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Abstract. One of our greatest challenges as researchers is predicting impacts of land
use on biota, and predicting the impact of livestock grazing on birds is no exception.
Insufficient data and poor survey design often yield results that are not statistically sig-
nificant or that are difficult to interpret because researchers cannot disentangle the effects
of grazing from other disturbances. This has resulted in few publications on the impact of
grazing on birds alone.

Ecologists with extensive experience in bird ecology in grazed landscapes could inform
an analysis when time and monetary constraints limit the amount of data that can be
collected. Using responses from 20 well-recognized ecologists throughout Australia, we
captured this expert knowledge and incorporated it into a statistical model using Bayesian
methods. Although relatively new to ecology, Bayesian methods allow straightforward
probability statements to be made about specific models or scenarios and the integration
of different types of information, including scientific judgment, while formally accom-
modating and incorporating the uncertainty in the information provided.

Data on bird density were collected across three broad levels of grazing (no/low, mod-
erate, and high) typical of subtropical Australia. These field data were used in conjunction
with expert data to produce estimates of species persistence under grazing. The addition
of expert data through priors in our model strengthened results under at least one grazing
level for all but one bird species examined. When experts were in agreement credible
intervals were tightened substantially, whereas, when experts were in disagreement, results
were similar to those evaluated in the absence of expert information. In fields where there
is extensive expert knowledge, yet little published data, the use of expert information as
priors for ecological models is a cost-effective way of making more confident predictions
about the effect of management on biodiversity.

Key words: elicitation; excess zeros; livestock grazing; Markov Chain Monte Carlo; mixture
model; multiple experts; two-component model; WinBUGS; woodland bird conservation; zero-inflation.

INTRODUCTION

Livestock grazing affects more land in Australia, and
on most continents, than any other form of land use
(NLWA 2002). While a great deal of research on bird
abundance has focused on the removal of woody veg-
etation, little has considered the impact of grazing on
the understorey in the absence of changes in the tree
layer (e.g., Sedgwick and Knopf 1987, Woinarski and
Ash 2002, James 2003). One of the challenges with
determining the subtle impacts of grazing on highly
variable measures like bird abundance is lack of power
(Toft and Shea 1983, Osenberg et al. 1994).

The process of eliciting information from experts and
incorporating it into models to enhance their explan-
atory and predictive power is a topic of ongoing interest
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(Kadane and Wolfson 1998, O’Hagan 1998). In ecol-
ogy, the Delphi method (Delbecq et al. 1975) and its
variants is frequently applied (e.g., McIntyre et al.
2000). Recently, expert knowledge has been used in
habitat modeling (Pearce et al. 2001, Yamada et al.
2003), landscape planning (Lawrence et al. 1997, Kan-
gas et al. 2000, Musacchio and Coulson 2001), and to
characterize areas of (dis)agreement in plant response
to disturbance (Iglesias and Kothmann 1998). Expert
judgment is used in these studies through summary
statistics describing trends across different scenarios.

While Bayesian methods are gaining use in ecology
and conservation biology (e.g., Gazey and Staley 1986,
McCarthy et al. 2001, Mac Nally et al. 2002, O’Hara
et al. 2002, Dorazio and Johnson 2003), elicitation and
models that incorporate expert information through pri-
ors have been underutilized (Carpenter 2002). One ex-
ception is the work by Crome et al. (1996), which dem-
onstrates how expert beliefs on the effects of logging
could be incorporated as informative priors in a Bayes-
ian model to assess the impacts on birds and mammals.
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TABLE 1. Three treatment levels of grazing examined.

No. Grazing intensity Location Description

1 low/no grazing exclosures, stock routes land use indicative of a history of no, little, or infre-
quent grazing; grass swards are intact

2 moderate grazing pasture large tussock grass structure present, indicating selec-
tive grazing

3 high grazing pasture closely cropped, lawn-like areas indicating nonselective
grazing

Solving inference and decision-making problems un-
der conditions of uncertainty is integral to ecological
modeling. Bayesian inference can accommodate un-
certainty from all stages of modeling and decision mak-
ing (Ghazoul and McAllister 2003, Marin et al. 2003).
Through Bayesian modeling, straightforward proba-
bility statements can be made about specific models or
scenarios and they allow the integration of different
types of information from a variety of sources, reflect-
ing scientific judgment as well as existing empirical
data (Ellison 1996, Ghazoul and McAllister 2003).

In contrast, the interpretation of frequentist null hy-
pothesis testing requires complicated logic, resulting
in regular misinterpretation of the results and gener-
ating debate over its use (Carver 1978, Dennis 1996,
Ludwig 1996, Germano 1999, Johnson 1999, Wade
2000). Furthermore, expert information cannot be eas-
ily accommodated formally in the frequentist frame-
work.

This paper has two purposes: First, to examine the
impact of grazing on birds in the absence of tree cover
change, and second, to investigate the role of expert
opinion to increase statistical power for an ecological
question. We show how expert information can be used
to inform ecological models using a Bayesian frame-
work, where information is elicited from multiple ex-
perts and used in conjunction with field data to enhance
the explanatory and predictive power of a model. In
doing so, we address three specific questions: (1) How
much do expert and field data agree with each other
with regard to the impact of cattle grazing on birds?
(2) Does the addition of expert information improve
model predictions? (3) Under what circumstances do
predictions improve?

Several different modeling approaches were assessed
during this study and are further described in Kuhnert
et al. (2004). Whereas the focus of that paper is on the
interpretation and implications of using zero-inflated
Poisson and Negative Binomial models, this paper fo-
cuses on the results of one modeling approach, its eco-
logical interpretation, and the implications of incor-
porating expert opinion data using Bayesian inference.

If ecologists have to prove everything in every place,
progress will be slow. Here, we are interested in the
impact of grazing intensity on woodland birds. Rather
than ignoring the wealth of existing knowledge, we
have chosen to use expert knowledge to moderate our

statistical tests and help determine whether general pat-
terns may hold across the entire continent.

METHODS

Study location

The study region is in the Southeast Queensland
Bioregion, Australia (Sattler and Williams 1999),
bounded by 268–288 S and 1518–1538 E with an ele-
vation range of 300–550 m. The climate is subtropical
with most rain falling between December and March,
and frosts occurring between May and September. An-
nual rainfall is ;960 mm with a temperature range in
the hottest month (January) averaging 178–288C and
the coolest month (July) averaging 58–168C. Temper-
atures drop frequently below freezing across most of
the study sites between June and August. The dominant
lithologies are metamorphic, granite, sandstone, and
alluvium.

The vegetation is grassy eucalypt woodland and for-
est. In many areas, the density of trees has been mod-
ified by ringbarking during early settlement by Euro-
peans. More recently, stem-injection of herbicides into
trees has become the major management practice to
reduce tree density and maintain grass production. Cur-
rently, half to one-third of the region is wooded. The
landscape state is variegated, that is, native vegetation
comprises the majority of the landscape matrix (60–
90%; McIntyre and Hobbs 1999). The native vegetation
may be modified to various degrees by grazing and
other disturbances, but overall, intensive land uses such
as cropping and sown pasture are limited. The most
abundant eucalypts are the ironbarks Eucalyptus cre-
bra, E. melanophloia, and, on the lower slopes, the
gum E. tereticornis (Martin et al. 2000).

Survey design

Woodland habitats with three types of grazing re-
gimes (Table 1) were surveyed to determine the po-
tential impact of grazing on the presence/absence and
abundance of bird species. Eight replicate sites of each
grazing regime were sampled, giving a total of 24 sites,
visited on two separate days and over two seasons,
summer and winter. Woodland sites with a uniform tree
density across all three grazing regimes were chosen
to avoid the grazing effect being confounded by dif-
ferences in tree density.
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While grazing is a complex disturbance and can have
many impacts (Fleischner 1994, Brown and McDonald
1995, Fensham and Skull 1999, McIntyre et al. 2003),
our primary interest was with the effect of grazing on
understorey composition and structure and how this
then influences bird presence/absence and abundance.
Therefore, sites were chosen based on these vegetation
characteristics, using a combination of aerial photos,
topography, and soil maps, followed by ground truth-
ing. We ascertained the likely grazing history of a site
based on plant species composition (McIntyre and Mar-
tin 2001, 2002, McIntyre et al. 2002a, 2003). This as-
sessment, as well as discussions with landholders on
the grazing history of their property combined with the
present structural condition of the grass sward, was
used to define our treatment, representing three levels
of grazing: no/low, moderate, and high grazing (Table
1).

Bird sampling

The 2-ha search area methodology endorsed by the
Australian Bird Atlas (Barrett et al. 2003) was adopted
for this study. Within 24 survey sites, a 2-ha search
area was located within a minimum of 20 ha of the
same grazing regime, where counts of bird species were
recorded by a single observer during a 20-min interval
on two different days and repeated for each season.
The observer was not restricted to a transect, but was
free to move throughout the 2 ha in search of birds
until the site has been covered or the 20 min had
elapsed. Notes on the direction in which birds were
moving within the site were taken to minimize the
chance of recording the same bird(s) twice. Our counts
provided an index of abundance for each bird species
at each site in each season. All birds flying 20 m above
the site were excluded with the exception of aerial feed-
ers: swifts, swallows, and raptors.

Survey sites were stratified across an area of 1000
km2. In order to minimize the influence of landscape
context (e.g., Lindenmayer et al. 1999, Lichstein et al.
2002) and bird movement between sites, sites of the
same grazing treatment were situated a minimum of 1
km and, on average, 13 km apart, whereas sites of
different grazing treatments were situated a minimum
of 10 km and, on average, 22 km apart. As with all
observational studies, we cannot guarantee that we
have not counted the same bird twice within two dif-
ferent study sites. However, the minimum distances set
between sites and the restricted random visitation meth-
od adopted (Mac Nally and Horricks 2002), whereby
the entire survey region was partitioned into six geo-
graphical groups and each region and subsequent sites
were visited randomly within that region, minimized
this risk.

A single observer, T. G. Martin, with over 10 years
experience surveying birds in the region, completed
surveys. Bird counts were made on fine mornings in
summer (November 2001–January 2002) between 04:

45 and 09:45, and in winter (June–July 2002) between
06:45 and 11:45. During summer, surveys were not
conducted when the temperature rose above 358C or
during winter below 228C.

It is possible that the probability of detecting a bird
varies with habitat, and in this case, grazing level, and
is one of the reasons indices of abundance have been
criticized (e.g., Burnham 1981, Rosenstock et al. 2002).
We assume that the open structure of grassy eucalypt
woodlands, sparse shrub layer (McIntyre et al. 2002b),
standardizing of tree density across treatments, and the
high number of records based on calls rather than sight-
ings in this study minimize the chance of this affecting
our data and resulting conclusions. That is, we assume
that the chance of detecting a Noisy Miner or Eastern
Yellow Robin in a no/low grazed habitat is similar to
the chance of detecting them in a high grazed habitat
given they are, in fact, present in both habitats. It is
also likely that different birds have different detection
rates due to their behavior; however, we feel this bias
is equal across treatments.

Eliciting priors from the expert

Thirty-two experts with extensive experience in the
response of birds to disturbance and field experience
in grazed landscapes were invited to participate in the
study. They were asked to score how they thought 31
woodland bird species would respond to cattle grazing
(see survey in Appendix A). The 31 bird species were
chosen based on a pre-survey reconnaissance of the
study region where we piloted our bird survey method.

The survey required the expert to give each bird
species a positive (11), negative (21), or zero (0) score
depending on whether they thought the abundance of
a species was likely to increase, decrease, or remain
constant under each level of grazing defined in Table
1. Experts were asked to fill in responses only for spe-
cies and grazing levels where they were confident of
the response. Of the 32 experts contacted, all agreed
to complete the survey; however, only 20 experts re-
turned surveys, resulting in a 60% response rate. Ex-
perts who took part in the study are listed in the Ac-
knowledgments. Up to three reminders via e-mail and
phone were given to experts to complete and return the
survey.

There has been considerable debate in the statistical
literature regarding elicitation methods and how they
can be used to form prior distributions and inform anal-
yses (see Kuhnert et al. 2004). Methods of combining
information from multiple experts have also generated
much discussion (Genest and Zidek 1986, Jacobs
1995). We took a novel approach to the construction
of the prior for the random effects model that was used
to model the variation between and within grazing lev-
els. The approach used an unweighted average to de-
termine the mean response elicited from the experts,
and its precision. The precision represents the inverse
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FIG. 1. Frequency of bird counts recorded for (a) the entire survey (31 species across eight sites and three treatments, n
5 744), (b) Brown Thornbill (eight sites and three treatments, n 5 24), and (c) Rose Robin (n 5 24). Note the large number
of zero values.

of the variance and provides a measure of similarity of
the experts’ responses.

By taking an unweighted average, we avoided dif-
ficulties concerned with rating the comparative ‘‘ac-
curacy’’ of each expert’s opinion about birds and graz-
ing (Einhorn et al. 1977). To some extent, the experts’
ability to provide this measure is contained within the
expert data, since experts only provided responses to
birds for which they were confident.

The Bayesian model

Modeling the number of individual species, yij, at the
ith grazing level for the jth species, may be achieved
in a generalized linear modeling framework (Mc-
Culloch and Nelder 1989). In these applications, the
mean, lij, is modeled through an outcome of observed
counts, given a set of random effects that describe the
variability between species, grazing regimes, and be-
tween species within a specific grazing regime.

Discrete distributions such as the Poisson and Neg-
ative Binomial are natural choices for modeling count
data, and they have been used in numerous applications
to model counts of animals or plants (Frome et al. 1973,
Lawless 1987, McCullagh and Nelder 1989, Venables
and Ripley 1999, Dobson 2002). The latter distribution

is appropriate for modeling overdispersion, where there
is extra Poisson variation (e.g., induced by large counts
such as flocking birds). However, as Welsh et al. (1996,
2000), and Kuhnert et al. (2004) show, these discrete
distributions are not always appropriate, especially if
the species has a low frequency of occurrence resulting
in a data set with a high frequency of zeros.

The data collected for this study exhibits many more
zeros than can be expected by either a Poisson or Neg-
ative Binomial distribution as illustrated for all species
and two representative species in Fig. 1.

A high frequency of zero values can arise in three
ways. A strong seasonal or grazing effect will result
in sites with no birds present in one season or particular
grazing level. These are structural zeros resulting from
a true ecological effect. Random zeros arise in different
ways. Visiting a site and not recording a species when
it is in fact present gives rise to false negative errors.
These occur either as a result of the study, that is, the
species occurs but it is not present in the survey period,
or alternatively, as a result of the observer failing to
detect the bird when it is actually there.

Modeling of data with a high frequency of zero val-
ues with a Poisson distribution can lead to spurious
results if not somehow accounted for (Kuhnert et al.
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2004). Under these conditions, the variance estimates
may be seriously underestimated, leading to an over-
statement of the certainty of estimated means and poor
identification of the species, grazing, and interaction
effects.

There are several different methods for modeling the
relationship between habitat variables and abundance
where there are many zero counts (Welsh et al. 1996,
2000, Dobbie 2001, Kuhnert et al. 2004).

Following Welsh et al. (1996), counts of a species
are modeled as having two states: a state in which a
species is present at a site, and a state in which species
occur with varying levels of abundance. This is known
as a conditional or two-component model, since we
model state one, that is, whether any birds occur at a
site during the survey and conditional on a bird being
present, abundance is modeled by a truncated discrete
distribution such as the truncated Poisson or truncated
Negative Binomial distribution.

An alternative approach that accommodates the high
frequency of zero counts is a mixture model (Lambert
1992). Theoretically, a mixture model should account
for both structural and random zeros, where counts
arise from a mixture of a point mass at zero and a
Poisson distribution (or Negative Binomial) with an
unknown probability assigned to each component and
unknown parameters for each component (Lambert
1992, Welsh et al. 1996, Kuhnert et al. 2004). Using
this approach, we model the probability that a zero is
modeled through a Poisson distribution or alternatively
as a random zero. The mean number of birds at a site
is then estimated given the zeros are modeled in this
way. In a mixture model, the parameters relate jointly
to the probability of finding an animal and to the abun-
dance, whereas for the two-component model, the pa-
rameters can be examined separately, aiding interpre-
tation.

In this paper, we used a two-component approach
for modeling our bird data at the site level. As discussed
by Kuhnert et al. (2004), this model provided the best
fit to the data in terms of the Deviance Information
Criterion (DIC; Spiegelhalter et al. 2002) and corre-
sponding residual plots. Furthermore, there was no
strong evidence for overdispersion, so we fit a truncated
Poisson distribution to the non-zero counts.

The decision to treat factors in the model as random
rather than fixed effects was based on the factors under
consideration. The grazing levels examined were as-
sumed to be drawn from an infinitely large population
of levels and were therefore treated as random effects,
whereas a fixed effect is a defined class and comprises
all possible levels (e.g., age, sex). Since the experts’
response reflected a shift in the mean abundance (in-
crease, decrease, no change), the focus was on the var-
iability in the abundance of each bird species that could
be attributed to a particular grazing level rather than
the impact of a fixed effect on the mean bird abundance.

In Eq. 1, we model the counts yij for the ith species
under the jth grazing level, where s0i and s1i represent
the species random effects for the presence/absence and
abundance components, respectively; g0j and g1j rep-
resent grazing random effect for the jth grazing level;
and the component investigating the variability of spe-
cies within a grazing level is expressed by sg0ij and sg1ij

for each model, respectively. This model can be fit as
two separate models, a logistic regression model that
models the presence or absence of bird species, zij (pres-
ence/absence component) and a truncated Poisson dis-
tribution that models the abundance of birds given pres-
ence, yijzzij (abundance given presence component).

The Model for presence/absence is zij ; Bernoul-
li(pij) where

1 if y . 0i jz 5i j 5 0 otherwise

with logit link to random effects

logit(p ) 5 s 1 g 1 sg .ij 0i 0j 0ij (1)

The model for abundance conditional on presence is
yijzzij 5 1 ; truncated Poisson (lij) with long link to
random effects

log(l ) 5 s 1 g 1 sg .ij 1i 1j 1ij

Random effects are distributed normally as

s ; N (0, t ) c 5 0, 1 i 5 1, . . . , 31c si c

g ; N (0, t ) c 5 0, 1 j 5 1, 2, 3c gj c

sg ; N (0, t ) c 5 0, 1 i 5 1, . . . , 31c sgij c

j 5 1, 2, 3

with gamma (Ga) priors on the precisions of the var-
iance components

t , t , t ; Ga(0.1, 0.1) c 5 0, 1s g sgc c c

and the variance for both models defined as

2 2 2s 5 1/t s 5 1/t s 5 1/t c 5 0, 1.s s g g sg sgc c c c c c

Note that here we could have placed a mean (m) on
each random effect (with a corresponding uninforma-
tive prior), but with no prior information this mean is
set at zero. Each random effect is therefore assigned a
non-informative normal prior with zero mean and cor-
responding precisions , , and 5 0, 1) for thet t t (cs g sgc c c

species, grazing, and interaction term, respectively.
The priors for the precision terms are gamma distrib-
uted, with parameters that reflect our lack of under-
standing the size or significance of these random ef-
fects.

We did not explicitly fit intercept terms in the model,
since including it in a Bayesian random effects model
can sometimes make estimation of the variance com-
ponents for each random effect difficult. Although data
was collected across two different days in two seasons,
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these factors were not significant contributors to the
model and are therefore excluded from the model de-
scribed here.

Incorporating expert information
into the Bayesian model

We now extend the model presented in Eq. 1 to in-
corporate the prior information from the experts. The
expert scores informed us about the means and vari-
ances of the random effects, so these were no longer
centered on zero with wide intervals. Instead, the prior
information was introduced into the model through the
construction of another hierarchical layer. More ex-
plicitly, the priors in Eq. 1 can be augmented where
the random effects are distributed normally as

¯s ; N (m 1 X , t « ) c 5 0, 1c s s s si c i c i

i 5 1, . . . , 31

¯g ; N (m 1 X , t « ) c 5 0, 1c g g g gj c j c j

j 5 1, 2, 3

¯sg ; N (m 1 X , t « ) c 5 0, 1c sg sg sg sgij ij ij c ij

i 5 1, . . . , 31
j 5 1, 2, 3 (2)

given normally distributed means,

m , m , m ; N(0, 0.1) c 5 0, 1s g sgc c c

with gamma priors on the precisions of the variance
components,

t , t , t ; Ga(0.1, 0.1) c 5 0, 1.s g sgc c c

In contrast to Eq. 1, m has been introduced into the
model for each random effect because the expert has
explicitly provided information about variation in the
mean. The precision is therefore rescaled (e.g., , )t «s sc t

according to how much in agreement the experts were
with regards to changes in the mean. Here, , , and¯ ¯X Xs gi j

represent the expert shift in mean defined for theX̄sgij

ith species, the jth grazing level, and the ith species
under the jth level of grazing, and «si, «gj, and «sgij rep-
resent the rescaling of the precision based on the overall
expert response for each factor in the model as shown
in Table 2.

In the absence of expert knowledge, we revert back
to the model presented in Eq. 1, which is comprised
of non-informative priors for each random effect and
their respective parameters. Therefore, the availability
of expert opinion allowed us to augment the survey
data and establish whether the experts were expressing
changes in density that is reflected by the data. If their
opinions differed from the survey data, then the Bayes-
ian analysis allows us to quantify and comment on this
difference.

Parameter estimation

Parameter estimation was achieved using Markov
Chain Monte Carlo (MCMC) and, in particular, the

Metropolis Hastings algorithm (Metropolis et al. 1953,
Hastings 1970) using WinBUGS 1.4 (Spiegelhalter et
al. 2003).

MCMC is an approach that generates a Markov
Chain that converges to the posterior distribution of
interest using Monte Carlo simulation. For a complete
overview of MCMC and related methods, readers are
referred to Besag et al. (1995). The algorithm consists
of three steps. The first involves setting initial values
for unobserved quantities, which represent the variance
components and predictions for each random effect in
the model. The second involves sampling from each
parameter’s full conditional distribution, while holding
all other parameters constant. Finally, the sampled val-
ues for each parameter of interest are monitored for
convergence. This is usually achieved after a lengthy
burn-in using convergence criterion contained in the
CODA package (Best et al. 1995) and described ex-
tensively in Cowles and Carlin (1996) and Mengersen
et al. (2000). A second run is constructed from which
means, standard deviations, and 95% credible intervals
can be calculated. Based on these criterion, a burn-in
of 10 000 and a further 30 000 iterations were used in
this study to get appropriate estimates. This number of
iterations gave a suitably low Monte Carlo standard
error of the mean (MC error) and level of autocorre-
lation.

RESULTS

Exploratory analysis of expert data

Survey results from 20 experts were combined to get
a mean response to grazing for each species under each
level of grazing (Table 2). The precision of responses
was smallest under low («·1 5 2.23) and moderate («·2

5 2.22) levels of grazing compared with high («·3 5
2.49) levels. This indicates that the level of agreement
among the experts was slightly greater under high graz-
ing. Experts predicted an overall increase in mean
abundance under low (X̄·1 5 0.345) and moderate (X̄·2

5 0.168) grazing and a strong decrease under high (X̄·3

5 20.598) levels of grazing.
In Table 2, a high precision indicates greater con-

vergence in opinion about a particular species and graz-
ing level. For three species/grazing combinations in
particular, all experts were unanimous in their response,
leading to a precision of infinity. For these cases, the
precision was set to 30, a value larger than any other
value in the dataset, yet one that does not dominate the
results produced by these precision estimates. Because
experts only provided responses for species and grazing
levels in which they were confident, the number of
response per species varied from 11 to 20.

Pooled expert responses for each species across each
grazing level are shown in Fig. 2 for nine species and
for the remaining species in Appendix B. A value close
to zero indicates experts did not expect a species to
respond either negatively or positively to the specified
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TABLE 2. Information elicited from 20 experts regarding the grazing impact on 31 species of birds in woodland habitats
showing the mean response (X̄ij) from experts and the corresponding precision («ij, the inverse of variance) at different
grazing levels.

No. Species Code

Grazing impact

Low/no (1)

ni1 X̄i1 «i1

1 Apostlebird APOS 14 20.14 1.69
2 Black-chinned Honeyeater BCHE 13 0.38 3.90
3 Brown Quail BRQU 15 0.80 3.18
4 Brown Thornbill BRTB 18 0.61 3.97
5 Brown Treecreeper BRTC 19 0.11 1.53
6 Buff-rumped Thornbill BUTB 17 0.35 1.62
7 Brown-headed Honeyeater BWHE 14 0.29 4.55
8 White-winged Chough CHOU 16 0.00 1.88
9 Double-barred Finch DBFI 14 0.50 1.73

10 Eastern Yellow Robin EYRO 19 0.63 2.80
11 Fuscous Honeyeater FUHE 14 0.29 4.55
12 Grey-crowned Babbler GCBA 19 0.32 2.22
13 Golden Whistler GOWH 15 0.33 4.20
14 Grey Shrike-thrush GSTH 17 0.47 2.57
15 Jacky Winter JAWI 19 0.16 1.71
16 Leaden Flycatcher LEFC 12 0.25 4.89
17 Noisy Miner NOMI 18 20.50 2.00
18 Red-backed Fairy-wren RBFW 12 0.75 2.59
19 Restless Flycatcher REFC 15 0.27 2.02
20 Rose Robin RORO 14 0.64 4.04
21 Rufous Songlark RUSL 19 0.26 1.54
22 Rufous Whistler RUWH 17 0.24 5.23
23 Varied Sittella SITT 15 0.20 5.83
24 Spotted Quail-thrush SPQT 11 0.09 1.12
25 Speckled Warbler SPWA 17 0.47 1.94
26 Superb Fairy-wren SUFW 20 0.65 2.90
27 Variegated Fairy-wren VAFW 15 0.60 2.50
28 White-naped Honeyeater WNHE 14 0.36 4.04
29 White-browed Scrubwren WSCW 18 0.78 5.46
30 White-throated Honeyeater WTHE 11 0.36 3.93
31 White-throated Treecreeper WTTC 16 0.19 6.15

X̄.j 0.345
«.j 2.23

Note: The notations «. j and X̄.j refer to the overall precision («) and mean (X̄) of all 31 bird species ( j) for the grazing
level stated in the column heading of Table 2.

grazing level on average, whereas a high negative value
indicates a decline in abundance with the grazing level,
and a high positive value indicates an increase in abun-
dance with the grazing level.

Exploratory analysis of field data

An exploratory analysis of the field data revealed
that day was not a significant contributor to the model,
affecting neither bird presence/absence nor abundance
significantly. We therefore pooled across day to inves-
tigate the change in species abundance with respect to
grazing and season.

Overall, similar numbers of species were recorded
over both seasons, with a significant decline in species
abundance under high levels of grazing (mean species
richness over summer and winter for no/low 5 6.1,
moderate 5 6.5, and high grazing 5 3.8). Season was
not a significant contributor to the model, and we there-
fore pooled the data across seasons to eliminate some
of the zero values, giving us more power to detect

changes in species presence/absence and abundance
due to grazing.

Seven species response patterns to grazing emerged
from the expert and field data and are defined in Table
3. Fig. 3 contains a graphical representation of the re-
sponses for nine species, and the responses for re-
maining species are shown in Appendix B. Among the
31 species examined, the most common responses to
grazing observed in the field data were: (1) an absence
under high grazing with similar abundances under low
and moderate grazing (‘‘High Intolerant’’ [e.g., White-
browed Scrubwren, Superb Fairy-wren]); (2) an ‘‘In-
termediate’’ response where density was greatest under
moderate grazing (e.g., Fuscous Honeyeater, Red-
backed Fairy-wren); or a ‘‘Generalist’’ response where
abundance was similar across all grazing levels (e.g.,
Rufous Whistler, Double-barred Finch). Four species
(Brown Thornbill, Rose Robin, Spotted Quail-thrush,
and White-naped Honeyeater) only occurred under low
levels of grazing (‘‘Low Dependent’’). Only one spe-
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TABLE 2. Extended.

Grazing impact

Moderate (2)

ni2 X̄i2 «i2

High (3)

ni3 X̄i3 «i3

14 0.71 4.55 14 0.21 1.05
14 0.00 6.50 13 20.54 3.71
15 0.20 1.67 15 21.00 30.00
19 20.20 3.17 19 20.79 5.70
19 0.47 1.41 19 20.68 2.22
18 0.44 2.01 17 20.71 4.53
16 0.00 7.50 14 20.43 3.79
17 0.71 2.89 17 20.18 1.28
14 0.07 1.88 14 20.93 14.00
19 20.05 2.01 19 20.95 19.00
16 0.13 8.57 13 20.46 3.71
19 0.68 4.38 19 20.58 2.71
17 20.18 3.58 16 20.81 6.15
17 0.29 1.68 17 20.65 2.72
19 0.74 4.89 19 20.58 2.09
14 0.07 4.44 13 20.38 3.90
19 0.42 3.89 19 0.67 2.22
12 20.33 1.65 13 21.00 30.00
17 0.29 2.89 16 20.63 4.00
14 20.14 2.28 15 20.80 5.83
19 0.16 1.71 19 20.42 1.23
19 0.16 3.98 18 20.61 3.97
17 0.00 8.00 16 20.38 4.00
12 20.08 1.59 12 20.83 6.60
17 0.12 1.16 17 20.88 4.25
20 0.40 2.16 20 20.80 5.94
15 0.07 1.08 15 20.87 8.08
16 0.06 16.00 14 20.50 3.71
17 20.47 2.57 18 21.00 30.00
12 0.08 12.00 12 20.50 3.67
18 0.00 8.50 18 20.61 3.97

0.168 20.598
2.22 2.49

FIG. 2. Pooled expert opinions on bird response to grazing for nine species. Each bar represents the mean as reported in
Table 2, with expert precision («) shown at the end of each bar. The line at zero represents the belief that a species will
show no response to a particular grazing level, whereas bars above the line indicate an increase in response to the grazing
level, and bars below the line indicate a decrease in response to the grazing level. Species codes are defined in Table 2.



274 TARA G. MARTIN ET AL. Ecological Applications
Vol. 15, No. 1

TABLE 3. Species response patterns to grazing that emerged from the expert and field data.

Response to increasing
grazing pressure Abbreviation Definition

Low Dependent Low Dep only occurs in low grazed habitat
High Intolerant .L High Intol .L absent under high grazing and highest density under low

grazing
High Intolerant .M High Intol .M absent under high grazing and highest density under moder-

ate grazing
High Intolerant High Intol absent under high grazing and densities similar under low

and moderate grazing
Intermediate Inter highest density under moderate grazing
Generalist Gen similar density across all grazing levels
Increase Incr density increasing with increasing grazing pressure

FIG. 3. Abundance (mean 6 1 SE) as observed from the field data for nine bird species across three grazing levels: low/
no, moderate, and high. Species codes are defined in Table 2.

cies, the Noisy Miner, increased markedly with in-
creased grazing pressure (Fig. 3). We cannot be con-
fident of the response of 10 species, denoted with a
dagger symbol in Table 4 due to their low frequency
(#6%, having occurred at three sites or less in either
season; Appendix B).

An exploratory comparison of the expert and field
data is shown in Table 4. We did not account for the
high frequency of zero values in the field data or the
level of precision of the expert data during the ex-
ploratory analysis phase of this study. Therefore, re-
sults must be interpreted with caution.

In Table 4, the three most common responses pre-
dicted by experts were an intolerance of high grazing
with highest abundance under no/low grazing levels,
an intolerance of high grazing with similar abundances
under moderate and high grazing, or a dependence on
no/low grazing (absent from moderate and high; Table
4). Overall, 32% (10 species) of expert responses cor-
responded exactly with the field data (Table 4)

Two-component model predictions

Our interest was in the impact of grazing on indi-
vidual bird species and this is what we asked the experts
to comment on. Results, therefore, focus on the grazing
by species random effect.

Predictions from the two-component model are
shown in Appendix B, where the predictions from the
first component of the model, based on presence/ab-
sence data, with and without expert information is pre-
sented followed by the predictions from the second
component of the model, based on abundance data giv-
en presence with and without expert information.

The term ‘‘significance’’ is used in the Bayesian con-
text where a significant effect indicates that the 95%
credible interval corresponding to that effect does not
include zero and an estimate that is ‘‘significantly less
than’’ a proposed value has ,5% probability of being
equal to or greater than the proposed value.

Predictions of bird presence/absence: no expert
information (non-informative prior)

Only three species (Leaden Flycatcher, White-throat-
ed Treecreeper, and Noisy Miner) showed a significant
increase in the probability of presence compared to all
other species under specific grazing levels, with both
the Leaden Flycatcher and White-throated Treecreeper
increasing under no/low grazing, and the Noisy Miner
increasing under high grazing (Appendix B). Note that
predictions for the presence/absence component pre-
sented in Appendix B are on the logit scale, where a
prediction of zero corresponds to a probability of 0.5.



February 2005 275EXPERT OPINION AND BAYESIAN METHODS

TABLE 4. Comparison of expert information (prior) with field data (likelihood) across seven response patterns defined in
Table 3.

Expert data

Field data

Low Dep High Intol .L High Intol .M High Intol Inter Gen Incr Total

Low Dep BRTB EYRO† RBFW GOWH 7
RORO† WSCW
SPQT†

High Intol .L LEFC BCHE† FUHE DBFI 11
VAFW BRQU SITT
WTHE BWHE† SPWA
WTTC

High Intol .M BRTC‡ REFC 4
··· GCBA†

JAWI
High Intol WNHE† BUTB RUSL†‡ GSTH‡ 6

SUFW RUWH
Inter ··· APOS† 2

CHOU†‡
Gen ··· 0
Incr NOMI‡ 1
Total 4 4 0 7 6 6 4 31

Notes: Boldface indicates where there was complete agreement between the prior and likelihood. Expert data are represented
by the mean response from all experts who responded for a given species. Field data are represented by the mean response
to grazing across both summer and winter. Species with a dagger (†) have a frequency #6% (see Appendix B). Species
marked with a double dagger (‡) have a precision ,4 under all grazing levels (see Table 2).

FIG. 4. Comparison of two-component model estimates of abundance and 95% credible intervals for nine species without
and with expert information for low, moderate, and high grazing levels. Species codes are defined in Table 2.

With expert information (informative prior)

Combining expert information (prior) with the field
data (likelihood) gives us an informed posterior pre-
diction of each species’ probability of presence under
the three grazing levels (Appendix B; Probability of
presence: With expert). In addition to the three species
that had a significant increase in the probability of pres-
ence under no/low and high grazing, respectively, with-
out expert information, a further three species (Brown
Quail, Red-backed Fairy-wren, and White-browed
Scrub-wren) showed a significant decrease in the prob-
ability of presence under high levels of grazing.

Predictions of bird abundance: no expert
information (non-informative prior)

Given a species was detected, we modeled abun-
dance using a truncated Poisson distribution. Random
effect predictions for the abundance component of the
two-component model for nine species is shown in Fig.
4, and for the remaining species in Appendix B, with
and without expert information. Predictions are shown
on the log scale. A corresponding scale showing ex-
pected abundance is given on the right hand side of
Fig. 4. Species that showed no change in abundance
are centered on zero (log scale) with confidence inter-
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vals spanning 21 and 1. Two species (Fuscous Hon-
eyeater and Noisy Miner; Fig. 4) showed a significant
increase in abundance under moderate and high grazing
levels, respectively. There is a strong trend for species
abundance to be higher under no/low and moderate
levels compared with high grazing, while over half (16
species) showed strong declines under high grazing
levels (see Fig. 4 and Appendix B; Abundance esti-
mate: Without expert).

The addition of the expert data has a notable impact
on abundance predictions with increases predicted for
all species, with the exception the Apostlebird and
Noisy Miner under no/low grazing. Of these increases,
eight species increased to a level where the result was
significant (see Fig. 4 and Appendix B; Abundance
prediction: With expert). Under moderate grazing lev-
els, five species, including the Fuscous Honeyeater and
Grey-crowned Babbler, showed a significant increase
in abundance, while under high grazing, only one spe-
cies, the Noisy Miner, showed a significant increase.
All other species showed a decrease in abundance under
high grazing, 16 of which were significant declines (see
Fig. 4 and Appendix B; Abundance estimate: With ex-
pert).

DISCUSSION

This paper examines the power of expert opinion to
inform ecological models through an investigation of
the response of woodland birds to cattle grazing. We
have demonstrated how expert knowledge can be col-
lected and used within a Bayesian statistical framework
to update our field data to obtain species-specific pre-
dictions for the probability of presence and abundance
given presence, under varying levels of grazing.

Bayesian inference allows the construction of infor-
mative prior probabilities for poorly known effects us-
ing auxiliary information obtained from experts, pre-
viously published findings, or both (Ghazoul and Mc-
Allister 2003). As demonstrated in this paper, the use
of expert information moderates field data and strength-
ens predictions for most species compared to predic-
tions formed in the absence of expert knowledge (Fig.
4, Appendix B).

The simple questionnaire delivered to experts pro-
vided a practical tool for eliciting information that was
less onerous than other published methods while de-
livering adequate, repeatable information in a form that
was suitable for analysis. Using multiple experts al-
lowed us to generate a mean and precision around the
estimates without having to specifically ask each expert
for these estimates, a task that would deter many from
participating in the survey. We hope that our detailed
description of the method by which this prior infor-
mation was combined with the field data demonstrates
the generalizability of the model to other ecological
modeling situations.

How much do expert and field data agree with each
other in regards to the impact of grazing on birds?

In our exploratory analysis, we found that the re-
sponses for 10 species (32%) were in complete agree-
ment with the field data (Tables 3 and 4). Of the re-
maining species in which the data was strong and the
expert precision high, eight species were predicted by
experts to do worse under increasing grazing pressure
than what we found in the field. Mismatches occurred
primarily where either the field data recorded was poor
(low frequency of occurrence) or the expert precision
(level of agreement) was low (Table 4).

Does the addition of expert information improve
model predictions and under what conditions

do they improve?

The addition of the expert information to the model
improved predictions considerably, through narrower
95% credible intervals for all but one species under at
least one level of grazing (Fig. 4 and Appendix B).
The degree of improvement depended on the amount
of data, the expert precision under each grazing level,
and how well the experts ‘‘pooled’’ belief about grazing
and its impact on bird presence/absence and abundance
agrees with the field data.

In the absence of expert information, when the data
was limited or, alternatively, no sightings were made
at a particular grazing level, little could be said about
whether a species was likely to increase or decrease
with respect to grazing. This is particularly evident at
high levels of grazing where absences were most com-
mon (e.g., White-browed Scrubwren, Eastern Yellow
Robin; Fig. 4, Appendix B). When we combined the
field data with expert information and the experts
agreed and complement the field data, our predictions
improved somewhat, providing information about a
species’ predicted decline or increase that we otherwise
would not have known about in the absence of expert
information.

Where the data is strong (high frequency of occur-
rence) and the precision of the expert data is also high,
we saw significant improvements in model predictions
(e.g., Fuscous Honeyeater and Red-backed Fairy-wren;
Fig. 4). Model improvements were also made when the
precision and field data were moderate but complement
one another (e.g., Superb Fairy-wren, Brown Thornbill,
and White-browed scrubwren; Fig. 4).

In situations where the precision of the experts was
low, indicating disagreement between experts, the in-
formation conveyed by the posterior was no different
to what we would have obtained in the absence of
expert information. Expert information informs pre-
dictions when the experts are in agreement with one
another and expresses uncertainty in situations where
experts do not know enough about the subject of in-
terest. For example, the predictions for the Rufous
Songlark did not improve with the addition of the ex-
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pert information. Here, both the precision was low and
the amount of field data was weak (low frequency of
occurrence; Fig. 4), reflecting the few sightings of this
species recorded during the survey and the overall lack
of understanding about this species.

Of the species for which we had sufficient field data
and the precision was $4, there were 11 species for
which the experts’ predictions did not agree with the
field data in our exploratory investigations. For ex-
ample, the Red-backed Fairy-wren was predicted, by
experts, to decrease under moderate and high grazing
(Low Dependent), but we observed an intermediate re-
sponse (Table 4). The Restless Flycatcher was predicted
to decrease under high grazing (High Intolerant .M),
but we observed an increase with grazing. These two
species are explored in more detail in the next para-
graphs.

When comparing the raw field data and modeled pre-
dictions, we must consider that the conditional model
only models abundance if a species is present. It there-
fore excludes all absences (zero cells). If we examine
the Red-backed Fairy-wren as shown in Figs. 3 and 4,
its abundance, modeled without expert data, does not
reflect the considerable increase observed under mod-
erate grazing as shown in Fig. 3. This is a result of
accounting for the inflation of zero values. However,
if we look at the results from the first component of
the model based on presence/absence (Appendix B),
the results do reflect this increased probability of pres-
ence under moderate grazing and illustrates the im-
portance of interpreting the two components of the
model together.

In the case of the Restless Flycatcher under high
grazing, the precision surrounding the expert response
is moderate (« 5 4.0; Fig. 4). For this species, the
experts were relatively confident that it would do poor-
ly under high grazing, yet the field data suggest oth-
erwise. The prediction of the probability of presence
and abundance given presence for this species reflects
the experts’ confidence in this species’ response and is
also the result of low numbers reported for this species
in the field data (frequency ,10%). If there were a
larger occurrence of frequency in the field data for this
species, the prior based on expert information would
not have such a large impact, and it demonstrates that
when data is scarce, expert information is a powerful
tool in ecological modeling.

The largest improvement in the predictions occurs
when the data is weak (low frequency of occurrence)
and the precision of the expert information is high. For
example, when a species is not observed at a particular
grazing level and there is no expert information, the
prediction for that species (on the log scale) is zero
with wide credible intervals spanning 21 to 1 as il-
lustrated by the White-browed Scrubwren under high
grazing (Fig. 4). Given expert information with a high
precision, the confidence interval around that predic-

tion narrows, showing a significant decline in abun-
dance under high grazing.

Is expert information useful?

Expert knowledge is a valuable resource to ecology
and when combined with field data in a model as il-
lustrated in this study, it has the potential to strengthen
results or alternatively highlight areas that require fur-
ther research, a finding supported by Iglesias and Koth-
mann (1998).

Certainty about a species and its relationship to a
particular disturbance is indicated when experts are in
agreement (high precision), whereas uncertainty is ex-
pressed when experts are in disagreement (low preci-
sion). Alternatively, this uncertainty could reflect a
complex species response to disturbance. Responses
could vary from one place to another and/or be a re-
flection of interactions with co-occurring species.
Three species (Brown Treecreeper, Rufous Songlark,
and White-winged Chough; Fig. 4, Appendix B), in
particular, had low precision values, suggesting that
further research is needed to require a better under-
standing of the impacts of grazing on these species.

There are various explanations for a mismatch be-
tween the expert opinion and the data. Many factors
contribute to an expert’s perception of grazing. One
could expect that experts with much of their experience
in highly developed (relictual and fragmented) land-
scapes of temperate Australia perceive the impact of
grazing differently to those in variegated or intact land-
scapes of subtropical Australia. For example, in land-
scapes where tree clearing and grazing are completely
confounded it may be difficult for experts to think about
these two disturbances independently. Given sufficient
information about an expert’s background, we could
test this by analyzing the data based on where the ex-
perts have spent most of their professional lives and
have built their beliefs. This subjective judgment,
where people interpret and guess differently, is part of
what Regan et al. (2002) defines as epistemic uncer-
tainty in ecology and conservation biology.

The fact that experts may carry with them a bias
based on their context has been a criticism of using
expert information (Dennis 1996). However, given a
large independent sample of experts, we believe that
this is not an issue. In situations in which experts have
different beliefs concerning a particular species and
grazing regime, we expect a low precision to be high-
lighted, which is then propagated through the model.

What does this mean for birds in grazed landscapes?

This study supports the idea that grazed grassy wood-
lands provide habitat for many species of plants and
animals, but some are highly sensitive to the changes
brought about by more intense livestock grazing (Mar-
tin and Green 2002). Low and moderately grazed
grassy woodlands provide habitat for many bird spe-
cies, but highly grazed areas appear to benefit only one
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of the 31 species analyzed in this study. The ‘‘hyper-
aggressive’’ Noisy Miner successfully excludes other
woodland species from its territory, eventually domi-
nating large areas of habitat (Piper and Catterall 2003),
and therefore the absence of woodland birds in highly
grazed areas may be an indirect effect of high grazing
by providing ideal habitat for the Noisy Miner.

Moderate levels of grazing in woodland favored sev-
eral species (e.g., Brown Treecreeper, Grey-crowned
Babbler, Jacky Winter, Speckled Warbler) that have
been declining in temperate parts of Australia, and this
decline has been attributed to vegetation clearing and
grazing (Blakers et al. 1984, Garnett and Crowley
2000). In temperate Australia, these disturbances are
often confounded (e.g., Arnold and Weeldenburg 1998,
Jansen and Robertson 2001). It appears that in the land-
scapes studied here, where we can separate the effect
of grazing from tree clearing, these birds respond pos-
itively to moderate levels of grazing. Here, livestock
grazing may be replacing the natural disturbances
caused by fire and macropod grazing in which these
species specialized. The majority of experts predicted
this response.

Species associated with no/low levels of grazing in
this study (Brown Thornbill, Leaden Flycatcher, Var-
iegated Fairy-wren, White-throated Honeyeater, White-
throated Treecreeper) have been characterized in the
Southeast Queensland Bioregion by Catterall et al.
(1998) as ‘‘bushland’’ species, occurring in forest/
woodland with an understorey of shrubs and/or grasses.
The increased cover of shrubs, large tussock grasses,
and lack of general disturbance by cattle in our no/low
grazing treatment provides ideal habitat for these spe-
cies. Furthermore, saplings provide a mid-story, where-
as, even in moderately grazed sites, sapling recruitment
can be inhibited by grazing (Martin et al. 2000).

CONCLUSION

Financial and logistical constraints impair our ability
to sample over large geographic areas and long time
frames resulting in few long-term ecological data sets.
In situations such as this, expert knowledge can be used
to capture information beyond the study region and is
the culmination of many years experience.

Using expert data in combination with our field study
enabled us to gain a greater insight into the overall
impacts of livestock grazing on birds than we would
have in the absence of expert information. In fields
where there is extensive expert knowledge, yet little
published data (e.g., rare species), the use of expert
information as priors for ecological models is a cost-
effective way of making more confident predictions
about the effect of management on biodiversity.
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APPENDIX A

An example of an expert survey is available in ESA’s Electronic Data Archive: Ecological Archives A015-007-A1.

APPENDIX B

A summary of field and expert data and results from a two-component model with and without expert information is
available in ESA’s Electronic Data Archive: Ecological Archives A015-007-A2.


