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Abstract

While the paraxial approximation (kw � 1, where w is the transverse width of
the beam or system) is applicable to many, even most, optical systems, the highly
non-paraxial regime, where the paraxial approximation and simple corrections
to it fail, is becoming increasingly important with the development of intrinsi-
cally non-paraxial optical devices and structures such as nano/micro-cavities,
photonic crystals, VCSELs, and others of sizes comparable to, or smaller than,
the optical wavelength λ.
We calculate the propagation of a highly non-paraxial beam by expansion
into spherical functions, which can be considered as fundamental non-paraxial
modes. This method is applicable to arbitrary beams.

1 Propagation of beams

The propagation of arbitrary monochromatic electromagnetic radiation fields in isotropic homoge-
neous media is described by the vector Helmholtz equation:

∇×∇× E + k2E = 0 (1)

where E is the complex amplitude of the electric field, and k = 2πn/λ is the wavenumber. In prin-
ciple, the propagation of such fields can be calculated by solving this differential equation, with
suitable boundary conditions. In practice, analytical solutions are elusive, and direct numerical so-
lution (such as by using finite-difference methods) are impractical for computational domains large
compared to the wavelength.
Therefore, when considering the propagation of beams, that is, radiation fields with a general direc-
tion of propagation, and originating from a finite angular region, it is natural to consider theoretical
simplifications. The usual choice is the use of the scalar paraxial wave equation, which is a close
approximation as long as the wavevector at all points is directed almost parallel to the propagation
direction of the beam. Analytical solutions can be given in terms of beam modes—eigenfunctions of
the scalar paraxial wave equation—or propagation can be calculated using scalar diffraction theory.
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However, the paraxial approximation requires that the cross-sectional width w of the beam be much
greater than the wavelength (kw � 1), and becomes increasingly less applicable as the beam is more
strongly focussed. For mildly non-paraxial beams, higher order corrections can be made (Barton and
Alexander 1989, Davis 1979, Lax et al. 1975), but these are impractical in the highly non-paraxial
regime.

2 Non-paraxial modes

Any plane wave is a solution to the vector Helmholtz equation, and the set of all possible plane waves
forms a complete set of solutions. Therefore, any beam can be represented in terms of plane waves—
the spatial Fourier transform of the beam. While this is theoretically simple, considerable practical
and computational problems result if the plane wave expansion is used. While any particular beam
can be written in terms of plane waves, the resulting expression is an integral—the plane wave basis
is a continuous basis set. Computationally, the integral must be approximated as a sum. For this to be
accurate, a large number of terms must be used, especially for strongly focussed beams. The discrete
sum is not uniformly convergent over all space, so the approximation is only applicable within a
finite region of space, making the calculation of the far field of the beam problematic. Therefore, we
turn to a discrete basis set as a better choice from a computational perspective.
The geometry of strongly focussed beams suggests the use of vector spherical wavefunctions
(VSWFs). The singularity-free regular VSWFs are:

RgMnm(kr) = Nn jn(kr)Cnm(θ,φ) (2)

RgNnm(kr) =
jn(kr)
krNn

Pnm(θ,φ) + Nn

(

jn−1(kr)− n jn(kr)
kr

)

Bnm(θ,φ) (3)

where jn(kr) are spherical Bessel functions, Nn = 1/
√

n(n + 1) are normalisation constants, and
Bnm(θ,φ), Cnm(θ,φ), and Pnm(θ,φ) are the vector spherical harmonics:

Bnm(θ,φ) = r∇Ym
n (θ,φ) = ∇× Cnm(θ,φ) = θ̂

∂
∂θ

Ym
n (θ,φ) + φ̂

im
sinθ

Ym
n (θ,φ), (4)

Cnm(θ,φ) = ∇× (rYm
n (θ,φ)) = θ̂

im
sinθ

Ym
n (θ,φ)− φ̂

∂
∂θ

Ym
n (θ,φ), (5)

Pnm(θ,φ) = r̂Ym
n (θ,φ), (6)

where Ym
n (θ,φ) are normalised scalar spherical harmonics. The usual polar spherical coordinates are

used, where θ is the co-latitude measured from the +z axis, and φ is the azimuth, measured from the
+x axis towards the +y axis. RgMnm and RgNnm are TE and TM multipole fields, respectively.
Since the regular VSWFs are a complete set of solutions to the vector Helmholtz equation (1) in a
source/scatter-free region, any beam can be written in terms of expansion coefficients (also called beam
shape coefficients) anm and bnm as

Einc(r) =
∞

∑
n=1

n

∑
m=−n

anmRgMnm(kr) + bnmRgNnm(kr). (7)

In practice, the VSWF expansion will be terminated at some n = Nmax. For the case of multipole
fields produced by an antenna that is contained within a radius a, Nmax = ka is usually adequate, but
Nmax = ka + 3 3

√
ka is advisable if higher accuracy is needed (Brock 2001). This can also be used as a

guide for choosing Nmax for beams—if the beam waist is contained in a radius a, this can be used to
choose Nmax. It appears that a = w0 generally gives adequate results. Therefore, this method is ideal
for strongly focussed beams, since a narrow beam waist gives good convergence for small Nmax.
Once the expansion coefficients for any given beam are known, the full vector electric and magnetic
fields associated with the beam can be calculated at any point in space. The expansion coefficients
can be found by a variety of methods (Nieminen 2002). The irradiance and field components in the
focal plane are shown in figure 1 for plane and circularly polarised LG03 beams. Non-paraxial effects
such as non-zero Ez and the non-axisymmetric shape of the plane polarised beam are clearly visible.
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Figure 1. Focal plane irradiance and electric field components for plane polarised (left) and circularly
polarised (right) LG03 beams of waist radius w0 = 0.5λ. All distances are in units of the wavelength.
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