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ABSTRACT 
Analytically tractable metapopulation models usually assume that every patch is identical, which 
limits their application to real metapopulations. We describe a new single species model of 
metapopulation dynamics that allows variation in patch size and position. The state of the 
metapopulation is defined by the presence or absence of the species in each patch. For a system 
of n  patches, this gives 2n possible states. We show how to construct and analyse a matrix 
describing transitions between all possible states by first constructing separate extinction and 
colonisation matrices. We illustrate the model's application to metapopulations by considering 
an example of malleefowl, Leipoa ocellata, in southern Australia, and calculate extinction 
probabilities and quasi-stationary distributions. We investigate the relative importance of 
modelling the particular arrangement of patches and the variation in patch sizes for this 
metapopulation and we use the model to examine the effects of further habitat loss on extinction 
probabilities.  
 
 
1. INTRODUCTION 
There has been much recent interest in incorporating spatial structure into models of population 
dynamics (Pulliam, 1988; Howe et al., 1991; Verboom et al., 1991a; Verboom et al., 1991b; 
Mangel and Tier, 1993; Adler and Nuernberger, 1994). Traditionally, population models make the 
restrictive assumption that populations are well mixed and have no spatial structure. These 
assumptions imply that interaction between any two individuals in the population is equally likely. 
One method for incorporating spatial structure is to use the concept of a metapopulation 
(Andrewartha and Birch, 1954; den Boer, 1968), which allows the chance of interaction between 
individuals to vary according to their relative location. 

A metapopulation refers to a population inhabiting a collection of discrete patches (Levins, 
1969; Hanski, 1991). Each patch is homogeneous and contains a local population in which 
individuals mix freely. The extinction of local populations and the recolonisation of empty patches 
are key features of metapopulation dynamics. Many metapopulation models, including both 
stochastic and deterministic models, rely on the assumption that the system comprises either an 
infinite or a very large number of identical patches (MacArthur and Wilson, 1967; Levins, 1969; 
Richter-Dyn and Goel, 1972; Nisbet and Gurney, 1982; Chesson, 1984; Woolhouse, 1988; Hanski, 
1991; Hastings, 1991; Gotelli and Kelley, 1993; Hanski and Gyllenberg, 1993). This assumption 
simplifies mathematical analyses, but such models may miss properties of species restricted to 
small numbers of patches. 

It is important to be able to explore the effect of the relative size and spatial position of 
patches. Variation in the size and quality of patches ( Pulliam, 1988; Howe et al., 1991) and 
variation due to different spatial arrangements of patches will have different effects on population 
dynamics (Doak et al., 1992; Holt, 1992; Adler and Nuernberger, 1994). Previous attempts to 
model these aspects of metapopulation dynamics have relied largely on Monte Carlo simulations 
(Boyce, 1992; Burgman et al., 1993; Hanski and Thomas, 1994; Possingham et a!., 1994). Other 
approaches incorporating some form of heterogeneous spatial structure use an array of 
interlocking cells ( Pulliam eta!., 1992; Perry and Gonzalez-Andujar, 1993). These detailed 
models also involve simulation, especially if they include stochastic effects. Hanski (1994a; 
1994b) looks at presence-absence data for metapopulations and uses this to estimate probabilities 
of patch extinction and recolonisation. From these probabilities, he uses simulation to predict the 
future state of a metapopulation. 

Other authors develop and analyse dynamic metapopulation models which incorporate 
variation in patch sizes without resorting to simulation. Anderson (1991) considers a stochastic 
continuous time metapopulation model which explicitly models the size of each local population 
in a collection of variable sized patches. To ensure analytical tractability, Anderson's model does 
not include density dependence. Hanski and Gyllenberg (1993) allow continuous variation in 
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patch size using a partial differential equation model. Cantrell and Cosner (1994) look at the 
effects of patch size and geometry in a biogeographic context. 

Akçakaya and Ginzburg (1991) formulate a presence-absence transition matrix metapopulation 
model with distinct local extinction and recolonisation phases. They give details of this model for a 
two patch metapopulation and look at the effects of environmental correlation of local extinctions in a 
three patch metapopulation. Gyllenberg and Silvestrov (1994) also present a stochastic presence-
absence model which allows variation in patch size and spatial location of each patch. These models 
have similarities to the model we present here. However, the model we present has significant 
differences in presentation and formulation and in the methods of analysis. 

The extinction of a species involves elements of chance, so we feel it is important to include 
stochastic influences when modelling a metapopulation occupying a small number of patches. In a 
continuous state space model, the decision of whether to round up or down is crucial if a model 
predicts that 2.5 patches are occupied (Gilpin, 1992). If the number of occupied patches is large, such 
a decision has little effect on the predictions of the model. Here we use a discrete state space to 
address metapopulation extinction, thereby avoiding such rounding problems. 

In this paper, we describe and analyse a new stochastic presence-absence metapopulation 
model which allows for differences in size and quality of patches and incorporates the explicit 
spatial distribution of patches. The principal issues we address are: (i) estimating extinction 
probabilities and (ii) calculating the probability distribution function of the state of the system, 
given that the metapopulation is not extinct. We relax the assumption that all patches are 
identical. We focus our attention on presence-absence models, formulating a model with a 
discrete, finite state space because this allows us to avoid the mathematical and computational 
complications (Iwasa and Mochizuki, 1988) which arise from stochastic models which track the 
number of individuals in each patch. 

We apply our model to malleefowl, Leipoa ocellata, inhabiting fragments of habitat in the 
Bakara region, southern Australia. We consider an existing system of eight patches, where the 
patches range in size from 100 to 2700 hectares. For this metapopulation, we calculate extinction 
probabilities and the quasi-stationary distribution. We also examine the effect of patch removal 
on the metapopulation extinction probability. 

To illustrate the influence of variation in patch size, we analyse this same system assuming that 
all patches have the same area, but maintaining the same total area of habitat. We also explore the 
effect of explicit spatial structure, by analysing both of these systems with the additional assump-
tion that all patches are equally accessible. 

 
2. THE MODEL 
Consider a population that can inhabit a finite number of patches. Let the state of this metapopulation 
be described at discrete time points by the presence or absence of the species in each patch of habitat. 
The discrete time steps will often be annual, but may be chosen to suit the breeding cycle of the 
particular species being studied. A patch of habitat is considered to be occupied, at time t, if there are 
any individuals present in the patch. If there are no individuals present in a patch, it is considered to be 
empty. 

A discrete time frame, also suggested by Gilpin (1992), reflects the fact that for many species, 
the dispersal of juveniles, and hence the colonisation of empty patches, occurs only during a short 
time period following the breeding season. Extinction of occupied patches is assumed only to 
occur in the longer time periods between dispersal. Separation of the local extinction and 
colonisation phases in time has been suggested by several authors (Akçakaya and Ginzburg, 1991; 
Hansson, 1991; Sabelis et al., 1991; Burgman et al., 1993). 

If the time step is annual, the repeating cycle is census-extinction-colonisation-census- … The 
timing of the census, taking place just after the colonisation phase, is arbitrary and could equally 
well have been taken just before the colonisation phase (Akçakaya and Ginzburg, 1991). This 
choice of discrete time frame suggests that the number of patches occupied is likely to first 
decrease and then increase between each time step. Hence the choice of census time determines 
whether the local peaks or local troughs are sampled, but has no influence on the overall 
metapopulation dynamics. 

Assume that the system under study has n patches of suitable habitat, numbered from 1 to n. Let 
the state of the system at any given time, t, be the set of patches which are occupied at time t. We 
represent this by an n-dimensional vector u(t) = (u1 (t ), u2,(t ), ..., un (t) ), where the components 
are zero-one variables, ui,( t )Є{0, 1}. If ui,( t )  = 0 then patch i is empty at time t and if ui,( t )  = 1 
then patch i is occupied at time t. The zero vector, 0 = (0, 0, ..., 0), represents extinction of the 
metapopulation. As each of the n patches can be in one of 2 different states, the system has 2n 
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possible states. It may be useful to order these states in some logical fashion and index them by 
the integers from 1 to 2 n, although the exact details are not important. 

For a stochastic model, we need to assign probabilities that the system is in each of the 2n 
possible states at any particular time. This requires a 2n -dimensional state probability vector, w(t), 
where the entry wj(t) represents the probability of being in state j at time t. As w(t) is a probability 
vector, its elements sum to one,  

For example, a two patch system has four possible states, (0, 0), (1, 0), (0, 1), and (1, 1) with 
corresponding state indices 1 to 4. The state probability vector (0, 0, 0, 1) represents the system 
being in state 4, the state with both patches occupied. If the state probability vector is (0.05, 0.25, 
0.2, 0.5) then the metapopulation has probabilities 0.05, 0.25, 0.2, and 0.5 of being in states (0, 0), 
(1, 0), (0, 1), and (1, 1), respectively. 
 
2.1. Transition Matrix 

To understand the dynamics of the system, we need to construct a matrix, Tn, which contains 
the transition probabilities of moving from any state to any other state of the system. This matrix 
has dimension (2n × 2n) and is indexed by the states of the system. Hence, if the state probability 
vector w(t) represents the probabilities of being in each of the possible states of the 
metapopulation at time t, then these same probabilities at the next time step, time (t + 1), are 
given by the entries in w(t + 1), where 

w(t+ l)=w(t) Tn. 
 

Assuming that the matrix Tn does not vary with time, the state probability vector of the system at 
time (t + k) is 
 

w(t + k) = w((t + k–1) Tn = (w(t + k –2) Tn) Tn = … = w(t)(Tn)k
. 

 
The matrix of one step transition probabilities, Tn, can be constructed in terms of the individual 
patch extinction and colonisation probabilities. 

We form the matrix Tn by first constructing two transition matrices, corresponding respectively 
to the extinction and colonisation processes, and then multiplying these two matrices together. 
This corresponds to our assumption that extinction and colonisation events occur successively in 
the annual cycle. 

 
2.2. The Extinction Transition Matrix 

The extinction transition matrix, En, has dimension (2n × 2n) and the entries represent the 
probabilities of transitions from any state in the system to any other state through extinction 
alone. Single step transition probabilities in the extinction matrix are nonzero only if they 
represent transitions from state u to state v where the occupied patches in state v are a subset of 
the occupied patches in state u, and hence the set of occupied patches either decreases or remains 
the same. 

To construct the extinction matrix, the annual extinction probabilities, ai for each patch, i, need 
to be estimated. These extinction probabilities will depend on the species concerned, properties of 
the patch (e.g., area, habitat quality and boundary length), and stochastic population processes 
like catastrophes, demography, and environmental variability. 

As matrix En contains only extinction probabilities, any entry corresponding to a transition from one 
state to another which requires colonisation must be zero. If no patch colonisation is required to move 
from state u to v, then the entry of matrix En corresponding to this transition is given by the product 

 

 
 

where the function I 1 (u k,  v k) ,  the probability that patch k goes extinct in a transition from state u 
to state v, is 
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These nonzero matrix entries, euv, are just products of probabilities that the appropriate occupied 
patches either remain occupied, (1 – a k)  terms, or become extinct, a k terms, in the next time 
interval. 

For example in a two patch system with state indices 1 to 4 corresponding to states (0, 0), (1, 0), 
(0, 1), and (1, 1), the extinction matrix is given by 
 

 
 

This formulation assumes that patch extinction is independent of both the state of neighbouring 
patches and of simultaneous local extinctions of patches. Akçakaya and Ginzburg (1991) 
formulate a local extinction matrix which allows patch extinctions to be correlated. This feature 
can be incorporated in this model but this is not done here. 
 

The rescue effect. Brown and Kodric-Brown (1977) suggest that migration of individuals into 
struggling local populations may produce a reduction in the local extinction rate. The magnitude 
of this reduction, or "rescue effect," will vary with the number of immigrants arriving at a patch. 
In our model, the number of immigrants depends on the number of occupied patches and their 
proximity to the patch of interest. 

It is possible to incorporate state dependent local extinction probabilities into our model by making 
the local population extinction probabilities vary with the number of occupied patches. Unless the 
migration rate is very high, the relative decrease in extinction rate due to the rescue effect will be very 
small. In this model, the probability of colonisation of an empty patch depends on the number of 
occupied patches and their proximity to this empty patch. Hence a patch which is likely to be affected 
by the rescue effect will have a relatively high probability of being recolonised. We choose not to 
incorporate a rescue effect in the presentation of this model. 
 
2.3. The Colonisation Transition Matrix 

Next we need to find or estimate annual colonisation probabilities bij, the conditional 
probability that patch j is colonised from patch i in one time period, given that initially patch i is 
occupied and patch j is empty. This may be a complicated function incorporating the distance 
between patches, patch quality, patch size, and asymmetric migration rates. If patch j is empty, it 
may be colonised by propagules sent from any of the occupied patches. 

To construct the full (2n × 2n) colonisation matrix, Cn, we first form an intermediate matrix Dn, 
of size (2n × n). The entries of this matrix, duj, represent the probability that patch j is colonised 
from at least one of the occupied patches in state u. If uj = 1, then patch j is one of the occupied 
patches in state u, and colonisation is not possible, and hence the corresponding matrix entry 
must be zero. The nonzero entries of matrix, Dn, are 

 

 
 

where the function I2(uk, j), the probability that patch j is not colonised from patch k, is 
 

 
 
 
These nonzero matrix entries, duj, are calculated by finding the probability that patch j is not 
colonised by any of the occupied patches in state u and subtracting this probability from 1. 

The entries of matrix Dn are used to construct the (2n × 2n) colonisation matrix, Cn, which gives 
the probabilities of transitions from any state in the system to any other state, through 
colonisation alone. Single step colonisation probabilities are nonzero only if they represent 
transitions from state u to state v where the occupied patches in state u form a subset of the 
occupied patches in state v, so that the set of occupied patches increases or remains the same. All 
transitions corresponding to local extinction of patches must be zero. 
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The nonzero entries of matrix C are 
 
 

 
 
where the function I3(uk, vk), the probability of patch k being colonised in a transition from state 
u to state v, is 

 
 

To illustrate these matrices, consider a two patch system again with state indices I to 4 
corresponding to states (0, 0), (1, 0), (0, 1), and (1, 1). With the same notation as above, the 
colonisation matrices D2 and C2 are 

 
 
 
 
 
  

and 
 

 
 
 

From the entries in matrix D2, matrix C2 , can be written directly in terms of the colonisation 
probabilities bij as 
 

 
 
 

In a three patch system, the matrices D3 and C3 are more complicated, with colonisation 
possible from more than one patch in some cases. For the three patch system, matrix D3 is 
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where bij are the colonisation probabilities. The corresponding (8 × 8) matrix, C3, can be 
constructed from D3 as outlined above and is given in full in the Appendix. 

Once the matrices En and Cn have been constructed, the one step transition matrix, Tn, is given by 
the matrix product, Tn = En Cn. For the case with two local populations, the full transition matrix, 
T2 is given in terms of the extinction and colonisation probabilities, ai and bij in the Appendix. 
Although the matrices En and Cn are sparse, in general there will be relatively few zeroes in Tn. 
Clearly the model allows multiple events to occur in one time period. There is a positive 
probability that several occupied patches may become extinct and several empty patches may be 
recolonised in one time step. 

 
3.  MODEL ANALYSIS 
In this section, we discuss methods for exploring metapopulation dynamics, using the transition 
matrix, Tn. 

The m step transition matrix can be found by raising the matrix Tn to the power of m,(Tn)m. 
Hence, for any given number of time steps, m, and any initial state probability vector, w(0), it is 
possible to find the complete probability distribution, w(m). This gives the probability of being in 
each of the 2n states, which may be difficult to analyse directly for a system with more than two or 
three patches. 

It is possible to extract more manageable information from this probability distribution. After m 
time steps the probability that the metapopulation is extinct is simply the probability of being in the 
zero state, 0 = (0, 0, ..., 0), which is given by the first component of w(m). 

The probability that patch r is occupied at time m can be obtained by summing the components 
of the state probability vector corresponding to the appropriate states. If the set S1 is the set of all 
states with patch r occupied, then this sum can be written as 
 

 
 

Similarly, if S2 is the set of all states with exactly s patches occupied, then the probability that 
exactly s patches are occupied is 
 

 
 

The mean number of patches occupied at time m can be calculated from these probabilities. 
 
3.1. Quasi-Stationary Distributions 

Many models predict only the mean time to extinction of a population (MacArthur and Wilson, 
1967; Richter-Dyn and Goel, 1972; Ludwig, 1976; Leigh, 1981; Wright and Hubbel, 1983; 
Brockwell, 1985; Goodman, 1987; Lande, 1993; Mangel and Tier, 1993; Foley, 1994) and do not 
make predictions about the system before it reaches extinction. Further, the time to extinction may 
not have a known distribution, so describing the system by the mean time to extinction can be 
misleading. For any Markov chain with a single absorption state, extinction in this case, it is 
possible to calculate the probability of being in any particular state conditioned on nonabsorption. 
The long-term limits of these conditional probabilities is known as the quasi-stationary 
distribution (Darroch and Seneta, 1965; Gilpin and Taylor, 1994). 

Consider the transition matrix of the truncated Markov process, limited to the transient states. In 
our case, this is a reduced matrix, R, of dimension (2n – 1) × (2n –1), obtained from matrix T by 
deleting the first row and first column. Darroch and Seneta (1965) show that the left eigenvector 
corresponding to the maximal eigenvalue, p1, of matrix R is a quasi-stationary measure and hence 
normalisation of this eigenvector gives the quasi-stationary distribution. 
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The quasi-stationary distribution is useful only if movement from any initial state towards the 

quasi-stationary distribution is much more rapid than the movement of the process towards 
absorption, and also if the movement towards absorption is slow. It is possible to find the decay 
parameter, which indicates the rate of movement of the process from the quasi-stationary state 
towards absorption. This parameter is a long-term rate, describing movement of the process from 
this "averaged" quasi-stationary state, where there are particular probabilities of being in each of 
the states, towards extinction. The probability of extinction from any particular state is best found 
from the k-step transition matrix, Tk, as indicated above. 

The decay parameter, p1, is the maximal eigenvalue of the matrix R, and it can be shown that p1 
is always strictly less than one. The transition probabilities between any two states over a time 
interval, t, will decay at a rate proportional to exp((p1 – 1) t). The decay parameter cannot be com-
pared directly to the probability of extinction, as the constant of proportionality will change with 
different systems and for different initial conditions. However, the closer p1 is to one, the longer 
the process is likely to continue before reaching absorption. 

Darroch and Seneta ( 1965) show that the rate at which the process approaches the quasi-
stationary state will depend on the ratio |p2|/ p1,  where p2  is the second largest eigenvalue, in 
absolute size, of matrix R. Convergence to the quasi-stationary distribution will be fast if this 
ratio is small. 

Gyllenberg and Silvestrov (1994) also formulate a transition matrix giving probabilities of 
transitions between states based on local extinction and colonisation probabilities. In their model, 
both local extinctions and colonisations occur between each time step, but the order of these 
events is not specified. In contrast, in our model the two processes of local extinction and 
colonisation occur at different phases of the breeding cycle and hence cannot occur 
simultaneously. This leads to differences in the two formulations. 

Gyllenberg and Silvestrov (1994) calculate conditional stationary distributions for their 
transition matrix. These conditional stationary distributions appear not to correspond to the quasi-
stationary distribution described above. Accordingly, Gyllenberg and Silvestrov (1994) use dif-
ferent techniques to find the conditional stationary distributions, compared to the methods we use 
to calculate the quasi-stationary distribution. In this paper, we detail a straightforward procedure 
for obtaining the quasi-stationary distributions and extinction probabilities, using established 
techniques (Darroch and Seneta, 1965; Gilpin and Taylor, 1994). 
 
4.  APPLICATION 
To illustrate the use of the model, we explore the metapopulation dynamics of malleefowl 
(Leipoa ocellata) in a 40,000 hectare region. This allows us to answer various questions about 
the viability of this population, and patch occupancy probabilities, under different management 
scenarios. 

We also look at some theoretical questions, exploring the effects of explicit spatial structure 
and variation of patch sizes. This allows us to assess the relative importance of some of the key 
assumptions of our model. 

In the Bakara region of South Australia there is an area of eight isolated patches of mallee, see 
Figure 1. These patches of suitable habitat are separated by cleared agricultural land which is not 
suitable for malleefowl to live and breed. The patches range in size from 100 to 2700 hectares. 

Measuring patch extinction probabilities in the field would require many years of data collection. 
We initially used the population viability analysis package ALEX (Possingham et al., 1992) to 
estimate the annual patch extinction probabilities for each patch in isolation. ALEX tracks the number 
of individuals in a patch, and, with appropriate life history parameters, enables estimation of the per 
patch extinction probability as a function of patch area, through Monte Carlo simulation. 

Such simulation produces some variability in the estimates of extinction. To avoid spurious 
results which may result from slight errors in these estimates of the extinction probabilities for a 
patch of a given area, we smoothed out these extinction probabilities, assuming that the extinction 
probability was only a function of patch area. Using a simple extinction function is useful to 
illustrate the model and also to explore the effects of variation of patch size on metapopulation 
extinction and patch occupancy. Any alternative method to estimate these extinction probabilities 
could be used. 
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Figure 1.  Size and position of suitable habitat patches for malleefowl in the Bakara region. 
 
 

TABLE I. 
Size, coordinates, and annual extinction probabilities for each of the eight patches. 

 

 
 
To calculate the annual extinction probabilities ai, for patch i with area Ai, we use 
 

ai = 13/ Ai. 
 

This function gives patch extinction probabilities which closely match those obtained using 
ALEX and is a form similar to that used by Hanski (1994b). Table 1 summarises information 
about the size and position of the patches and lists the extinction probabilities used. 

The probability that an empty patch is colonised from any particular occupied patch is not well 
known empirically for this species, so we assume a colonisation function based on the distance, 
d, between any two patches. Following Gilpin and Diamond (1976), we assume that the 
colonisation probability, bij between patches i and j is 

 
bij = 0.005e–l/5√d

ij
 

 
The factor of 0.005 is chosen arbitrarily for the purposes of illustrating this model. The distance, 
dij, is the distance from the centre of patch i to the centre of patch j. 

Using this information, we constructed the 256 x 256 transition matrix, T, for this system of 
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eight patches and we calculated the quasi-stationary distribution. We used the NAG routine 
F02AGF, on the truncated matrix, to calculate the appropriate eigenvalues and eigenvector. 

The quasi-stationary distribution gives a complete probability distribution for each of the 511 
nonzero states for this particular example. This quasi-stationary distribution is somewhat unwieldy. 
However, in similar fashion to the summaries for the full probability distribution, the quasi-stationary 
distribution can be summarised by calculating the probability distribution of having any particular 
number of patches occupied, or, more usefully, the probability that any particular patch is occupied 
given that the metapopulation is not extinct. 

 
5.  RESULTS AND DISCUSSION 
The same system can be analysed assuming that this particular region had been cleared 
differently, leaving the same total area of native vegetation, but with each patch having equal 
area, 775 hectares. As colonisation probabilities are expressed as functions only of the distance 
between pairs of patches and are independent of patch area in this formulation, this change alters 
only the extinction matrix, E. Redistributing the total area equally among all patches may change 
the minimum distance between pairs of patches. However, colonisation probabilities are functions 
of the distance between centres of patches, so this change in patch size does not alter the 
modelled explicit spatial arrangement of the patches. 

To investigate the importance of explicit spatial structure, we constructed two more transition 
matrices, one each for the variable and the equal sized patch systems, with the extra assumption 
that colonisation from one patch to another was equally likely, regardless of the actual distance 
between patches. This is equivalent to the assumption that all patches are pairwise equidistant. 
This assumption is common to many metapopulation models, but is impossible to physically 
arrange in a two dimensional landscape. We chose the distance to maintain the same mean 
distance between pairs of patches as found in the system in Figure 1. This gives an interpatch 
distance of about 9.7 km. 

By setting the recolonisation probabilities to zero, it is also possible to look at the effect of 
recolonisation on the metapopulation extinction probabilities of this system, both in the system 
where the patches have variable sizes, and for the case where all patches have equal area. This 
assumes that the eight patches are completely isolated from one another. Quasi-stationary 
distributions cannot be calculated in this case because some nonzero states are not accessible 
from others in this system. Extinction probabilities were calculated for this system and compared 
to systems with recolonisation. 
 
5.1. Extinction Probabilities 

Table II shows the 100-year extinction probabilities for six different scenarios, assuming that 
all patches are initially occupied. Patches can either be all the same size or vary according to the 
patch areas given in Table I. Recolonisation can vary according to the distance between patches, 
occur with equal probability between any two patches, or be non-existent. 

For this particular arrangement of patches, variation in size of patches has a much larger effect 
on the extinction probability than the particular spatial structure of the system. In both cases with 
migration between patches, the extinction rate is marginally reduced by relaxing the assumption 
that all patches are equally accessible. There is a significant reduction in the metapopulation 
extinction probability in the system with equal-sized patches compared to the system with 
variable-sized patches. 

This reduction in extinction rate with equal-sized patches will depend on the parameters and 
geometry of the particular system and will not hold in general. To illustrate this, consider the same 
systems with the additional restriction that no migration is allowed between patches. This gives 
two systems, each with eight independent patches. For this case with no migration, there is an 
increase in the 100-year extinction probability when the system with variable-sized patches is 
compared to the system with equal-sized patches. 

This suggests that if patch extinction rates can be represented by a simple function of patch 
area, then with low colonisation rates, patch size variation reduces metapopulation extinction 
probabilities. In contrast, for high colonisation rates, patch size variation increases metapopulation 
extinction probabilities. 

The difference in extinction probabilities between systems with and without migration gives an 
indication of the importance of the recolonisation of patches to the persistence of a 
metapopulation. For this example, positive colonisation probabilities result in a decrease of more 
than 50% in the 100-year extinction probability, compared to similar systems with no migration. 
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TABLE II 
100-Year Extinction Probabilities, Expressed as Percentages, 

for the Six Scenarios Analysed 
 

Variable patch size   Equal patch size 
 

Spatial structure 10.98 7.27 
Equal access 11.02 7.42 
No migration 17.69 19.62 

 
 
 
5.2. Patch Occupancy 

Consider initially the system with variable-sized patches and variable distances between patches, 
with colonisation probabilities depending on the interpatch distances, Figure 1. The patch occupancy 
probabilities for this system are summarised in Figure 2, where the quasi-stationary probability of 
occupancy has been plotted against a log scale of the size of the patch. Clearly, large patches are more 
likely to be occupied than small patches in the quasi-stationary state. 
 

 
Figure 2. Patch occupation probabilities-quasi-stationary probability of patches of particular sizes being 
occupied. Scenario with variable-sized patches and variable interpatch distances. 
 
The effects of spatial structure on patch occupancy can be seen in Figure 2. The differences in 
patch occupancy of the two pairs of equal-sized patches reflect the differing isolation of these 
pairs of patches. In each case, when two patches are the same size, the more isolated patch is less 
likely to be occupied, with the relative differences in patch occupancy being around 8% in each 
case. It would take a very large number of simulations to show a statistically significant 
difference between the occupancies of these equal-sized patch pairs using a Monte Carlo 
simulation model, especially for the 100-hectare patches which have patch occupancy 
probabilities less than 0.05. 
 

 
 
Figure 3. Patch occupation probabilities – quasi-staionary probability of patches of particular sizes being 
occupied. Scenario with variable-sized patches and all patches pairwise equidistant. 
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If the explicit spatial arrangement is removed, and the patches are all assumed to be pairwise 
equidistant, the quasi-stationary distribution gives patch occupancies that depend only on patch 
areas, Figure 3. A comparison of the patch occupancies under these two scenarios highlights the 
influence of the position of patches on the quasi-stationary patch occupancy. 

The 550-hectare patch 4 has the largest decrease in patch occupancy, due to losing the 
favourable central location, with a relative decrease in patch occupancy of 7%. The 100-hectare 
patch 2 has the second smallest mean interpatch distance in Figure 1, and this is reflected in the 
second largest relative decrease in patch occupancy of around 6 %. The 400-hectare patch 8 has a 
relative increase in patch occupancy of 5%, reflecting the isolation of this patch in the spatially 
structured system. All other patch occupancies change by less than 3%. Removing the explicit 
spatial structure alters the patch occupancy probabilities to line with the relative isolation of the 
patches. 

Now consider the cases where all patches have the same size, 775-hectares. Figure 4 shows the 
quasi-stationary patch occupancy where each patch retains its position. The maximum relative 
variation in patch occupancy is approximately 10%, and this difference is solely due to the 
differences to isolation of these equal-sized patches 

With equal sized patches, patch 4 has the highest patch occupancy. This is the most central 
patch, with the smallest mean distance to other patches. The most isolated patch, patch 8, has the 
lowest patch occupancy. The mean patch occupancy is higher in this system than in the variable 
patch size systems, which have a mean patch occupancy of around 0.25. In the spatially structured 
system, the 750-hectare patch 3, which has almost the same area as each of the 775-hectare equal-
sized patches, has a quasi-stationary patch occupancy of 0.24. This probability of occupancy is 
significantly lower than the system with equal-sized patches. 

 

 
 

Figure 4. Patch occupation probabilities-quasi-stationary probability of patches of particular sizes being 
occupied. Scenarios with equal-sized patches. 

 
If all patches have equal size and are pairwise equidistant, they all have the same quasi-

stationary patch occupancy of 0.322. This patch occupancy is indicated in Figure 4 by the dotted 
line. For systems with equal sized patches, spatial structure appears to give higher mean 
probability of patch occupancy. 

For a given total area, it seems that mean patch occupancy is higher in a system with equal-
sized patches compared to a system with variable-sized patches. Most metapopulations do not 
have equal sized patches. These results suggest that it is important to explicitly model variation in 
patch size. 
 
5.3. Patch Removal 

For each of the scenarios, we now examine the effect of removal of patches from the system, 
reflecting the effect of habitat destruction on the probability of extinction. We remove each patch, 
in turn, and calculate the 100-year extinction probabilities for each of the remaining seven patch 
systems. 
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Figure 5. Extinction probabilities-effect of removing various patches. These extinction probabilities are 
calculated for a 100-year period with all patches initially occupied. Scenario with variable-sized patches and 
variable interpatch distances. 
 

For the system with variable-sized patches and variable interpatch distances, these extinction 
probabilities are plotted against the area of the patch removed, again using a log scale for the area 
of each patch. Figure 5 shows these probabilities, with the dotted line enabling comparison to the 
extinction probability for the full eight patch system. 

The differences in extinction probability from removing each patch, from a pair of equal-sized 
patches, illustrate the effects of isolation on the importance of a patch to the long-term viability of 
the metapopulation. The degree of isolation of the two 100-hectare patches has a very small 
impact on the change in the overall 100-year extinction probability. This reflects the fact that 
smaller patches have little influence on the overall extinction probability, due to their relatively 
low occupancy probabilities. Hence, for these particular patches, the effect of patch isolation is 
minimal in determining the contribution to metapopulation persistence. These comments also 
apply to the two 400-hectare patches, though to a somewhat lesser extent. 

The spatial position of the patches has a very minor effect on changes to the metapopulation 
extinction probability due to the removal of individual patches from the system. Figure 6 shows 
the same information as shown in Figure 5, except that the probabilities plotted are for a system 
with pairwise equidistant patches. Once again, the dotted line indicates the 100-year extinction 
probability for the full eight patch system. The 100-year extinction probability for each of the 
seven patch systems is plotted against the area of the patch removed. 

The relative differences in the metapopulation extinction probabilities, due to the removal of 
identical patches, between the spatially structured and unstructured systems are very small. The largest 
relative change is a 1 % decrease in extinction probability when patch 4 is removed from the 
equidistant patch system, compared to removal of the same patch from the spatially structured system. 
The 550-hectare patch 4 is the most central patch in the spatially structured system, so this result is not 
surprising. Both the probability of patch occupancy and the effect of removal of this patch on the 
extinction probability indicate the importance of central patch location in a spatially structured model. 
Note the similarities in the shape of the curves in Figs. 3 and 6. 

 

 
Figure 6. Extinction probabilities-effect of removing various patches. These extinction probabilities are calculated for 
a 100-year period with all patches initially occupied. Scenario with variable-sized patches and all patches pairwise 
equidistant. 

For the systems where all patches have the same area, the 100-year extinction probability for a 
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seven patch system is increased by at least 50% compared to the similar eight patch system. For 
the spatially structured system with equal sized patches, the 100-year extinction probabilities, for 
the seven patch system, plotted against patch number of the patch removed, are shown in Figure 7. 
For comparison, the dotted line shows the extinction probability for a seven patch system with 
equal-sized patches which are pairwise equidistant. 

In both these systems, removing one patch results in an increase in 100-year extinction 
probability of at least 50% compared to the 100-year extinction probability for an eight patch 
system. For a seven patch system with all patches pairwise equidistant, all patches of equal size 
and no migration, the 100-year extinction probability is 24.05%. 

It is interesting to note that the quasi-stationary probability that a patch is occupied is closely 
related, in a relative sense, to the increase in metapopulation extinction probability from removing 
that patch. In these examples, a ranking of patches in terms of occupancy is identical to a ranking 
of patches in terms of the increase in metapopulation extinction probability from removing that 
patch. This result holds for systems with variable-sized patches and for systems with no variability 
in patch size. This suggests that, in some circumstances, the quasi-stationary probability of 
occupancy is a good measure of the importance of a patch for metapopulation persistence. 

 

 
 

Figure 7. Extinction probabilities-effect of removing various patches. These extinction probabilities are 
calculated for a 100-year period with all patches initially occupied. Scenario with equal-sized patches. 

 
The decay parameter for the full eight patch system is p1 = 0.99625, suggesting that we can 

expect the time until extinction of the metapopulation to be large. Hence the quasi-stationary 
distribution is of great interest. 
 
5.4. Comparison with other Patch Occupancy Models 
Hanski (1994b) uses patch occupancy data to estimate extinction and recolonisation rates for a 
metapopulation. This "incidence function" approach depends on the metapopulation being at a 
quasi-stationary equilibrium, at the time when data is collected on patch occupancy, and is suitable 
only for systems with large numbers of patches. Hanski does allow variation in patch size and, to 
some extent, allows patch dynamics to depend on isolation. He suggests that recolonisation rates 
may vary, depending on occupancy of adjacent patches, and also assumes that isolation of a given 
patch is independent of the occupancy of neighbouring patches. This work is based on the 
assumption that each patch will have fixed extinction and colonisation rates. 

Acknowledging these modelling differences, it is possible to incorporate our extinction rates 
and colonisation rates into Hanski's model, to see if his incidence function will predict the same 
patch occupancy as we obtained. 

As colonisation probabilities in our model are state dependent, we weighted them according to 
the quasi-stationary probability that each patch providing migrants was occupied and summed 
these weighted patch colonisation probabilities. For patch i, this gives an averaged colonisation 
probability, ri. According to Hanski's incidence function, the probability of patch i being occupied, 
ji, is given by 

 

 
 
where ai is the extinction probability for patch i. 
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Figure 8. Patch occupancy comparison of predictions from two models. The quasi-stationary patch occupancy 
probabilities ( × ) and patch occupancy probabilities predicted by Hanski's model ( + ) are plotted against the area of 
the patches. 
 

The quasi-stationary patch occupancy probabilities are shown in Figure 2. To compare these 
probabilities with Hanski's incidence function approach, both sets of patch occupancy probabilities 
are plotted on the same axes in Figure 8. 

The predicted patch occupancies from Hanski's model are all lower than the true quasi-
stationary patch occupancies. The biggest relative difference is a 50% reduction in the patch 
occupancy prediction for patch 1, the largest patch. For the other patches, the relative differences 
in predicted patch occupancy between the two models decreases with area, ranging from a 
decrease of 24% for the 1200-hectare patch 7 to less than 1 % for the two 100-hectare patches. 

Hanski's model excludes the possibility of metapopulation extinction and assumes there is no 
variation in patch colonisation rate, because his patch colonisation rate does not depend on the 
state of the system. Constant colonisation rates have two consequences for our model, preventing 
extinction and reducing patch occupancy probabilities when large numbers of patches are 
occupied. In our model, if the patch colonisation rate is low, due to a small number of patches 
being occupied, it is likely that the metapopulation will become extinct in the near future. If there 
are a large number of patches occupied, colonisation rates will be higher than the averaged 
colonisation rates used above. 

The quasi-stationary patch occupancies are calculated with the assumption that the 
metapopulation has not yet become extinct and hence are biased against small numbers of patches 
being occupied. Hence, we believe that in general the quasi-stationary patch occupancies will be 
higher than the patch occupancies predicted by Hanski's model, especially for large patches. 
Hanski's model underestimates patch occupancy for the malleefowl metapopulation in the Bakara 
region. 

Hanski (1994b) incorporates a rescue effect into his patch occupancy function. This variation 
on the previous incidence function gives a probability of patch occupancy, 

 

 
 

for patch i. With the same values for ri and ai, the patch occupancy probabilities obtained from 
this new incidence function all changed by less than 1% compared to the patch occupancy 
probabilities given by the previous incidence function. Using Hanski's models for the Bakara 
malleefowl metapopulation, the rescue effect makes very little difference to patch occupancy 
predictions. 
 
6.  CONCLUSION 

We present a metapopulation model which can demonstrate analytically the effects of different 
patch sizes and various spatial arrangements of patches. We use this model to calculate 
metapopulation extinction probabilities. We also use the model to predict the probability that a 
particular patch is occupied, either directly from the state probability vector at some given time, 
or by using the quasi-stationary probability distribution. This distribution can be tested 
empirically. Most other stochastic models predict only the expected time to extinction, which is 
difficult to test empirically given the large number of populations which would have to be 
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followed to extinction. 
For a particular patch structure, once the transition probabilities have been found, our model 

gives exact analytical results. Rather than having to run Monte Carlo simulations many times to 
estimate probabilities of extinction and patch occupancy, these probabilities can be calculated 
exactly (Gilpin and Taylor, 1994). Estimating accurate probabilities for rare events using 
simulation requires a very large number of simulations and can be subject to significant error. 
The exact results obtained from our model enable direct comparison between the effects of 
removing different patches. Hence we can rank the various patches in order of their significance 
for the likely survival of the metapopulation. This ranking appears to be strongly correlated with 
the probability of patch occupancy. 

For the malleefowl metapopulation in the Bakara region, modelling variation in patch sizes appears 
to have more impact on the metapopulation dynamics than modelling the explicit spatial position of 
each patch. Using the same colonisation and extinction rates, our model produces different patch 
occupancy predictions than Hanski (1994b), especially for large patch sizes. 

Other authors (Akçakaya and Ginzburg, 1991; Gyllenberg and Slvestrov, 1994) also recognise the 
importance of using a stochastic model with a discrete state space. Gyllenberg and Silvestrov (1994) 
calculate conditional stationary distributions for three different systems, each consisting of three 
patches, and concentrate on searching for a bimodal distribution of the number of patches occupied. 

The assumption that local populations dynamics are not important and can be modelled as being 
either present or absent is the weakest feature of the model we present here. However, ignoring the 
internal patch dynamics does reduce the number of parameters required and restricts the state space 
to a size which is manageable. 

A further limitation of these models is that they cannot be used to explore systems with large 
numbers of patches. As the number of patches increases, computer storage requirements for the 
transition matrix, Tn, increase geometrically, as does the computer time required for matrix 
multiplication. Finding the eigenvectors of high dimension matrices is more difficult com-
putationally than matrix multiplication and requires large amounts of computer time and memory 
(Gilpin and Taylor, 1994). Hence, without writing special software, calculating quasi-stationary 
distributions for systems with more than nine patches is not feasible. Calculating extinction 
probabilities over k time periods is possible for slightly larger systems, however, although it 
becomes more expensive computationally as the dimension of the system increases. These problems 
may be reduced with continued improvements in the speed and memory capabilities of computer 
systems. 

Accurately measuring or estimating the parameters for this model is one of the biggest challenges 
(Akçakaya and Ginzburg, 1991; Dennis et al., 1991; Conroy et al., 1995). Understanding the 
colonisation and local extinction processes for real situations can be difficult. A number of detailed 
simulation models are available which can be used to estimate these parameters, including ALEX 
(Possingham et al., 1992), RAMAS/Space (Akçakaya and Ferson, 1992) and VORTEX (Lacy, 1993). 
If the local extinction and colonisation parameters can be estimated, or measured, and the parameters 
for our model obtained, the real distribution of organisms can be compared with the patch occupancy 
probabilities predicted by the model. Unlike existing metapopulation models, this model is useful for 
examining the combined effects of patch size and isolation, for examining the influence of particular 
patches, and for investigating how different spatial arrangements of suitable habitat patches will 
influence population viability. 
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APPENDIX 
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