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H Mühlhaus
Earth Systems Science and Computational Centre (ESSCC),
The University of Queensland,
St Lucia QLD 4072,
Australia
– and –
CSIRO Division of Exploration and Mining,
26 Dick Perry Ave,
Kensington WA 6051,
Australia
muhlhaus@esscc.uq.edu.au

L Gross
Earth Systems Science and Computational Centre (ESSCC),
The University of Queensland,
St Lucia QLD 4072,
Australia
gross@esscc.uq.edu.au

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Queensland eSpace

https://core.ac.uk/display/14982902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Thermal Effects in the Evolution of Initially

Layered Mantle Material

M Davies, H Mühlhaus and L Gross

Abstract. A simplified model for anisotropic mantle convection based on a
novel class of rheologies, originally developed for folding instabilities in mul-
tilayered rock [4], is extended through the introduction of a thermal anisotropy
dependent on the local layering. To examine the effect of the thermal anisotropy
on the evolution of mantle material, a parallel implementation of this model
was undertaken using the Escript modelling toolkit and the Finley finite ele-
ment computational kernel [3]. For the cases studied, there appears to little if
any effect. For comparative purposes, the effects of anisotropic shear viscos-
ity and the introduced thermal anisotropy are also presented. These results
contribute to the characterisation of viscous anisotropic mantle convection
subject to variation in thermal conductivities and shear viscosities.

Keywords. anisotropy, folding, alignment, mantle.

1. Introduction

The convection of the Earth’s mantle is the underlying dynamic process that drives

the motion of its lithospheric plates. The convection process, in turn, is a result

of the gravitational instability of material within the mantle and its temperature-

dependent density. As warmer buoyant material rises, it displaces colder, denser

material that sinks. Conversely, as the warmer material rises, it cools, and, as

the colder material sinks, it warms and increases its buoyancy. It is through this

continuous pseudo-cyclic mechanism that currents are established within the Earth
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that carry warmer material toward the surface, displacing cooler material to the

interior.

The simulation of anisotropic mantle convection has been a specialized area

where it is often assumed that the instantaneous flow patterns predicted by con-

vection simulations could be directly related to seismic anisotropy. However, recent

studies indicate that recorded observations diverge from this assumption and that

the effect of anisotropic shearing is of a complex nature [6]. In response to these

observations, a novel class of rheologies for folding instabilities in multilayered

rock have been developed [4] and then later extended [5] to address feedback pro-

cesses for large-scale flow where the effects of layer obstruction, misalignment and

realignment are evident. The approach is unique in that the local material layer-

ing is treated as an independently evolving state of the convection process. This

paper adopts this approach in a simple model to investigate the evolution of ini-

tially layered mantle material. The simple model is formulated here to include an

anisotropic thermal conductivity.

2. The Model

The physics of mantle convection processes are typically modeled under the stan-

dard assumption that mantle material under large deformation can be compared

to an incompressible, highly-viscous fluid. Based on this assumption, a viscous

anisotropic mantle convection model has been developed for the study of deforma-

tion processes in multilayered geological formations. In terms of a nondimension-

alised system, the general governing equations of mantle convection are given by

the stress equilibrium equation and the heat conservation equation respectively:

σ′ij,j − pth
,i +RacTzi = 0 (1)
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Ṫ = (KijT,j),i +
Dic

Rac
σ′ijDij (2)

where σ′ is the deviatoric stress, pth is the pressure due to thermal effects, T is

the temperature, Ṫ denotes the material time derivative of the temperature, zi is

a unit vector in the opposite direction to gravity, K is the thermal conductivity

tensor, Dic is the computational dissipation number, Rac is the computational

Rayleigh number and D is the stretching (deformation rate) tensor. As the mantle

material is incompressible (vi,i = 0), the Boussinesq approximation is adopted

in the last term of (1). The Boussinesq approximation requires that the fluid

bouancy is proportional to the fluid temperature in the convective system and is

implemented as a linear density variation with temperature as given by:

ρ = ρ0 (1− α(T − Tc)) (3)

where α is the coefficient of thermal expansion relative to Tc, the temperature at

the cold boundary. In equation (1) we assume Tc = 0.

2.1. Anisotropic Model Refinements

An initially layered, transverse-isotropic, viscous mantle material which is heated

from below is now considered. Such a material can represent an alternating se-

quence of composite heterogeneous layers of variable rheology or a weakly bonded

sequence of homogeneous layers. After the onset of convection, the initially anisotropic

layered mantle material mixes as it evolves. As a result, the anisotropic effects aris-

ing from the layer evolution change dynamically. In this paper we study the effects

of viscous shearing with an introduced formulation for explicit thermal conductiv-

ity variations along a layer.

The anisotropic viscous shearing effect is characterised by two effective shear

viscosities, denoted as η and ηS , where ηS is introduced as the shear viscosity
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for flow along a layer. The shear stress arising from the deviatoric stretching is

consequently corrected by the 4th order anisotropy tensor Λ (see [4] for details on

the derivation of Λ) such that:

σ′ij = 2ηD′ij + 2(ηS − η)ΛijklD
′
kl (4)

where Λijkl = 1
2 (ninkδlj + njnkδil + ninlδkj + njnlδik) − 2ninjnknl and n is a

normal surface vector, or “director”, defining the orientation of the material lay-

ering known.

In a similar manner, we introduce a thermal anisotropic effect, characterised

by two thermal conductivities κ and κL, where κL is thermal conductivity along

a layer. The thermal conductivity tensor K is then composed of an isotropic part

and an anisotropic correction such that:

Kij = κLδij + (κ− κL)ninj (5)

Effects such as anisotropic flow misalignment can be captured through the

use of the director as a distinct material property. As the director transforms with

a material surface element in a continuum, Nanson’s relation [1] can be used to

describe the evolution of the director with time as a both a translation and rotation

with the velocity field. In turn, this relation can be simplified conditionally where

the direction of the director is the only unknown:

ṅ = −vj,inj (6)

The use of this simplification requires that care is taken to ensure that the di-

rector retains unit length during computation. It is shown in [5] that viscous slip

planes tend to align with velocity vectors in steady states, and subsequently that

a solution to (6) is indeed flow-aligned at steady state.
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3. Computational Strategy

The domain is a square 2-dimensional domain with the length of a side being

equal to 1 (nondimensionalised), representative of an isolated region of the Earth’s

mantle. The base of the region is maintained at a constant temperature as it is

heated from below. Similarly, the top surface of the region is a cold boundary

that is also of constant temperature. There is no temperature change across the

vertical surfaces. The velocity, v, director, n, and temperature, T , are independent

variables that are solved sequentially at each time step of the simulation using the

finite element method (FEM). As mentioned earlier, care is taken to ensure that

the magnitude of the director is reset to unit length as soon as it is solved.

Substitution of (4) into (1) yields a second order linear equation for which

the incompressible velocity, v, and the pressure due to thermal expansion, pth,

are unknown. Adopting a simple penalty method, a discretisation is derived for

solution of v and pthat time t+ δt:

pth (α+1) = pth (α) − Pv(t+δt) (α)
j,j (7)

[
(η(δikδjl + δilδjk) + 2(ηS − η)Λ

(t)
ijkl + Pδijδkl)v

(t+δt) (α+1)
k,l

]
,j

−
[
pth (α)δji

]
,j

+RacT (t)zi = 0 (8)

Here, P � η is introduced as a penalty factor.

In a similar manner, the heat equation (2) and the director evolution equation

(6) are discretised through the introduction of both a backward difference approx-

imation for the time derivative and additional terms for upwinding (upwinding is

discussed in section 3.2).
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For unstructured meshes, a forward-centred time step δt+ is determined from

a first order implicit extrapolation based on the Courant condition. The scheme

computes δt+ from the average value of the maximum velocity predicted implicitly

for the ensuing computation:

δt+ =

√
δt−(δt−v(t) 2

max + 2(v
(t)
max − v(t−δt)

max )Ch)− δt−v(t)
max

v
(t)
max − v(t−δt)

max

(9)

where C is an appropriate Courant number, h is the mesh discretisation scale, and

vmax is the maximum magnitude of the nodal point velocities. Due to the adaptive

nature of this extrapolation scheme, larger values of C can be trialed.

3.1. Implementation

The authors1 have designed and developed a Python scripting language toolkit

“Escript” to facilitate the simulation of solid Earth processes [3]. Escript provides

a scripting interface to parallelised computational kernels in order to shield a

modeller from developing low-level parallelism constructs. For the results of this

paper, the “Finley” FEM computational kernel is used to implement the finite

element method to solve the velocity, director and temperature equations. A brief

overview of Escript, Finley and the FEM implementation is presented in this

section.

3.1.1. Escript. At the core of Escript is the Data module. Data is semantically

associated with an arbitrary computational domain or distribution which is imple-

mented or managed through a computational kernel interface. Through the provi-

sion of a standard interface, the Data module provides the means to exchange data

between various kernels while maintaining full contextual information in regard to

1The Escript and Finley projects at ESSCC are led by Lutz Gross.
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its source and intended use. Data objects may be scalars, vectors, or tensors of up

to 4th order.

The association of domain information with Data objects enables an implicit

form of domain-based parallelism. As an example, the Data object expression

C=A+B, where C, A and B are associated with the nodes of a FEM mesh, executes

an addition in parallel. Composite numerical methods such as specialised nonlinear

solvers and time-differencing schemes can be rapidly developed using a compact

high-level domain-wide syntax with a simple implicit parallelism.

3.1.2. Finley. To use Finley, Data expressions are used to transform an initial

boundary value problem (IBVP) into a sequence of linear boundary value problems

(BVPs) to be solved at each time step. Each linear BVP can then be provided to

Finley to assemble a stiffness matrix using a discretisation based on the standard

variational formulation [7]. The discretisation is appropriate for the mesh and

element type.

For an unknown vector function u, the partial differential equations (PDEs)

of a BVP (eg (8), (6)) are provided to Finley through the specification of the

coefficients of the following templated form in tensorial notation:

−(Aijkluk,l),j − (Bijkuk),j + Cikluk,l +Dikuk = −Xij,j + Yi (10)

The tensorial coefficients A, B, C, D, X and Y are functions of their location in

the physical domain and are supplied to Finley as Data objects or expressions. For

example, to solve the velocity equation (8), a simple rearrangement into a form

comparable with (10) determines that it is necessary only to provide Finley with

A, X , and Y as Data objects or expressions. On the other hand, it is necessary to
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provide Finley with all of the coefficients2 to solve the director evolution equation

(6) after introducing the required upwinding terms.

To complete the BVP, Finley also provides forms for both Neumann and

Dirichlet boundary conditions as given by the respective systems:

nj(Aijkluk,l +Bijkuk) + dikuk = njXij + yi on ΓN (11)

ui = ri on ΓD (12)

where n denotes the outer boundary normal, and A, B and X are as previously

defined. Here, d and y are coefficients defined on the natural boundary ΓN while

r is a function defined on the Dirichlet boundary ΓD. The complete linear BVP

for systems of equations is then defined by (10)–(12). Finley also defines a steady

BVP for a single equation in a scalar unknown.

3.2. Upwinding

Both the hyperbolic director evolution equation (6) and the parabolic heat equa-

tion (2) are advection dominated at high Rayleigh numbers. To avoid the spurious

oscillations that would otherwise arise during the computation of their solution, it

is necessary to introduce an upwinding scheme to their discretisation. The de facto

standard upwinding scheme is the streamline upwind Petrov-Galerkin (SUPG)

method [7], which implements a modification to the weight functions of the FEM

formulation. However, as Finley does not permit the direct manipulation of the

FEM assembly process, it is not possible to use this scheme. To address this issue,

a modified PDE is derived in-place. This modified PDE is based on the original

PDE and includes additional terms that eliminate the most significant advective

2As per section 3.2, the coefficients (being like terms) of a modified equation are provided to
Finley in this case.
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truncation error terms for an explicit discretisation3. For a general first order dif-

ferential expression Lu = au+ bu,ivi + c, the modified operator is given by:

L←− L− (Lβi),i (13)

where βi = h
2

vi√
vjvj

. For pure advection problems with regular quadrilateral mesh

elements, this approach is equivalent to the SUPG method. The strategy of this

approach can be compared to that of the Taylor-Galerkin upwinding scheme de-

scribed in [7].

4. Results and Discussion

Simulations have been run for a range of thermal and viscous anisotropies. The

simulations are based on 50 × 50 square meshes of bilinear quadrilateral finite

elements. The system is at rest initially with an initial layering perpendicular to

the direction of depth and an initial temperature perturbation is given by:

T = 1 +
1

10
cos(πx1)sin(πx2)− x2 (14)

A parameter space of ηS/η = {0.1, 0.5, 1.0} against κL/κ = {0.9, 1.0, 1.1}

for Rac = 105 and Dic = 0 was studied. A comparison of Nusselt number plots

and maximum shear stresses is shown in figure (1). The Nusselt number derived

for the purpose of characterising the resultant convection profiles is expressed in

terms of the mechanical power:

Nu = 1− 1

Rac

∫

V

vi,jσijdV
∫

V

KijT,jzidV

(15)

3This approach is commonly applied in the finite difference method.
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A comparison of these plots illustrates that the thermal conductivity effects add

an additional wavelength to the Nusselt number which appears to dampen with

time. The effects also appear to have little effect on the maximum shear profile

and despite the additional damping wavelength, the average Nusselt number is

unchanged. It has been proposed by Christensen [2], that the Nusselt number for

an anisotropic convection process can be compared to the Nusselt number of an

isotropic convection process with average viscosity (η+ ηS)/2. Such a comparison

has been made in figure (2) . While the Nusselt number of the isotropic process

exceeds marginally the running average of the original anisotropic process, it does

maintain a comparable trajectory.

A comparison of the temperature field and isotherms is shown in figure (3)

at t = 0.2 for Rac = 105. It is shown that there are but subtle differences in the

anisotropic temperature profiles (b), (c) and (d). A comparison of sub-figures (b)

and (c) demonstrate that for κL/κ = 1.1 there is a subtle increase in the thermal

gradient at the cell boundaries. Conversely, a comparison of sub-figures (b) and

(d) demonstrate that for κL/κ = 0.9 there is a subtle decrease in the thermal

gradient at the cell boundaries.

A comparison of the streamlines, velocity and the nonalignment field is shown

in figure (4) at t = 0.2 for Rac = 105. The nonalignment field is measured by the

function N = abs(nivi/
√
vkvk). While both isotropic and anisotropic convection

has been reported to produce cells that encompass a mechanically-stagnant core

[5], the results obtained for this study evidenced subtle periodic adjustments in

the core position. Feedback processes of anisotropic systems appear to result in a

higher degree of mixing and episodic periods of misalignment in comparison with

the corresponding isotropic system. The range of simulations performed evidenced

that large fluctuations in the degree of alignment were spasmodic and perhaps
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oscillatory. The degree of oscillation evident in the convection process for long

running simulations with anisotropic shear viscosity questions the existence of a

true steady state in this computational scheme.

It can be argued that the irregular oscillatory nature of the convection system

as a result of anisotropic shear viscosity is both a result of feedback processes and

a potential artifact of computation involving spurious discontinuities arising in

director interpolation. There are two observations in support of this: (1) it has

been demonstrated that the degree of oscillation decreases with mesh element size

(particularly observable for Rac = 106); (2) the interaction of opposing directors

for similarly-aligned folding layers at a displacement less than or equal to the

mesh element size is left untreated. The first observation reflects the fact that

the interpolation of directors in regions of high velocity gradient is inaccurate.

The second observation reflects the need for further modeling and a more effective

computational treatment. A potential solution to this problem in-part would be to

evolve the directors’ rotational orientation instead of their vector representation.

5. Conclusion

A simple model has been presented to investigate thermal conductivity effects in

the evolution of initially layered material. For the presented case studies, it has

been demonstrated that the evolution of anisotropic thermal conductivity effects

on once-layered mantle material appears only to have a subtle influence on the

resultant temperature gradients and velocity streamlines as steady state is ap-

proached.

Further simulation in the study of both larger 2-dimensional and 3-dimensional

domains is likely to provide a better illustration of the variation in thermal con-

vection patterns for thermal variation. Finally it is noted that the computational
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treatment of the evolution of internal fluid surfaces in geodynamics remains a

significant challenge at this time.
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Figure Captions

Figure 1. A comparison of Nusselt numbers for Rac = 105and maximum shear
stresses (max(

√
σijΛijklσkl)) along the layers.

Figure 2. A comparison between the Nusselt plots of an anisotropic convection
process and a similar but isotropic (ηS/η = 1) convection process.

Figure 3. A comparison of temperature fields and isotherms at t = 0.2 for Rac =
105. Subfigure (a) depicts the isotropic case.

Figure 4. A comparison of streamlines, velocity and nonalignment fields at t = 0.2
for Rac = 105. Subfigure (a) depicts the isotropic case.
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(a) κL/κ = 0.9.
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(b) κL/κ = 1.0.
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(c) κL/κ = 1.1.

Figure 1. A comparison of Nusselt numbers for Rac = 105and
maximum shear stresses (max(

√
σijΛijklσkl)) along the layers.
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Figure 2. A comparison between the Nusselt plots of an
anisotropic convection process and a similar but isotropic
(ηS/η = 1) convection process.
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(a) κL/κ = 1.0, ηS/η = 1.0. (b) κL/κ = 1.0, ηS/η = 0.1.

(c) κL/κ = 1.1, ηS/η = 0.1. (d) κL/κ = 0.9, ηS/η = 0.1.

Figure 3. A comparison of temperature fields and isotherms at
t = 0.2 for Rac = 105. Subfigure (a) depicts the isotropic case.
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(a) κL/κ = 1.0, ηS/η = 1.0. (b) κL/κ = 1.0, ηS/η = 0.1.

(c) κL/κ = 1.1, ηS/η = 0.1. (d) κL/κ = 0.9, ηS/η = 0.1.

Figure 4. A comparison of streamlines, velocity and nonalign-
ment fields at t = 0.2 for Rac = 105. Subfigure (a) depicts the
isotropic case.


