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Abstract 
We explore the implications of refinements in the mechanical description of planetary constituents on the 
convection modes predicted by finite element simulations. The refinements consist in the inclusion of  
incremental elasticity, plasticity (yield ing) and multiple simultaneous creep mechanisms in addition to the 
usual visco-plastic models employed in the context of unified plate-mantle models . The main emphasis of 
this paper rests on the constitutive and computational formulation of the model. We apply a consistent 
incremental formulation of the non-linear governing equations avoiding the computationally expensive 
iterations that are otherwise necessary to handle the onset of plastic yield. In connection with episodic 
convection simulations, we point out the strong dependency of the results on the choice of the initial 
temperature distribution. Our results also indicate that the inclusion of elasticity in the constitutive 
relationships lowers the mechanical energy associated with subduction events.  
 
Keywords: Mantle Convection, Constitutive Formulation, Elasticity, Plastic Yielding, Episodicity, 
Simulation 

Introduction 

The way a planet deforms in response to thermal or gravitational driving forces, 

depends on the material properties of its constituents. The Earth’s behavior is unique in 

that its outermost layer consists of a small number of continuously moving plates. 

Venus, another planet of similar size and bulk composition to the Earth, displays signs 

of active volcanism but there is no evidence of plate movements or plate tectonics. 

It is generally accepted that plate tectonics is a manifestation of mantle convection, a 

natural solid state convection process driven by the thermal gradients of a cooling planet 

with radiogenic heating. In this context, the pattern of surface motion is determined by 

the rheology of the cool thermal boundary layer. Purely viscous models of the 

lithosphere are not capable of producing the narrow plate boundary deformation zones 

and low strain-rate plate interiors which characterize plate tectonics. Research over the 



 

 

 

 

past ten years in the area of computational unified plate-mantle models has 

demonstrated that additional model ingredients are required including temperature 

dependence of the viscosity combined with a finite material strength to enable the 

fracture processes necessary for plate formation (Moresi and Solomatov, 1998; Tackley, 

1998). In square or cubic convection cells temperature dependence and a finite yield 

strength leads to three distinct modes of convection: If the yield strength is high 

compared to the thermal driving force, then convection is confined to a domain 

underlying a high viscosity, quasi rigid plate or lid. This mode of convection is usually 

designated stagnant lid convection. If the yield strength is low compared to the driving 

forces then yielding of the material at the cold boundary takes place and plate like 

regions form; this mode is designated mobile lid convection. In between the two 

extreme modes exists an episodic convection mode with alternating mobile and stagnant 

lid behavior. 

In the following, we study the effect of physical and computational model refinements 

such as large strain elasticity, stress advection and an incremental decomposition (or 

tangent form) of the constitutive relationships. The model proposed here is an extension 

of the model proposed by Moresi et al (2002) in the context of a Lagrangian particle 

method. While the three distinct convection modes are clearly observed in square or 

cubic convection domains or in more general domains with periodic initial conditions, 

the sensitivity of the convection modes with respect to more general initial conditions is 

not clear and will be examined here as well.  The paper is structured as follows: The 

model equations, constitutive relationships, and computational aspects are outlined in 

the following two sections. Simulation results are presented subsequently. 

Model Formulation 

The governing model equations consist of the stress equilibrium conditions 
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and the heat equation 
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Here we adopt the usual subscripted Cartesian tensor notation; postfixing subscripted 

differential indices after a comma and adopting the summation convention. In equation 

(1), ijσ ′  is the deviatoric stress, ijD  is the stretching, p is the pressure, gi,, is parallel and 

opposite to the direction of gravity (i.e. such that igg =  is the gravitational constant) 

and pα is the thermal expansion coefficient. In equation (2), ρ0 is a reference density at 

the surface, cp is the heat capacity, κ is the thermal conductivity and h is a specific 

energy source term (eg radiogenic heating). In the following examples we assume h=0 

for simplicity.  

In the formulation of the constitutive model we make the standard assumption that the 

stretching is the sum of an elastic and a visco- plastic part: 

vp
ij

e
ijij DDD += .                                                                                                     (3) 

We assume incompressib ility such that 0, == jjjj vD , where jv  is the velocity.  The 

visco-plastic stretching is then defined as ijeff
vp
ijD ση ′= 2/1 , where effη  is the effective 

viscosity, and for the elastic part we assume 
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where µ  is the elastic shear modulus and J
ijσ&  the Jaumann stress rate. The reader is 

referred to Kolymbas and Herle (2003) and Muhlhaus and Regenauer-Lieb (2004) for 



 

 

 

 

recent discussions and comparisons between the various objective stress rates. The 

Jaumann stress rate is related to the material stress rate by 
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where ijW is the non-symmetric part of the velocity gradient. 

As a further refinement to this approach, the visco-plastic stretching is adopted in the 

form of a combined Newtonian and composite power law creep model (Muhlhaus and 

Regenauer-Lieb, 2004). The composite power law viscosity includes a contribution 

from both dislocation glide, with a typical power law exponent ( 3≈n ), and plastic 

deformation, with temperature independent coefficients and a large exponent ( 15≈pln ). 

The effective viscosity is then given by: 
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where Yη is a reference viscosity for the plastic yield, τ0 is the dislocation transition 

stress, τY is the plastic yield stress and ijijσστ ′′= 2/1  and Nη  is the temperature-

dependent Newtonian viscosity for which we adopt an Arrhenius relationship. This 

relationshit is of the form 

)/exp(0N TATMN ηη =          (7) 

where 0Nη  is a reference Newtonian viscosity, A is the activation energy and TM is the 

melting temperature; 

 

The yield stress, Yτ , may depend on the accumulated visco-plastic strain, other state 

variables including damage variables (not considered here) and the pressure. For 



 

 

 

 

completeness, although not used to obtain the results of this paper, we state an 

expression for the pressure dependence in the form  

pYY βττ += 0           (8) 

where β is the pressure sensitivity and 0Yτ  is the yield stress at zero pressure. Byerlee 

(1968) proposes a simplified criterion in which the pressure, p, of (8) is replaced by the 

overburden pressure gzρ  where z is the coordinate in the direction of gravity with z=0 

on the cold boundary. The  yield criterion (6) and Byerlee’s simplified model are 

mathematically quite different however: The fourth order tensor  relating the stress to 

the stretching is non-symmetric for the yield criterion (8), whereas the corresponding 

fourth order tensor is symmetric in the case of Byerlee’s model. Non-symmetry is 

preferred (Rudnicki and Rice (1975), as non-symmetric models have a stronger 

tendency for strain localization. 

The governing equations are highly non- linear with respect to the introduced 

constitutive relationships. In the numerical solution of the model equations the non-

linearities are usually considered iteratively in that the effective viscosity (6) is updated 

in each step of the iteration on the basis of the results from the previous iteration step 

(e.g. Moresi and Solomatov, 1998). This approach is commonly referred to as a secant 

method. As an alternative, the convergence of this procedure can be improved 

drastically if the predictor step of the iteration is based on the incremental (=tangent) 

form of the constitutive relationship instead of the secant form as described above. In 

this paper we shall apply the tangent approach. The tangent or incremental form of the 

constitutive relations (3-8) have been derived in (Muhlhaus and Regenauer–Lieb, 2005) 

and are outlined here in the appendix for easy reference. 



 

 

 

 

Computational Aspects 

In the next section we present the results of finite element simulations of plane strain, 

natural convection problems in a rectangular L by H domain, where H is the dimension 

in the direction of gravity. Typical values are H=700km for upper mantle convection 

and H=3000km for whole mantle convection. We make the standard assumptions that 

the shear stress and normal velocity vanish on all boundaries of the domain; the 

temperatures are fixed on the top and the bottom and the normal gradient of the 

temperature vanish on the sides. 

The non-dimensional forms of the governing equations are respectively given by  

0/,, =+−′ i
cth
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Equation (9) is obtained from equation (1) by decomposing the pressure as 

th
z pxHgp +−= )(0ρ , where pth is the pressure due to thermal expansion, xz is the 

coordinate opposite to the direction of gravity and cRa and Dic designate the 

computational Rayleigh number and the dissipation number respectively. The stresses in 

(9) and (10) are normalized with respect to Dt*η  where *η  is a viscosity parameter and 

Dt  is the characteristic thermal diffusion time. The significance of the viscosity 

parameter *η  follows from the transformation (for numerical purposes) of the Arrhenius 

law (see below). The thermal diffusion time, Dt , is given by the expression 
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With 126
0 10)/( −−= smcpρκ  we obtain stD

1917 1010 << . The Rac and Dic, consistent 

with the way the stresses are non-dimensionalised, are defined as   
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In (12) ∆T is the temperature difference between the hot and the cold boundary of the 

domain under consideration. In the present paper we assume Dic=0 since our main 

focus here is on the influence of temperature dependence of the viscosity, plasticity and 

elasticity. The temperature and the velocities are non-dimensionalised with respect to 

∆T and H/tD respectively.  

 

The governing equations have been implemented using the computational software 

toolkit Escript (Davies et al, 2004). Through adoption of the Python scripting language, 

Escript is designed to provide an extensible interface to various computational kernel 

modules such as equation solvers and matrix assembly routines. These kernels in turn 

provide implicit parallelism, permitting an expert user to focus on scripting the 

computational scheme for a model as opposed to the low-level implementation detail of 

parallelization primitives. In this way it is possible to script high performance parallel 

software without scripting a single line of parallel code. All of the parallelism is 

delegated to (and encapsulated within) the computational kernel modules selected for 

the task at hand. 

 

An important computational kernel module interfaced to Escript is the Finley FEM  

library (Davies et al, 2004). To use Finley, an unsteady initial boundary value problem 

(IBVP) must first be transformed into a sequence of steady BVPs by means of a suitable 

time discretisation procedure applied at each time step. The steady, linear BVP can then 

be provided to Finley which will then assemble a stiffness matrix associated with a 

given unstructured mesh using a discretisation based on the standard variational 



 

 

 

 

formulation. For an unknown function u , the system of partial differential equations 

(PDEs) associated with a BVP can be defined through the specification of the 

coefficients of the following templated system:  

 

( ) ( ) iiijij,kiklk,iklj,kijkj,lk,ijkl Gx,Y+X=uD+uC+uBuA ∈−−−   (13) 

 

The tensorial coefficients A , B ,C , D , X , and Y  are functions of their location in the 

physical domain. In a similar manner, Finley also accepts a system of implicit natural 

and Dirichlet boundary conditions for which template parameters can be specified. 

 

In the implementation we solve sequentially the stress equilibrium equation and the heat 

equation. The incompressibility constraint is satisfied iteratively by means of the 

algorithm 

 

pα +1 = pα − λ v j, j
α +1 , α=1,2,3,….       (14) 

 

where α is the iteration counter teff δµλλ 0=  is a penalty function (see appendix  for 

definition of the effective shear modulus µeff). A typical value for the constant λ0 is 100. 

In connection with direct solvers, convergence is fastest with a larger value for λ0. 

However, there are usually limits to the value of λ0 in connection with iterative solvers.   

After the pressure iteration the stresses are calculated by solution of matrix problems for 

each column of the stress tensor. For consistency the order of interpolation is one order 

less than the one for the velocities. For the velocities and the temperature we use eight 

noded rectangular elements with bi-quadratic shape functions. For the stresses we use 

bilinear rectangular elements and evaluate the values of the stresses at the mid side 



 

 

 

 

nodes after the solution of the stress equations. Subsequently the heat equation is solved 

using backward Euler time differencing. 

The stress equations and the heat equation involve convective derivatives of the stresses 

and temperature respectively. We use a basic upwinding scheme [(Zienkiewicz and 

Taylor and Zienkiewicz, 2000, p. 30]) to avoid spurious oscillations of the fields in 

advection dominated regimes. The common procedure to implement the standard 

streamline upwind Petrov-Galerkin (SUPG) formulation is to modify the test or weight 

functions used in the formulation of the finite element method. However, in the present 

case, it is convenient to modify the differential equation. In our formulation we replace 

the material time derivative of a function a as follows: 
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The function a can be either a scalar (e.g. temperature), a vector (e.g. velocity) or a 

tensor (e.g. stress). For pure advection problems, this approach is equivalent to the 

SUPG method. 

 

For unstructured meshes, the (mid) time step +tδ is determined from a 1st order implicit 

extrapolation of the Courant condition
maxv
h

Ct =δ  where C is an appropriate Courant 

number, h  is the discretization scale and and 1
max )( C∈tv  is the maximum magnitude of 

the nodal point velocities. For the results of this paper the following condition is used: 
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Due to the adaptive nature of the 1st order implicit extrapolation scheme, larger values 

of C  can be trialled in a guarded manner, potentially yielding larger time steps. 



 

 

 

 

 

In the case of an explicit algorithm, C  is set to ½ for stability of the numerical solution 

in connection with regular grids. As a fully implicit integration scheme is used, the 

Courant (- like) condition is not needed for numerical stability. However, we retain the 

condition to achieve accuracy of the transient solution of the non- linear equations. In 

general, higher order approaches such as the condition (16) can be used if maxv  can be 

shown to be continuously differentiable to the required order. Furthermore, a 

corresponding initial predictor of the velocity field for the next time-step can then be 

calculated if required and may in turn be used as a time step corrector. 

 

In the convection study in the next section we ignore the pressure dependence of TM in 

the Arrhenius relation. The main emphasis in the study will be on the role of elasticity, 

power law creep and plasticity on the emergence of different modes of convection. In 

the dimensionless formulation we write the Arrhenius relationship as follows (see 

Tackley, 1998): 
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The exponent of (15) varies between 0, for T=0.5, and 6/Â−  or 3/Â , for T=1.0 or 

T=0.0 respectively. For 23ˆ =A , this corresponds to a Newtonian viscosity contrast of 

about 105 across the convection cell. In the absence of convection, the Newtonian 

viscosity varies slowly due to temperature change in the lower half of the cell, from 1 in 

the middle to 0.022 on the bottom and rapidly in the upper half from 1.0 to 2087.0 on 

the top. 



 

 

 

 

Simulations 

In the first subsection we consider the effect of refinements such as elasticity and stress 

advection for the case of episodic convection. Episodic convection is suited for this 

study as it involves phases of rapid change of the flow pattern within which we expect 

elasticity to be important and stagnant lid phases where elasticity is expected to be 

unimportant. In the second subsection we consider the influence of non-periodic initial 

conditions in connection with two dimensional 4 by 1 convection cells on the 

persistence of the different convection modes. 

The temperature dependence of the viscosity was given by (17) with 23ˆ =A  which gives 

a viscosity ratio from the cold to the hot boundary due to temperature alone of 105. 

More extreme viscosity contrasts can easily be considered in the present formulation 

because the upper limit for the effective dimensionless viscosity is set by the 

dimensionless elastic shear modulus and the time increment ttD δηµ *)/( . We assign 

Rac=104, τ0=0.866 102.5, τY=3τ0 (i.e. a constant for ideal plasticity) and 410*)/( =Dtηµ . In 

the simulations we used the power law plasticity model with nY=15 and ηY= ηN0 (see 

also the appendix for further detail). The initial temperature distribution was  
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 The corresponding Nusselt number vs. time plot is shown in Figure 1. After initial, 

rapidly decaying, primarily elastic oscillations (not shown), the system settles 

temporarily into a stagnant lid mode of convection similar to the temperature and 

velocity profile shown in Figure 2a. During this initial period, stress accumulates until 

the yield stress is reached within the cold boundary layer. The locally- increased 

mobility was accompanied by thermal advection, a narrow plume formed, hot material 

was advected underneath toward a narrow, cold boundary layer. This process continued 



 

 

 

 

until the cold layer plunged back into the lower mantle along the boundary opposite to 

the plume (Figure 2b). This process repeated itself at approximately regular intervals. 

The initial time intervals between the first peaks of the episodic mode in Figure 1 are 

0.071, 0.044, 0.045, 0.044,  with constant  intervals afterward. Also shown in Figure 1 

are the Nusselt numbers for mobile lid convection (obtained for τY= τ0) and stagnant lid 

convection ( 06ττ ≥Y ).   

 

Figure 1 

 

  

The length y  of the vertical lines plotted along the cold (top) boundary of the velocity 

plots in Figures 2, 3 and 6 are given by: 
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 where 1max v  is the magnitude of the largest  horizontal velocity anywhere in the 

convection cell and 
12

1 =x
v  is the local horizontal velocity on the top boundary surface. 

Within the framework of our model, 
12

1 =x
v  is representative of the plate velocity. If 

0=y  at a point on the boundary, then this point is mobile with a velocity of  1max v . A 

comparison the mobile lid convection mode (Figure 3) with the stagnant lid phase of the 

episodic convection mode (Figure 2a) indicates that the horizontal velocities on the cold 

boundary are largest for the mobile lid convection mode. Large segments of the top 

layer with values of y close to zero as in Figure 3 or during episodic convection in 

Figure 2b are indicative of plate like behaviour. 



 

 

 

 

 

Figure 2a 

 

Figure 2b 

 

The isotherms and velocity arrows displayed on Figures 2a and 2b are representative for 

the stagnant lid phases (minima of Nusselt plots in Figure1) and the subduction events 

(maxima of Nusselt plots) for an episodic convection mode. The isotherms and velocity 

arrows corresponding to the steady state of mobile lid convection is shown in Figure 3. 

   

Figure 3 

 

Next we investigate the influence of the choice of the initial temperature distribution. 

Will the three distinct modes of convection be stable with respect to a change of the 

initial conditions? We adopt a nonharmonic condition at t=0 such that 
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Figure 4 shows Nusselt number vs. time plots corresponding to the three cases 

considered before. The mobile lid mode settles at a slightly lower Nusselt number at 

steady state but the features of the isotherms and velocity arrows are qualitatively the 

same as for the case with harmonic initial conditions. Instead of the expected episodic 

convection mode we observed for harmonic initial conditions, we observe a tendency 

toward mobile lid convection, although the initial oscillation decays at a slower rate 

than for the mobile lid mode with 0ττ =Y . For non-harmonic initial conditions, the 

stagnant lid mode of Figure 5 becomes comparable to a dampened episodic convection 



 

 

 

 

mode. In this case, we observe an extended oscillatory phase but again ultimately the 

system settles into a steady state (observable in Figures 4 and 5).  

 

 

 

Figure 4 

 

 

Figure 5 

 

A comparison of the distribution and length of vertical lines (see equation (19)) on top 

of the velocity plots of Figures 5 and 6, indicates that in contrast to the mobile lid 

convection mode, the horizontal velocities on the cold boundary are much smaller than 

the horizontal velocities closer to the hot boundary.. 

 

Figure 6 

 

The influence of the elastic shear modulus becomes important if (µ/η∗)tD < 105. A 

comparion of the results reveals that there is little difference between the (µ/η∗)tD = 105 

and the (µ/η∗)tD = 1020 cases. Smaller shear moduli cause a shortening of the period 

between the subduction events. 

 

Figure 7 

 

By multiplying (9) with vi, integration of the resulting expression over the domain V   

and application of Gauss theorem we obtain the total mechanical power, W& , as 



 

 

 

 

)1( −= NuRaVW& . The reader is referred to Parmentier et al (1976) for details of the 

derivation. This equation relates the area under the graph of a Nusselt plot to the 

mechanical work associated with the convection process. In particular, the area under a 

spike of the Nusselt plot is proportional to the work associated with a subduction event. 

This area decreases with the decreasing value of the elastic shear modulus. It is 

remarkable that this effect is evident  in a global energy measure such as the Nusselt 

number.  

Conclusions 

 

We have outlined a formulation for visco-elastic convection based on a combined 

Newtonian and composite power law rheology where the effect of plastic yielding is 

considered as a power law term with a high ( 15≈pln ) power law coefficient (6). The 

model is suitable for studying the geodynamics of mantle convection amongst other 

problems in geophysical flow. The nonlinear equations of motion are solved 

incrementally based on a consistent tangent formulation producing second order 

accurate results and avoiding the computationally expensive iterations that are otherwise 

necessary to handle the onset of plastic yield  in most cases. In Moresi and Solomatov 

(1998) and Tackley (1998), plastic yielding is considered by introducing an upper limit 

to the viscosity given by the ratio of the yield stress and the equivalent viscous strain 

rate. Since the strain rate at the current time is unknown, an initial estimate has to be 

based on the strain rate from the last time step producing a result of first order accuracy. 

For this reason, a time consuming, iterative approach is necessary. The iterative 

approach is often more time consuming than the present incremental approach including 

the occasional iterative reduction of residuals. With the iterative approach, the 



 

 

 

 

constitutive operator is sparser than in the consistent incremental approach, which can 

be used to advantage. 

The convection model with a strongly temperature dependent viscosity has some unique  

characteristics: the produced strains can be very large, necessitating a fluid-dynamics 

formulation, yet the relaxation time in the cool thermal boundary layer is significant 

compared to the characteristic time associated with fluid flow. In the bulk of the fluid, 

the relaxation time is small compared to the time taken for convective features to evolve 

due to the much lower viscosity of the warm fluid. 

As elastic stresses in the strongly convecting part of the system relax rapidly, the 

introduction of elasticity does not produce a qualitative change to the stagnant lid 

convection regime (see Solomatov, 1995). In the episodic and mobile lid modes, there is  

competition between the build-up of stresses in the cool lid and the stress-limiting effect 

of the yield criterion. Our results show that the introduction of elastic deformation does 

not quantitatively influence this balance either, although we do expect a difference in 

the distribution of stresses in the lid, which explains the variation in the onset of 

overturns and their increasing frequency which we observed as the elastic shear 

modulus was reduced. It should be noted that a global flow characteristic such as the 

Nusselt number may not be suitable to investigate the effect of elasticity. This is  

because the significant elastic effect is limited to the plate (or top boundary layer) which 

occupies only a small fraction of the total volume of the convection cell. In a future 

study we plan to differentiate between the energy rates associated with elastic, 

Newtonian creep, power law creep and plastic deformation, evaluated in those parts of 

the convection cell in which plate like behavior is expected (e.g. for T < 1400K, see 

Schubert et al 2001, p.26).  

The presence of an elastic deformation mechanism also permits significant deformation 

of the highly viscous lid with lower energy rates as the plate is able to bend without 



 

 

 

 

necessarily having to form a plastic hinge. This is reflected in lower energy levels  

during episodic overturns which we observed by integrating the system Nusselt number. 

In the Earth, this effect may be important in subduction zones where the prediction of 

dissipation rates due to slab bending is larger than what seems physically plausible in 

this context (Conrad and Hager, 1999). 

We observed a breakdown in the highly regular boundary layer turnover time when 

transitioning from harmonic initial condition to a non-harmonic initial condition. 

This is similar to the results of Moresi and Solomatov (1998), who noted for the purely 

viscous case that the regularity of the episodic mode was an artifact of the small 

convection domains. Once we break the perfect symmetry of the convection pattern, the 

evolution also becomes significantly more time-dependent.  

 

 

 

ACKNOWLEDGMENT 

Support is gratefully acknowledged by the Australian Computational Earth Systems 

Simulator Major National Research Facility (ACcESS MNRF), the Queensland State 

Government, The University of Queensland, and SGI. The Australian Commonwealth 

Government, participating institutions, and the Victorian State Government fund the 

ACcESS MNRF. 

References 

Byerlee, J. (1965), The brittle ductile transition in rocks, J. Geophys. Res., 73, 4741-

4750. 

Conrad, C.P. and Hager, B.H. (1999). Effects of plate bending and fault strength at 

subduction zones on plate dynamics. J. Geophys. Res., 104 (B8), 17551-17571. 



 

 

 

 

Davies, M., Gross, L. and Muhlhaus, H.-B. (2004), Scripting high performance earth 

systems simulations on the SGI Altix 3700, Proc. 7th Int. Conf. HPC Grid Asia Pac. 

Reg., 244-251. 

Kolymbas, D. and  Herle, I. (2003), Shear and objective stress rates in hypoplasticity, 

Int. J. Numer. Anal. Meth. Geomech., 27, 733-744. 

Moresi, L., Dufour, F. and Muhlhaus, H.-B. (2002), Mantle convection models with 

viscoelastic/brittle lithosphere: Numerical methodology and plate tectonic modeling, 

Pure Appl. Geophys., 159 (10), 2335. 

Moresi, L., and Solomatov, V.S. (1998), Mantle convection with a brittle lithosphere: 

thoughts on the global tectonic styles of the Earth and Venus, Geophys. J. Int., 133 (6), 

669-682. 

Muhlhaus, H.-B. and Regenauer-Lieb, K. (2004), A Self Consistent Plate Mantle Model 

that Includes Elasticity: Computational Aspects and Application to Basic Modes of 

Convection, Geophys. J. Int., submitted May 2004. 

Parmentier, E.M., Turcotte, D.L. and Torrance, K.E. (1976), Studies of finite amplitude 

non-Newtonian thermal convection with application to convection in the Earth mantle, 

J. Geophys. Res., 81,1839-1846. 

Rudnicki, J.W. and Rice, J.R. (1975), Conditions for the localisation of deformation in 

pressure-sensitive dilatant materials, J. Mech. Phys. Sol., 23, 371-394. 

Schubert,G., Turcotte, D.L. and Olson, P., Mantle Convection in the Earth and Planets 

(Cambridge University Press, Cambridge 2001). 

Tackley, P. (1998), Self-consistent generation of tectonic plates in three-dimensional 

mantle convection, Earth and Planetary Science Letters, 157, 9-22. 

Solomatov, V.S. (1995), Scaling of temperature- and stress- dependent viscosity 

convection, Phys. Fluids, 7, 266-274. 



 

 

 

 

Zienkiewicz, O.C. and Taylor R.L., The Finite Element Method, Vol. 3, 5th Ed., 

(Butterworth/Heinemann 2000). 

 

  

Appendix 

The constitutive relation (3) can be rewritten as: 
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Where we have adopted a power law expression for the equivalent plastic strain 

rate, pγ& , of the form: 
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The coefficient of 2/ijσ ′  in (A1) obtained by inserting (A2) into (A1) is equal to the 

inverse of the effective viscosity (6). The incremental form of our constitutive 

relationship is optained by inserting the expansions ij
t
ij

tt
ij δσσσ δ +=+  , TTT ttt δδ +=+ , 

ppp ttt δδ +=+ into (A1). Retaining only the linear terms in the stress, temperature and 

pressure increments yields: 
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where: 
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Here, ηeff  and ηΝ  are defined by (6) and (7) respectively. Inversion of A3 yields: 
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The function hp in (A3) and (A9) considers the pressure dependence of TM. The slope of 

the TM – p curve is usually assumed as constant; a typical order of magnitude value for 

the slope is 10-7 K Pa-1. For n=1 and ∞→µ  we obtain Newtonian flow with the 

viscosity ½ ηΝ .  

In many practical applications the velocity-pressure incompressibility and the heat 

equation are solved and advanced sequentially. In this case, the terms associated with 

Tδ  and pδ  in equation (A9) are not needed. In linear instability analyses, however, the 

full incremental form (A9) is required. 

In the viscous limit, ∞→µ , (A9) reduces to: 
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In steady states, the stress, temperature and pressure increments vanish so that the 

remaining terms in (A11) cancel. This cancellation is indeed the case as can be shown 

by insertion of ijijD ση ′= 2/1 . 

The limit ∞→Nη  does not yield a simpler expression for the incremental relationship 

(A9) since the effective moduli still depend on the viscosity 1)/( −p ln
YY ττη . However, in 

the rate independent limit as ∞→pln , this viscosity tends to infinity so that the 

expression A14 reduces to 
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In the above derivation it was assumed that the yield stress is constant. A large 

deformation model with power law plasticity and state variable dependence of the yield 

stress will be presented in a forthcoming paper. 



 

 

 

 

Figure Captions 

 

Figure 1. A comparison of Nusselt numbers for stagnant-lid (lowest at steady state), 

episodic and mobile lid convection modes arising from harmonic initial conditions (18). 

The plastic yield stress, τY, is 1,3, or 6 times the Newtonian-power law transition stress 

τ0=0.866 102.5. An Arrhenius relation describes the temperature dependence of creep 

with viscosity contrast across the layer of 105. The composite power law exponents are 

n=3 and npl=15 for dislocation glide and plastic deformation respectively. The 

dimensionless shear modulus is µ = 104. 

 

Figure 2a. Typical temperature and velocity distributions for an episodic convection 

mode at a minimum of the Nusselt number (refer to Figure 1). The length of the vertical 

lines on top of the velocity plot are inversely proportional to the cold boundary 

velocities. 

 

Figure 2b. Typical temperature and velocity distributions for an episodic convection 

mode at a maximum of the Nusselt number (refer to Figure 1). The length of the vertical 

lines on top of the velocity plot are inversely proportional to the cold boundary 

velocities. 

 

 

Figure 3. Typical temperature and velocity distributions at steady state for the mobile lid 

convection mode. The length of the vertical lines on top of the velocity plot are 

inversely proportional to the cold boundary velocities. For mobile lid convection, 

significant parts of the top layer move like rigid bodies. 

 



 

 

 

 

Figure 4 A comparison of Nusselt numbers for convection modes arising from 

nonharmonic initial conditions (20). The parameters are the same as those described in 

Figure 1. 

 

 

Figure 5 A comparison between Nusselt numbers for stagnant lid convection arising 

from a harmonic initial temperature distribution (18) and a nonharmonic initial 

temperature distribution (20). 

 

 

Figure 6. Temperature and velocity distributions at steady state for the stagnant lid 

convection mode arising from a nonharmonic initial temperature distribution (20). The 

length of the vertical lines on top of the velocity plot are inversely proportional to the 

cold boundary velocities. Here the horizontal velocities on top are only a small fraction 

of the horizontal velocities closer to the hot boundary (compare with Figure3). 

 

 

Figure 7. Influence of the elastic shear modulus: (µ/η∗)tD =0.25x104, 0.5x104, 105, 1020; 

n=3, npl=15, Rac=104, τ0=0.866 102.5, τY=3τ0. 
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