ : k)) : t′′ t′ = t′′

Annulment(mr,r′) : t′

Derogate(mr′,r,r′,r′′,D(q1 : z1, . . . ,qm : zm),E (b′ : k)) : t′′ t′ = t′′

Annulment(mr,r′′) : t′

Derogate(mr′,r,r′,r′′,D(q1 : z1, . . . ,qm : zm),E (b′ : k)) : t′′ t′ = t′′

PSubstitution(mr,r′,Ar′ (a
′
l : xl/al : yl , . . . ,a′l+m : xl+m/al+m : yl+m)) : t′

Derogate(mr′,r,r′,r′′,D(q1 : z1, . . . ,qs : zs),E (b′ : k)) : t′′ t′ = t′′ and
∃u,v, l ≤ u≤ l +m and 1≤ v≤ s

such that au = qv

PSubstitution(mr,r′′,Ar′ (a
′
l : xl/al : yl , . . . ,a′l+m : xl+m/al+m : yl+m)) : t′

Derogate(mr′,r,r′,r′′,D(q1 : z1, . . . ,qs : zs),E (b′ : k)) : t′′ t′ = t′′ and
∃u,v, l ≤ u≤ l +m and 1≤ v≤ s

such that au = qv

TSubstitution(mr,r′′′/r,A(r′′′) = {d1 : s1, . . . ,do : so},C(r′′′) = e : z) : t′′

Derogate(mr′,r,r′,r′′,D(q1 : z1, . . . ,qs : zs),E (b′ : k)) : t′′ t′ = t′′

TSubstitution(mr,r′′′/r′,A(r′′′) = {d1 : s1, . . . ,do : so},C(r′′′) = e : z) : t′′

Derogate(mr′,r,r′,r′′,D(q1 : z1, . . . ,qs : zs),E (b′ : k)) : t′′ t′ = t′′

TSubstitution(mr,r′′′/r′′,A(r′′′) = {d1 : s1, . . . ,do : so},C(r′′′) = e : z) : t′′

Derogate(mr′,r,r′,r′′,D(q1 : z1, . . . ,qs : zs),E (b′ : k)) : t′′ t′ = t′′

Table 1. Conflicts

3. Conflicts between Norm-modifications

Table 1 summarises the basic conflicts between the norm modifications we have consid-
ered. Notice that in all cases a conflict obtains only if the conflicting modifications apply
to the same time instant. Annulment of r is incompatible with any partial substitution
in r (first and second rows from the top). The same applies to a total substitution which
replaces r with r′ when we also have that r or r′ is annulled (third and fourth row). A
similar intuition holds for the three subsequent rows: it is impossible to derogate to r if
this last rule, or r′ or r′′, are dropped from the system. Exactly for the same reasons, dero-
gation to r is incompatible with total substitution of r, or of r′ or r′′ (the first three rows
from the bottom). Finally, the cases in the fourth and fifth rows from the bottom state
that a partial substitution in the antecedent of a rule is incompatible with a derogation if
at least one literal used in r′ or r′′ to derogate to r is replaced in r′ or r′′.

4. The Inference Machinery

A defeasible theory D is a structure D = (T ,F,Rc,RO,≺) where T is discrete totally
ordered set of instants of time, F is a finite set of temporalised literals, Rc is a finite set of
temporal counts-as rules with viewpoint, RO is a finite set of temporalised deontic rules
with viewpoint,≺, the superiority relation, is defined as (Rc×Rc×T )∪(RO×RO×T ).
A conclusion in Defeasible Logic can have one of the following four forms:

+∆@t q : t ′ meaning that q is definitely provable, at time t ′ with viewpoint t, in D (i.e.,
using only facts and strict rules).

−∆@t q : t ′ meaning that we have proved that q is not definitely provable, at time t ′ with
viewpoint t, in D.



G. Governatori et al. / Norm Modifications in Defeasible Logic 7

+∂@t q : t ′ meaning that q is defeasibly provable, at time t ′ with viewpoint t, in D
−∂@t q : t ′ meaning that we have proved that q is not defeasibly provable, at time t ′

with viewpoint t, in D.

For example, +∂O@t1 q : t0 means that we have a defeasible proof for Oblq at t0, or, in
other words, that Oblq holds at time t0 when we use the rules in force in the normative
system at time t1. To specify whether a conclusion q : t has been obtained via transient
rules or via persistent rules we will introduce auxiliary proof tags indicating persistency
or transiency. The proof tags are labelled with the mode used to derive the rule, according
to their appropriate proof conditions. It is not possible to give the complete set of proof
conditions in this paper. Here we concentrate only on the proof conditions to derive
defeasible persistence of both rules, and literals with both counts-as and obligation mode.
The proof conditions given here are extensions of those given in [1]; the omitted proof
conditions can be analogously obtained.

Provability is based on the concept of a derivation (or proof) in D. A derivation is
a finite sequence P = (P(1), . . . ,P(n)) of tagged literals satisfying the proof conditions
(which correspond to inference rules for each of the kinds of conclusion). P(1..n) de-
notes the initial part of the sequence P of length n. A strict derivation (i.e., a conclusion
tagged with ∆) is just a monotonic derivation using forward chaining of rules, that is,
Modus Ponens. In Defeasible Logic a defeasible derivation, on the other hand, has three
phases. In the first phase we propose an argument in favour of the conclusion we want
to prove. In the simplest case this consists of an applicable rule for the conclusion (a
rule is applicable if the antecedent of it has already been proved). Then in the second
phase we examine all possible counter-arguments (rules for the opposite conclusion). Fi-
nally we have to rebut the count-arguments. Thus we have to provide evidence against
the counter-argument. Accordingly we can demonstrate that the argument is not as such
(i.e., some of its premises are not provable), or we can show that the counter-argument is
weaker than an argument for the conclusion. For persistent conclusions we have another
method. We can use a derivation of the conclusion at a previous time provided that no
terminating event occurred in between.

In [1] the rules are given, but the formalism we have introduced in the previous
sections allows us to have rules in the head of counts-as rules, thus we have to admit the
possibility that rules are not only given but can be derived. Thus in the proof conditions
we have to cater for this option. Accordingly we have to give conditions that allow us
to derive rules instead of literals. For the sake of simplicity we will assume that all rules
in R can be overruled/modified. Then we have to extend the notation R[x : t] to the case
where x is a rule label (and norm-modifications). Given a set of (counts-as) rules R and a
set of rule modifiers M = {m1, . . . ,mn}, then

R[r : tr] = {s ∈ R : C(s) = mi(v : tv) and mi(v : tv) = r : tr}

R[r : tr] gives the set of nested rules whose head results in the rule r : tr after the applica-
tion of the rule modifier; and

R[∼r : tr] = {s ∈ R : C(s) = mi(r : tr) and mi(r : tr) is in conflict with r : tr}

The set R[∼r : tr] gives the set of rules that modify r : tr and the modification is in conflict
with the r : tr: see Table 1 for such conflicts. We can now give the proof condition for
+∂ p to derive a rule.



8 G. Governatori et al. / Norm Modifications in Defeasible Logic

If P(n+1) = +∂ p@t r : tr then
1a) r : tr@t ∈ Rc or
1b) ∃s : ts ∈ Rc[r : tr] such that +∂@t s : ts ∈ P(1..n) and

∀a : t ′ ∈ A(s),+∂@t a : t ′ ∈ P(1..n); and
2) ∀v : tv ∈ Rc[∼r : tr] if +∂@t v : tv ∈ P(1..n), then either

2.1) ∃b : t ′′ ∈ A(v) such that −∂@t b : t ′′ ∈ P(1..n) or
2.2a) v : tv ≺t r : tr if 1a obtain or
2.2b) v : tv ≺t s : ts if 1b obtain; or

3) +∂ p@t ′ r : tr ∈ P(1..n), t ′ < t and
3.1) ∀t ′′, t ′ ≤ t ′′ < t,∀s : ts ∈ R[∼r : tr] if +∂@t ′′ s : ts ∈ P(1..n), then either

3.1.1) ∃a : ta ∈ A(s),−∂@t ′′ a : ta ∈ P(1..n) or ts < tr; and
4) +∂ p@t r : t ′r ∈ P(1..n), t ′r < tr and

4.1) ∀t ′, t ′r ≤ t ′′ < tr,∀s : ts ∈ R[∼r : tr] if +∂@t ′ s : ts ∈ P(1..n), then either
4.1.1) ∃a : ta ∈ A(s),−∂@t ′ a : ta ∈ P(1..n) or ts < t ′r.

Let us briefly examine the above proof conditions. To prove a rule at time t, the rule
must be in force at time t, i.e., the rule must be one of the given rules (condition 1a).
There is a second possibility the rule is derived from another rule. The second rule must
be provable and applicable at t (condition 1b). However, this is not enough since there
could have been modifications to the rule effective at t. Thus we have to show that either
all eventual modifications are not applicable (2.1) or the modifications are not successful
since they are defeated (2.2a and 2.2b). Finally the rule could be provable because it was
persistent, i.e., it was persistently in force before (3), and no modification occurred in
between. The possible modifications in force after the rule was in force are not applicable
to the rule. Or (4) the rule was persistently effective before, and its effectiveness was not
revoked. The inference condition for positive persistent defeasible proofs is as follows.

If P(n+1) = +∂ p@t q : t ′ then
1) +∆p@t q : t ′ ∈ P(1..n), or
2) −∆@t ∼q : t ′ ∈ P(1..n), and

2.1) ∃r : tr ∈ Rp
sd [q : t ′]: +∂@tr : tr ∈ P(1..n), ∀a : ta ∈ A(r : tr),+∂@t a : ta ∈ P(1..n) and

2.2) ∀s : ts ∈ R[∼q : t]: if +∂@t s : ts, then either ∃a : ta ∈ A(s : ts),−∂@t a : ta ∈ P(1..n); or
2.2.1) ∃w : tw ∈ R[q : t]: +∂@t w : tw ∈ P(1, ,n) and

∀a ∈ A(w : tw),+∂@t a : tw ∈ P(1..n) and w� s; or
3) ∃t ′′ ∈T : t ′′ < t and +∂ p@t ′′ q : t ′ ∈ P(1..m) and

3.1) ∀t ′′′ t ′′ < t ′′′ ≤ t ∀s : ts ∈ R[∼q : t ′]: if +∂@t ′′′ s : ts ∈ P(1..n), then either
3.1.1) ∃a : ta ∈ A(s : ts),−∂@t ′′′ a : ta ∈ P(1..n) or
3.1.2) ∃v : tv ∈ R[q : t ′],+∂@t ′′′ v : tv ∈ P(1..n) and

∀b : tb ∈ A(v : tv)+∂@t ′′′ b : tb ∈ P(1..n) and s : ts ≺t ′′′ v : tv; or
4) ∃t ′′ ∈T : t ′′ < t ′ and +∂ p@t q : t ′′ ∈ P(1..m) and

4.1) ∀t ′′′ t ′′ < t ′′′ ≤ t ′ ∀s : ts ∈ R[∼q : t ′′′]: if +∂ p@t s : ts ∈ P(1..n), then either
4.1.1) ∃a : ta ∈ A(s : ts),−∂@t a : ta ∈ P(1..n) or
4.1.2) ∃v : tv ∈ R[q : t ′′′]+∂@t v : tv ∈ P(1..n) and

∀b : tb ∈ A(v : tv)+∂@t b : tb ∈ P(1..n) and s : ts ≺t ′′′ v : tv.

The rationale of above proof conditions is the same of those in [1]. The main differ-
ence is that here every time we use a rule we have to verify that the rule is provable in
the system. In addition we have to cater for both the persistence of the effectiveness of
the rule (4) and that the rule was previously persistently in force (3).



G. Governatori et al. / Norm Modifications in Defeasible Logic 9

5. Time-forking and Norm-modification

Retroactivity may be applied to basic rules as well as to norm-modifications.
Cases of retroactivity of basic rules occur when we have rules such as r : (a : x⇒p

O p :
y) : z. Rule r is a permanent (defeasible) deontic rule in force since z, persisting through
subsequent instants z∗ ≥ z, stating that if a occurs at x then p is obligatory since time
instant y. Suppose we have that y = x + 1 and z = 5. If the theory contains a : 2, this
allows for the derivation of +∂

p
O@5 p : 3, namely Oblp at time 3 from the viewpoint of

5, which is the time-instantiation of r being in force. At 5, in fact, r is in force; on the
other hand, there is no time-constraint over x and y, and so a occurring at 2 permits to
derive retroactively (namely, with respect to 5) p at 3. Suppose that the theory contains
also

s : (b : j ⇒p
O ¬p : j) : k

such that k = 2. If b : 3 we would derive +∂
p
O@k∗ ¬p : 3. Since k = 2, then +∂

p
O@5 ¬p : 3

thus getting a conflict. If we want to have r prevailing over s the theory should say that
r�t s, t = 5. Notice, however, that we will still derive +∂

p
O@k∗ ¬p : 3 where 2≤ k∗ ≤ 4.

This means that, if we have another rule

s′ : (Obl¬p : i⇒p
O q : i) : m

such that m = 2, then we will derive +∂
p
O@m∗ ¬q : i where 2≤m∗≤ 4 but−∂

p
O@m∗ ¬q :

i where m∗ > 4. Let us see now cases of retroactivity of norm-modifications. Suppose r
is defined as at the beginning of this section. Again, if we have a : 2, then +∂

p
O@5 p : 3.

Imagine the system contains the following meta-rule, stating the annulment of r:

mr : (c : x′⇒p Annulment(mr,r) : y′) : z′

such that z′ = 4 while z = 3 (3 is the time-instantiation of the being-in-force of r). This
meta-rule assumes for its application that r is in force, which is true from time instant 3
on (rules persist over time unless cancelled or modified). Let c be a future but uncertain
event under which the norm-modification will apply. This means that x′ > z. However,
we state that mr works retroactively, e.g., that y′ = 3. Suppose we have c : 7. Accordingly,
we will derive +∂ p@z′∗ Annulment(mr,r) : 3, where, e.g., z′∗ = 5. As we have stated, a
modification is nothing but a function which assigns, to the modified rule, another rule
which holds at the time of the modification and so at the time-instantiation of the modi-
fication and at every subsequent time instant. In the case of annulment, the value of the
the function is the empty rule, since the rule associated to the name r is dropped from
the system. Thus, after the application of mr, we will also get +∂ p@z′∗ (r :⊥) : y′. Thus,
from the viewpoint of z′∗ = 5, if a : 2, this will no longer permit to derive the modalised
consequent of r, i.e., Oblp : 3 because, at that perspective, r does not exist anymore:
−∂

p
O@z′∗ p : 3. Finally, notice that if mr were a transient rule, we would be able, under

appropriate conditions, to model the notion of temporary annulment: in fact, in transient
rules the effects are co-occurrent with the conditions. Logically, this is just a variation of
the intuition just discussed. Let us see two cases, one of retroactive partial substitution
and one retroactive derogation. Even here, dealing with these cases is a matter of varia-
tion of the previous logic intuitions. So we will only provide a brief discussion. Given r



10 G. Governatori et al. / Norm Modifications in Defeasible Logic

as above, suppose we have the following meta-rule, stating the substitution, in the body
of r, of a : x with d : x:

mr′ : (c : x′⇒p PSubstitution(mr′,r,Ar(d : x/a : x)) : y′) : z′

such that z′ = 4 while z = 3. If we assume the same conditions of the case of the annul-
ment just discussed, the fact of having a : 2 permits to derive Oblp : 3 only if the view-
point is such that z∗ < 4. When mr′ comes to be in force, the conditions for obtaining
Oblp from r will be no longer a but d. Let us finally focus on the notion of retroactive
derogation. Given r as above, suppose we have the following meta-rule, stating the dero-
gation of r when the additional condition q obtains and such that the different effect p′

should follow under this additional condition:

mr′′ : (c : x′⇒p
c Derogate(mr′′,r,r′,r′′,D(q : x),E (p′ : y) : y′) : z′

Again, we assume the same conditions of the case of the annulment just discussed.
Under those conditions we can reiterate the same argument and so we can derive
+∂

p
O@z∗ p : 3 given a : 2. However, if mr′′ is made applicable, we will derive

+∂ p@z′∗ Derogate(mr,r,r′,r′′,D(q : x),E (p′ : y)) : y′, namely that this holds from the
viewpoint of z′∗ where z′∗ ≥ 4. According to the definition of Derogate, this conclusion is
associated to adding in the theory the following two rules:

r′ : (a : x,q : x⇒p
O p′ : y) : y′ r′′ : (a : x,q : x⇒p ¬(r : z)) : y′

So, after the application of mr′′, we will have r′ and r′′ in force since time instant 3. Thus,
if we have a : 2 but also q : 2, then we will no longer derive Oblp. In particular, at time
3, this conclusion will be blocked and we will get +∂

p
O@3 p′.

6. Summary

We extended the defeasible logic presented in [1] by allowing nested rules in the head
of counts-as rules. This extension increases the expressive power of the logic and it al-
lows us to represent meta-norms describing norm-modifications. We outlined the infer-
ential mechanism needed to deal with the derivation of rules. Then we described some
issues related to norm versioning and we illustrated the techniques with some relevant
norm-modifications such as annulment, partial and total substitution and derogation. We
showed that the formalism introduced here is able to deal with complex scenarios such
as retroactivity and time-forking.

References

[1] G. Governatori, A. Rotolo, and G. Sartor. Temporalised normative positions in defesible logic.
In ICAIL05. ACM, New York, 2005.

[2] J. Martinek and J. Cybulka. Dynamics of legal provisions and its representation. In ICAIL05.
ACM, New York, 2005.

[3] M. Palmirani. Time model in normative information systems. In E-Gov05. Wolf, Tilburg,
2005.

http://eprint.uq.edu.au/archive/00002279/01/ic05.pdf

