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ABSTRACT 
 
Surge waves resulting from dam breaks have been responsible for numerous losses. Modern 
predictions of dam break wave rely too often on numerical predictions, validated with limited data 
sets. Despite a few studies, there has been a lack of basic theoretical and physical studies for the 
past 40 years. Current knowledge of dam break wave surging down rough surfaces remains 
rudimentary, while there is still some arguments of the flow fundamentals. 
The present work is focused on simple solutions of the dam break wave problem using the Saint-
Venant equations and the method of characteristics. Analytical solutions are developed for an 
instantaneous dam break with a semi-infinite reservoir in a wide rectangular channel. After a review 
of well-known solutions, further ideal-fluid flow solutions are detailed. These include ideal dam 
break wave flow on horizontal and sloping channels, with or without initial flow motion. The effect 
of the presence of water in the downstream channel is discussed. New analytical solutions of dam 
break wave of real fluids are developed for turbulent flow (Section 4.) and laminar flow motion 
(Section 5.). These simple theoretical developments include the break wave in horizontal channels 
with bed friction, dam break wave with initial flow motion, and dam break waves on flat slope 
channels with bed friction and initial flow motion. The analytical results were validated by 
successful comparisons between theoretical results and several experimental data sets obtained in 
large-size facilities. Later the analytical results are applied to three different turbulent flow 
situations: a dam break, the swash zone, and a tsunami runup. 
The advantages of the present developments are five-fold. First the theoretical results yield simple 
explicit analytical expressions of the dam break wave with flow resistance. The theoretical results 
compare well with experimental data and with more advanced theoretical solutions. They include 
both laminar and turbulent flow motion. Second the developments are simple, and they yield nice 
pedagogical applications of the Saint-Venant equations and method of characteristics that are well-
suited to undergraduate teaching of hydraulic engineering. Third the analytical solutions may be 
used to validate numerical solutions of the method of characteristics applied to the dam break wave 
problem. Fourth the development is applied to a wide range of flow conditions, including the 
effects of bed slope and initial flow motion. This yields a wide range of practical applications. Fifth 
the simplicity of the equations may allow the extension of the method to more complex fluids (e.g. 
non-Newtonian fluids). 
It is however acknowledged that the present approach is limited to semi-infinite reservoir, 
rectangular channel and quasi-instantaneous dam break. 
 
Keywords : Dam break wave, Analytical solutions, Saint-Venant equation, Method of 
characteristics, Wave runup, Tsunami runup. 
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NOTATION 
The following symbols are used in this report : 
A flow cross-section area (m2); 
a wave amplitude (m) (paragraph 6.4); 
B free-surface width (m); 
C 1- celerity (m/s) of a small disturbance for an observer travelling with the flow; 
 2- wave celerity (m/s) (paragraph 6.4); 
Cg wave group celerity (m/s) (paragraph 6.4); 
Co initial celerity (m/s) of a small disturbance in the reservoir with initial reservoir depth 

do; 
DH hydraulic diameter : DH = 4*A/Pw; 
d flow depth (m) measured normal to the invert; 
ds dam break wave front thickness (m); 
do initial reservoir height (m) measured normal to the chute invert; 
d1 flow depth (m) at the upstream end of the wave tip region; 
d2 flow depth (m) immediately behind the positive surge (paragraph 3.2); 
d3 initial flow depth (m) in the downstream channel (paragraph 3.2); 
E wave energy spectral density (J/m2) (paragraph 6.4); 
F1 dimensionless function (paragraph 2.3.3); 
F2 dimensionless function (paragraph 2.3.3); 
Fr 1- flow Froude number : Fr = V/ g*d; 
 2- surge Froude number: Fr = (U±V)/ g*d; 
Fro initial reservoir flow Froude number; 
f Darcy-Weisbach friction factor; 
g gravity constant (m/s2); g = 9.8 m/s2; 
Hdam vertical reservoir height (m) at the gate; 
Hmax maximum wave height (m) at breaking measured above the still water level (paragraph 

5.4); 
h roughness element height (m); 
L channel length (m); 
Lres reservoir length (m); 
l 1- longitudinal spacing (m) between roughness elements; 
 2- wave length (m) (paragraph 5.4); 
M mass of fluid (kg/m) per unit width in the wave tip region; 
Pw wetted perimeter (m); 
Q volume flow rate (m3/s); 
q volume flow rate per unit width (m2/s); 
Sf friction slope; 
So bed slope : So = sinθ; 
T dimensionless time (paragraph 2.3); 
t time (s) from dam removal; 
U wave front celerity (m/s); 
V flow velocity (m/s); 
VH uniform equilibrium flow velocity (m/s) for a water depth Hdam; 
Vo initial reservoir velocity (m/s) positive downstream; 
V1 flow velocity (m/s) at the upstream end of the wave tip region; 
V2 flow velocity (m/s) immediately behind the positive surge (paragraph 3.2); 
V3 initial velocity (m/s) in the downstream channel (paragraph 3.2), positive upstream; 
W 1- channel width (m); 
 2- Average energy flux (J/m/s) (paragraph 6.4); 
X 1- dimensionless distance (paragraph 2.3); 



vi 

 2- dimensionless depth (paragraph 3.2); 
x longitudinal distance (m) measured from the dam; 
xs wave front position (m); 
x' dimensionless variable; 
(xs)max maximum runup distance (m) for a dam break wave on an upward slope; 
x1 location (m) at the upstream end of the wave tip region; 
y distance (m) normal to the bed; vertical distance (m) for a horizontal channel; 
z vertical elevation (m); 
(z)max maximum runup elevation (m) for a dam break wave on an upward slope; 
 
Greek symbols 
α laminar flow resitance correction coefficient; 
Φ momentum per unit width in the wave tip region (kg/s); 
φ momentum per unit area (Pa.s) (paragraph 6.4); 
φF average momentum flux (N/s) (paragraph 6.4); 
µ dynamic viscosity (Pa.s); 
ν kinematic viscosity (m2/s) : ν = µ/ρ ; 
π π = 3.141592653589793238462643; 
θ bed slope angle; 
ρ fluid density (kg/m3); 
ΣForces resultant of the forces applied to the wave tip region per unit width (N/m); 
τo boundary shear stress (Pa); 
 
Subscript 
dw deep water flow conditions (paragraph 6.4); 
o initial flow conditions in the reservoir; 
1 flow conditions at the upstream end of the wave tip region; 
2 flow conditions immediately behind the positive surge (paragraph 3.2) 
3 initial flow conditions in the downstream channel (paragraph 3.2); 
 
Abbreviations 
D/S (or d/s) downstream; 
U/S (or u/s) upstream; 
 
Notation 
D
Dt absolute differential; 

∂
∂y partial differentiation with respect to y; 

•
x first derivative; 
••
x  second derivative. 
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1. INTRODUCTION 

1.1 PRESENTATION 
Surge waves resulting from dam breaks have been responsible for numerous losses of life (Fig. 1-
1). Figure 1A shows ruins of the St Francis dam break in 1928. More than 450 people were killed in 
the catastrophe. Figure 1B presents the Möhne dam break inflicted by RAF bombers on 17 May 
1943 during the dam buster campaign. Figure 1C shows what is left from the Lake Ha!Ha! dam 
overtopped in July 1996. Related situations include flash floods, flood runoff in ephemeral streams, 
debris flow surges, surging waves in the swash zone, rising tides in dry estuaries and tsunami runup 
on dry land. Appendix A lists major tsunami events, including the 26 December 2004 catastrophe. 
Applications of dam break wave theory to tsunami surges are discussed specifically in paragraph 
6.4. 
In all cases, the surge front is a shock characterised by a sudden discontinuity and extremely rapid 
variations of flow depth and velocity. Hydraulic researchers studied initially surging flows in 
laboratory facilities. In recent years, numerical studies have been plenty. For example, for the 
period 2003-2004 alone, the international database Science Citation Index ™, The Web of 
Science™, lists 40 journal articles on dam break, including 34 numerical studies, 4 experimental 
studies and only one theoretical development. 
 
Fig. 1-1 - Photographs of dam break catastrophes 
(A) St Francis dam break, USA (12 March 1928) (Courtesy of Santa Clarita Valley Historical 
Society) - Looking upstream - Note onlookers standing in the foreground, in front of a 65 m high 
remnant part of the dam - The remnant monolith was blasted on 23 May 1929 
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(B) Möhne dam break (Germany, 17 May 1943), after RAF bomber attack - View from right bank 
(Courtesy of Ruhrverband, Essen, Germany) - More than 1,300 people died in the catastrophe, 
mostly inmates of a POW camp located downstream of the dam 

 
 
(C) Lake Ha!Ha! Québec, Canada, 18-21 July 1996 - Looking upstream at the breached dam 
(Courtesy of Natural Resources Canada) 
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Modern predictions of dam break wave rely too often on numerical predictions, validated with 
limited data sets. Albeit major research funding and "concerted actions", there has been a lack of 
basic theoretical and physical studies for the past 40 years. Despite a few studies (DRESSLER 
1954, ESCANDE et al. 1961, CHANSON 2004c,d), current knowledge of dam break wave surging 
down rough surfaces remains rudimentary. Further there is still some arguments of the flow 
fundamentals. Some basic findings have been sometimes contradictory. For example, some 
measurements highlighted a boundary layer region in the surging wave leading edge (e.g. MANO 
1984, DAVIES 1988, FUJIMA and SHUTO 1990, CHANSON 2004d), while others indicated 
quasi-uniform vertical velocity distributions (ESTRADE 1967, WANG 2002, JENSEN et al. 2003, 
WOOD et al. 2003). 
 

1.2 BASIC EQUATIONS 
A dam break wave is the flow resulting from a sudden release of a mass of fluid in a channel. In this 
section, the basic equations for unsteady open channel flow are first described. 
In unsteady open channel flows, the velocities and water depths change with time and longitudinal 
position. For one-dimensional applications, the continuity and momentum equations yield the Saint-
Venant equations. They are named after the French engineer Adhémar Jean Claude BARRÉ de 
SAINT-VENANT (BARRÉ de SAINT-VENANT 1871a,b). The application of the Saint-Venant 
equations is limited by some basic assumptions : (1) the flow is one dimensional; (2) the streamline 
curvature is very small and the pressure distributions are hydrostatic; (3) the flow resistance are the 
same as for a steady uniform flow for the same depth and velocity; (4) the bed slope is small 
enough to satisfy : cosθ ≈ 1 and sinθ ≈ tanθ ≈ θ; (5) the water density is a constant; and (6) the 
channel has fixed boundaries, and air entrainment and sediment motion are neglected. 
With these hypotheses, the unsteady flow can be characterised at any point and any time by two 
variables: e.g., V and d where V is the flow velocity and d is the water depth (e.g. LIGGETT 1994, 
MONTES 1998, CHANSON 2004a,b). The unsteady flow properties are described by a system of 
two partial differential equations : 

 
∂ d
∂t   +  

A
B * 

∂ V
∂x   +  V * 

∂ d
∂x   +  

V
B * 







∂ A

∂x d=constant
  =  0 (1-1) 

 
∂ V
∂t   +  V * 

∂ V
∂x   +  g * 

∂ d
∂x   +  g * (Sf  -  So)  =  0 (1-2) 

where t is the time, x is the streamwise co-ordinate, A is the cross-section area, B is the free-surface 
width, So is the bed slope (So = sinθ), θ is the angle between the bed and the horizontal, with θ > 0 
for a downward slope, and Sf is the friction slope. The friction slope is defined as : 
Sf = f/2*V2/(g*DH) where DH is the hydraulic diameter and the Darcy friction factor f is a non-
linear function of both relative roughness and flow Reynolds number. Equation (1-1) is the 
continuity equation and Equation (1-2) is the dynamic equation. 
The Saint-Venant equations cannot be solved analytically usually because of non-linear terms and 
complicated functions. Examples of non-linear terms include the friction slope Sf while 
complicated functions include the flow cross-section A(d) and free-surface width B(d) of natural 
channels. A mathematical technique to solve the system of partial differential equations formed by 
the Saint-Venant equations is the method of characteristics. It yields a characteristic system of 
equations : 

 
D
Dt(V  +  2 * C)  =  - g * (Sf  -  So) forward characteristic  (1-3a) 

 
D
Dt(V  -  2 * C)  =  - g * (Sf  -  So) backward characteristic  (1-3b) 
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along : 

 
d x
dt   =  V  +  C forward characteristic C1  (1-4a) 

 
d x
dt   =  V  -  C backward characteristic C2  (1-4b) 

where C is the celerity of a small disturbance for an observer travelling with the flow : C = g*A/B
. For an observer travelling along the forward characteristic, Equation (1-3a) is valid at any point. 
For an observer travelling on the backward characteristic, Equation (1-3b) is satisfied everywhere. 
The system of four equations formed by Equations (1-3) and (1-4) represents the characteristic 
system of equations that replaces the differential form of the Saint-Venant equations. 
 

1.3 STRUCTURE OF THE REPORT 
This report describes a series of theoretical analyses of dam break wave. It is based upon the 
developments of simple analytical solutions for instantaneous dam break wave of the Saint-Venant 
equations and method of characteristics. In the next section, well-known analytical solutions are 
presented. In section 3, ideal-fluid flow solutions of the dam break wave problem are developed. 
Section 4 introduces new simple analytical solutions for dry horizontal and sloping channels with 
turbulent flow motion. These are applied in Section 6 and the results are compared with ideal fluid 
flow solutions. Section 5 presents new analytical solutions of laminar dam break wave motion. 
It is the aim of this work to provide simple explicit solutions of dam break wave problems for 
turbulent and laminar flows that are easily understood by students, young researchers and 
professionals. Such simple solutions may also provide simple expressions to validate the 
development and use of numerical models. 
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2. A BIBLIOGRAPHIC REVIEW 

2.1 PRESENTATION 
Major dam break catastrophes include the failures of the Puentes dam (Spain, 1802), Dale Dyke 
dam (UK, 1864), Habra dam (Algeria, 1881), South Fork (Johnstown) dam (USA, 1889), Bouzey 
dam (France, 1895), St Francis dam (USA 1928) and Malpasset dam (France, 1959) (Fig. 2-1). 
Figure 2-1 shows the remains of the Malpasset dam in 2004. The photograph may be compared 
with the cover page photograph (page i) taken in 1981. Both show that little changed in the valley 
since the aftermath of the event. These dam failures motivated basic studies on the dam break wave, 
including the milestone contribution by RITTER (1892). 
In this section, three well-known analytical solutions of instantaneous dam break waves are 
presented : RITTER' (1892) solution for an ideal fluid flow on a horizontal channel with a semi-
infinite reservoir, WHITHAM's (1955) development for a real-fluid flow on a horizontal channel 
with a semi-infinite reservoir, and HUNT's (1982,1984) solution for a real-fluid flow down a 
sloping channel. Note that all analytical solutions assume an instantaneous dam break. Such an 
approximation is often reasonable for concrete dam failures (e.g. Fig. 2-1). 
 
Fig. 2-1 - Photograph of the Malpasset dam (Failure on 2 December 1959) in September 2004 
(Courtesy of Sylvia BRIECHLE) - View from the left abutment of the dam wall ruins - More than 
300 people died in the catastrophe 
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2.2 DAM BREAK ON A DRY, HORIZONTAL, FRICTIONLESS CHANNEL : RITTER'S (1892) 
SOLUTION 
Considering an ideal dam break surging over a dry river bed, the method of characteristics may be 
applied to solve completely the wave profile as first proposed by RITTER in 1892 (e.g. 
HENDERSON 1966, MONTES 1998). RITTER's (1892) work was initiated by the South Fork 
dam's (Johnstown) catastrophe. LEVIN (1952) argued that BARRÉ de SAINT-VENANT (1871a,b) 
solved this problem. This is not strictly correct, but the extension of the reasoning of BARRÉ de 
SAINT-VENANT (1871a) yields indeed Ritter's solution for an instantaneous dam break wave in a 
dry channel. 
The dam break may be idealised by a vertical wall that is suddenly removed (Fig. 2-2). After 
removal of the wall, a negative wave propagates upstream and a dam break wave moves 
downstream. In the reservoir, upstream of the negative wave leading edge, the water depth is 
constant d = do and the velocity is zero. Although there is considerable vertical acceleration during 
the initial instants of fluid motion, such acceleration is not taken into account by the method of 
characteristics and the pressure distributions are assumed hydrostatic. 
For an ideal dam break over a dry horizontal two-dimensional channel with a semi-infinite 
reservoir, the basic equations are : 

 
D
Dt(V  +  2 * C)  =  0 forward characteristic  (2-1a) 

 
D
Dt(V  -  2 * C)  =  0 backward characteristic  (2-1b) 

along : 

 
d x
dt   =  V  +  C forward characteristic C1  (2-2a) 

 
d x
dt   =  V  -  C backward characteristic C2  (2-2b) 

Equations (2-1) and (2-2) mean that (V+2*C) is a constant along a forward characteristic whose 
trajectory is given by Equation (2-2a). Along a backward characteristic (trajectory given by Eq. (2-
2b)), (V-2*C) is a constant. The characteristic curves are often drawn in the (x,t) plane as shown in 
Figure 2-2, where the horizontal axis is the longitudinal distance x from the dam and the vertical 
axis is the time t from dam break. 
The instantaneous dam break creates a negative wave propagating upstream into a fluid at rest with 
known water depth. In the (x, t) plane, the initial negative wave characteristic has a slope dt/dx = -
1/Co where Co = g*do for a rectangular channel (Fig. 2-2). On the initial backward characteristic, 
V = 0 and C = Co everywhere. Hence, on any forward characteristic issuing from the initial 
backward characteristic for t > 0, V + 2*C = 2*Co. In the {x, t} plane (Fig. 2-2 bottom), the slope 
of the forward characteristic is : 

 
d t
dx  =  

1
2 * Co  -  g * d

  

Along each forward characteristic, the water depth decreases with increasing distance x: i.e., ∂d/∂x 
< 0. The forward characteristic is a concave curve and its slope tends to dt/dx = 1/(2*Co) (1)  (Fig. 
2-2). The forward characteristic issuing from the origin (x = 0, t = 0) propagates downstream while 

                                                 
1The equation of the forward charactersitics issuing from the initial backwavard characteristic for 
tE1 > 0 is (HOGG, A.J. (2005), Person. Comm.): 

 
x
do

  =  2 * 
g
do

 * t  -  3 * 
g
do

 * tE1
2/3 * t1/3 
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satisfying : 
 V  +  2 * C  =  2 * Co  

and d = 0 (hence C = 0) at the leading edge of the dam break wave front. The propagation speed of 
the dam break wave front equals : 
 U  =  2 * g * do (2-3) 

The forward characteristic issuing from (x = 0, t = 0) is basically a straight line as sketched in 
Figure 2-2 (2). Considering any backward characteristic issuing from the dam break wave front 
(Fig. 2-2, trajectory F1-G1), the C2 characteristics are straight lines because the initial backward 
characteristic is a straight line (HENDERSON 1966). The inverse slope of each backward 
characteristic is a constant : 

 
d x
dt   =  V  -  C  =  2 * Co  -  3 * C 

The integration of the inverse slope gives the water surface profile at the intersection of the C2 
characteristics with a horizontal line t = constant (Fig. 2-1, point G1). That is, at a given time, the 
free-surface profile between the leading edge of the negative wave and the wave front is a parabola: 

 
x

t * g * do
  =  2  -  3 * 

d
do

 for  - 1  ≤  
x

t * g * do
  ≤  +2  (2-4) 

At the origin (x = 0), Equation (2-4) predicts a constant water depth : 

 
d(x=0)

do
  =  

4
9 (2-5) 

Similarly the velocity at the origin is deduced as : 

 
V(x=0)

g *do
  =  

2
3 (2-6) 

After dam break, the flow depth and velocity at the origin are both constants, and the water 
discharge per unit width at x = 0 equals : 

 
q(x=0)

g * do
3
  =  

8
27 (2-7) 

Basically critical flow conditions occur at x = 0 for t > 0. 
Note that BARRÉ de SAINT-VENANT (1871a) proposed first the parabolic free-surface profile 
(Eq. (2-4)) for a frictionless surge in a horizontal channel. Although he assumed an initial water 
depth, his reasoning is valid for both initially-dry and initial-water depth situations as discussed in 
section 3.2. 
 
Remarks 
The parabolic free-surface profile (Eq. (2-4)) may be sometimes rewritten as in terms of the celerity 
of small disturbance C and of the water depth d : 

 
C
Co

 =  
1
3 * 







2  -  

x
t * g * do

 for  - 1  ≤  
x

t * g * do
  ≤  +2  (2-8) 

 
d
do

  =  
1
9 * 







2  -  

x
t * g * do

2
 for  - 1  ≤  

x
t * g * do

  ≤  +2  (2-9) 

Along the parabolic free-surface profile, the flow velocity V equals : 

                                                 
2The straight line issuing from the origin (x = 0, t = 0) is a singularity line. 
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V

g * do
 =  

2
3 * 







1  +  

x
t * g * do

 for  - 1  ≤  
x

t * g * do
  ≤  +2  (2-10) 

 
Fig. 2-2 - Sketch of a dam break wave in a dry horizontal channel with zero initial velocity 
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2.3 DAM BREAK IN A DRY HORIZONTAL CHANNEL WITH BED FRICTION: WHITHAM'S 
(1955) SOLUTION 
2.3.1 Basic equations 
Experimental observations showed that the flow properties were well approximated by RITTER's 
theory between the most upstream extent of the initial backward characteristic and a flow region 
immediately upstream of the dam break wave leading tip (DRESSLER 1952,1954, WHITHAM 
1955, ESTRADE 1967). WHITHAM (1955) developed an analytical solution of dam break wave 
with bed friction in a horizontal, prismatic, wide rectangular channel with a semi-infinite reservoir. 
WHITHAM considered the dam break wave as an ideal fluid flow for x ≤ x1 and a "boundary 
layer" region in the wave tip (Fig. 2-3). He analysed the wave tip region using an integral method 
(3). The transition between the ideal dam break wave profile and the wave tip is denoted point F2 
and shown in Figure 2-3. Point F2 is located at x = x1 where the flow depth is d1 and the velocity is 
V1. 
                                                 
3WHITHAM (1955) suggested that his method was based upon the Pohlhausen technique. The 
method developed by POHLHAUSEN in 1921 is based upon an integral treatment of the boundary 
layer, and the approximation of the velocity distribution by a polynomial of degree 4 
(SCHLICHTING 1979, pp. 201-214; COMOLET 1976, pp. 177-182). In WHITHAM's 
development, the velocity distribution is assumed uniform and constant in the wave tip region. 
WHITHAM (1955) considered the wave tip as a "boundary layer", but the analogy is limited ! 
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Dam removal takes place at t = 0 and the dam wall is located at x = 0. The dam break is idealised 
by a vertical wall that is suddenly removed (Fig. 2-3). In the reservoir, upstream of the leading edge 
of the negative wave, the water depth is constant and the velocity is zero. 
For x ≤ x1, the mathematical treatment is identical to that developed in paragraph 2.2. In the wave 
tip region (x1 ≤ x ≤ xs), the continuity equation yields : 

 
d M
dt   =  ρ * d1 * 








V1  -  
d x1
dt  Wave tip region  (2-11) 

where M is the mass of water in the wave tip region per unit width, ρ is the fluid density, and d1, 
V1 and x1 are respectively the flow depth, velocity and location of the point F2 (Fig. 2-3). 
The momentum principles gives : 

 
d Φ
dt   =  ρ * V1 * d1 * 








V1 - 
d x1
dt   + ΣForces Wave tip region  (2-12) 

where Φ is the total momentum in the wave tip region per unit width and ΣForces is the resultant of 
the forces applied to the control volume (i.e. wave tip region) in the horizontal direction per unit 
width. The latter includes the pressure force at x = x1 and the bottom flow resistance (Fig. 2-3) : 

 ΣForces  =  
1
2 * ρ * g * d1

2  -  
⌡
⌠

x1 

 xs
f
8 * ρ * V2 * dx (2-13) 

where f is the Darcy-Weisbach friction factor. 
At point F2 (x = x1), the water depth must satisfy the ideal fluid flow solution that is valid between 
the upstream extent of the initial backward characteristics and the point F2 : 

 
g * d1
g * do

  =  
1
3 * 









2  -  
x1

t * g * do
 (2-8) 

 
V1
g * do

  =  
2
3 * 









1  +  
x1

t * g * do
 (2-10) 

These two equations may be transformed to express d1 and x1 as functions of V1: 

 
d1
do

  =  








1  -  
1
2 * 

V1
g * do

2
 (2-14) 

 
x1

t * g * do
  =  







3

2 * 
V1
g * do

  -  1  (2-15) 

The integral form of the continuity equation for the wave tip region may then be integrated between 
t = 0 when M = 0 and a time t. It yields : 

 M  =  ρ * g * do
3 * 









1  -  
V1

2 * g * do

3
 * t Mass of fluid in wave tip  (2-16) 

Importantly, the mass of fluid in the wave tip region (i.e. x1 ≤  x ≤ xs) equals the mass of fluid for 
(x1 ≤ x ≤ 2* g*do*t) in the ideal fluid flow profile. That is, it satisfies : 

 M  =  
⌡

⌠

x1 

 2* g*do*t

1
9 * g * 



2 * g * do  -  

x
t

2
 * dx (2-17) 



10 

 
Fig. 2-3 - Sketch of a dam break wave in a horizontal dry channel with bottom friction (Whitham's 
solution) 
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2.3.2 Analytical solution 
Up to this stage, WHITHAM's (1955) development makes no assumption on the velocity field in 
the wave tip region nor on the boundary friction distribution. In the following, the velocity in the 
wave tip region is assumed to be the shock wave celerity U (i.e. U = V1) while the Darcy friction 
factor is assumed constant in the wave tip region. 
Since the velocity is constant in the wave tip region, the momentum in the wave tip region equals : 
Φ = M*U and the variations with time of the momentum Φ equals : 

 
d Φ
dt   = M * 

d U
dt   +  U * 

d M
dt  (2-18) 

Combining with the continuity equation, it yields : 

 U * 
d M
dt   =  

1
2 * ρ * g * d1

2  -  
⌡
⌠

x1 

 xs
f
8 * ρ * U2 * dx Wave tip region  (2-19) 

Assuming a constant Darcy friction factor in the wave tip region, the momentum equation can be 
simplified as : 

 U * 
d M
dt   =  

1
2 * ρ * g * d1

2  -  
f
8 * ρ * U2 * (xs - x1) Wave tip region  (2-20) 

Replacing x1, d1, M by their expression in terms of the wave front celerity (i.e. Eq. (2-15), (2-14) 
and (2-16) respectively), the momentum equation yields: 
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





1  -  

1
2 * 

U
g*do

3
 * t * 

d U
dt

g * do
  =  

1
2 * 







1  -  

1
2 * 

U
g*do

4
 

    -  
f
8 * 







U

g*do

2
 * 






xs

do
  -  

g
do

 * t * 






3

2 * 
U
g*do

  -  1   (2-21) 

Noting that U = dxs/dt, the momentum equation may be rewritten as a differential equation in terms 
of the wave front location xs using the dot notation for derivatives (4): 

 










1  -  
1
2 * 

xs
•

g*do

3

 * t * 
xs
••

g * do
  =  

1
2 * 











1  -  
1
2 * 

xs
•

g*do

4

 

    -  
f
8 * 









xs

•

g*do

2

 * 








xs

do
  -  

g
do

 * t * 










3
2 * 

xs
•

g*do
  -  1   (2-22) 

Two new dimensionless variables X and T are then introduced: 

 X  =  
f
8 * 









2 * 
g
do

 * t  -  
xs
do

 (2-23) 

 T  =  
f
8 * 

g
do

 * t (2-24) 

X is proportional to the dimensionless distance that the wave front lags behind the ideal fluid flow 

solution, and T is a dimensionless time. Denoting X•  = dX/dT and X•• = dX2/dT2, the derivatives of 
X equal : 

 X•   =  2 * 










1  -  
1
2* 

xs
•

g*do
 (2-25) 

 X••  =  - 
8

g * f * xs
•• (2-26) 

since : 

 X•   =  
d X
dt  * 

d t
dT 

 
d t
dT  =  

8
f * 

do
g  

and where xs
•  = dxs/dt and xs

•• = dxs2/dt2. 
The momentum equation may be transformed in terms of X and T : 

 - 
X•3

8  * T * X••  =  
X•4

32  -  (2 - X• )2 * 



3

2 * T * X•   -  X  (2-27) 

WHITHAM (1955) solved this differential equation using a Taylor expansion. The first seven terms 
are: 

 T  =  0.02431 * (X• )3  +  0.02163 * (X• )4   +  0.01496 * (X• )5  +  0.00941 * (X• )6 
                                                 
4Note a typographic error in WHITHAM's (1955) Equation (17). In the present development, the 
first term in the right handside of the equation starts with 1/2. 
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    + 0.00563 * (X• )7  +  0.00327 * (X• )8  +  0.00186 * (X• )9  +  ...  (2-28) 

where X•  = dX/dT : 

 X•   =  2 * 










1  -  
1
2* 

xs
•

g*do
 

 
Fig. 2-4 - Dimensionless free-surface profile at t* g/do = 6.44 assuming f = 0.03 - Comparison 
between the theories of DRESSLER (1952) and WHITHAM (1955) 
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Remarks 
In the wave tip region (x1 < x < xs), the free-surface profile may be deduced from the dynamic 
wave equation : 

 
∂ U
∂t   +  g * 

∂ d
∂x   +  

f
8 * 

U2
d   =  0 Dynamic wave equation 

since ∂V/∂x = 0 in the wave tip region where V = U. Note that U = xs
•  = dxs/dt and dU/dt = xs

•• = 
dxs2/dt2. 
At a given time t, U and dU/dt are known constants independent of x. The integration of the 
dynamic wave equation with respect to x yields a first approximation of the instantaneous free-
surface profile : 

xs - x
do

  =  - 
f
8 * 

U2
 g * do

 * 









g

∂ U
∂t

2
 * 











Ln











1  +  
8
f * 

d
do

U2
g * do

 * 

∂ U
∂t
g   -  

8
f * 

d
do

U2
g * do

 * 

∂ U
∂t
g  

  Wave front profile  (2-29) 

An application of Equation (2-29) is shown on Figure 2-4 where the results are compared with the 
analytical results of DRESSLER (1952) for the same flow resistance and at the same dimensionless 
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time (see below). 
 
2.3.3 Discussion : comparison with DRESSLER's (1952) theory 
DRESSLER (1952) presented another solution for the dam break wave on a dry, two-dimensional, 
horizontal channel with a semi-infinite reservoir. His development is based upon the complete 
Saint-Venant equations : 

 
∂ d
∂t   +  d * 

∂ V
∂x   +  V * 

∂ d
∂x    =  0 (2-30) 

 
∂ V
∂t   +  V * 

∂ V
∂x   +  g * 

∂ d
∂x   +  g * Sf  =  0 (2-31) 

where the friction slope Sf is : 

 Sf  =  
f
8 * 

V2
g * d 

for a wide rectangular channel and f is the Darcy friction factor. 
DRESSLER (1952) used a perturbation method to solve Equations (2-30) and (2-31) assuming a 
constant friction factor f. His first order correction for the flow resistance gives the velocity and 
celerity at any position : 

 
V

g * do
  =  

2
3 * 







1  +  

x
t * g * do

  +  F1 * 
f
8 * 

g
do

 * t (2-32) 

 
C

g * do
  =  

1
3 * 







2  -  

x
t * g * do

  +  F2 * 
f
8 * 

g
do

 * t (2-33) 

where f is the Darcy friction factor. The functions F1 and F2 are respectively : 

 F1  =  -  
108

7 * 






2  -  

x
t * g * do

2  +  
12

2  -  
x

t * g * do

  -  
8
3  +  

8 * 3
189  * 







2  -  

x
t * g * do

3/2
 

  (2-34) 

 F2  =  
6

5 * 






2  -  

x
t * g * do

  -  
2
3  +  

4 * 3
135  * 







2  -  

x
t * g * do

3/2
 (2-35) 

At a given time t, Equation (2-32) predicts an increasing velocity V with increasing distance x 
towards the wave front and a maximum next to the wave front. DRESSLER (1952) assumed the 
location of maximum velocity as the locus of the wave front. 
Both theories of DRESSLER (1952) and WHITHAM (1955) were compared successfully with the 
experimental data of SCHOKLITSCH (1917), DRESSLER (1954) and ESTRADE (1967). Figure 
2-5 shows some comparison. The results demonstrate very close agreement between the theories of 
DRESSLER (1952) and WHITHAM (1955) despite different approaches. Figure 2-5 shows also 
close agreement with experimental observations. But WHITHAM and DRESSLER both 
highlighted the limitation of their respective theories when the wave tip region becomes large. 
Further the Darcy friction factor must be deduced from the best data fit for optimum correlation. 
The most accurate estimate of the Darcy friction factor is based upon the best data fit of 
instantaneous free-surface profiles. Lesser accurate predictions for the friction factor may be 
deduced from best fit of wave front celerity and location data. 
Recently, HOGG and PRITCHARD (2004) used WHITHAM's approach to conduct an asymptotic 
expansion for the velocity and water depth. They also included a momentum correction coefficient 
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and investigated its effect of the dam break wave properties. 
For completeness, note a best fit of WHITHAM's (1955) solution : 

 
U
g*do

  =  
2

1  +  2.90724 * 




f

8 * 
g * t2

do

0.4255 (2-36) 

 
Fig. 2-5 - Dimensionless free-surface profile : comparison between an experiment of 
SCHOKLITSCH (1917, Fig. 14), the theories of RITTER (1892), DRESSLER (1952) and 
WHITHAM (1955) for t* g/do = 108 

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

Data SCHOKLITSCH
RITTER
DRESSLER f = 0.0075
WHITHAM f = 0.0086

d/do

x/t.sqrt(g.do)

t.sqrt(g/do) = 108

 
 

2.4 DAM BREAK ON A DRY SLOPING CHANNEL WITH BED FRICTION: HUNT'S 
(1982,1984) SOLUTION 
2.4.1 Basic equations 
HUNT (1982,1984) developed a complete kinematic wave solution of the turbulent dam break 
wave down a sloping, prismatic, two-dimensional channel (Fig. 2-6). HUNT (1994) extended the 
development to laminar dam break wave. In unsteady flows, the dynamic equation (Eq. (1-2)) may 
be simplified when one or more terms become negligible. In a kinematic wave model,  the 
acceleration and inertial terms are neglected in the dynamic wave equation, and the free-surface is 
assumed parallel to the channel bottom (e.g. CHANSON 2004a,b). The differential form of the 
Saint-Venant equations is simplified as : 

 
∂ d
∂t   +  

∂ (V * d)
∂x   =  0 Continuity equation  (2-37) 

 Sf  =  So Kinematic wave equation  (2-38) 

The kinematic wave equation may be rewritten as : 

 V  =  
8 * g

f  * 
DH
4  * So (2-38b) 

where f is the Darcy-Weisbach friction factor, and DH is the hydraulic diameter (5). Equation (2-38) 
                                                 
5For a wide rectangular channel, the hydraulic diameter or equivalent pipe diameter equals : DH = 
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expresses an unique relationship between the velocity V and the water depth d, hence the cross-
section area at a given location x . 
 
Fig. 2-6 - Dam break wave down a sloping channel 
(A) Definition sketch 
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(B) Characteristics and dam break wave front path in the (x, t) plane 
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4*d where d is the flow depth. 
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For a wide rectangular channel, the combination of the continuity and momentum equations yields : 

 
∂ d
∂t   +  

3
2 * 

8 * g
f  * So * d * 

∂ d
∂x   =  0 (2-39) 

Equation (2-39) maybe rewritten as : 

 
D d
Dt   =  0 (2-41) 

along the characteristic trajectory : 

 
d x
dt   =  

3
2 * 

8 * g
f  * So * d Characteristic trajectory  (2-42) 

where D/Dt characterises the absolute differentiation operator. 
For a turbulent flow assuming a constant Darcy friction factor, the integration of Equations (2-41) 
and (2-42) gives : 
 d  = constant (2-43) 

along 

 x  =  
3
2 * 

8 * g
f  * So * d * t  +  constant (2-44) 

Equation (2-44) shows that the forward characteristics are straight lines since d and f are constants, 
as sketched in Figure 2-6B. 
The boundary conditions include the conservation of mass : 

 ⌡⌠
x=-Lres 

 xs
d * dx  =  

1
2 * Hdam * Lres * cosθ  =  

1
2 * do * Lres (2-45) 

where Lres is the reservoir length, Hdam is the dam height, do is the initial reservoir height 
measured normal to the chute invert and xs is the wave front position (Fig. 2-6). Considering the 
forward characteristic d = constant issued from the initial backward characteristic, its trajectory is : 

 x  =  
3
2 * 

8 * g
f  * So * d * t (2-46) 

Combining Equations (2-45) and (2-46), it yields the location xs of the shock (i.e. dam break wave 
front) and its celerity U as sketched in Figure 2-6B. 
 
2.4.2 Complete solution for turbulent flows 
HUNT's analysis yields a system of three equations : 

 
VH * t
Lres

  =   
1  -  







ds

Hdam

2







ds

Hdam

3/2  (2-47) 

 
xs

Lres
  =  

3
2
ds

Hdam

  -  
1
2 * 

ds
Hdam

  -  1 (2-48) 
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U

VH
  =  - 

3
4 * 

VH * t
Lres

  +  
xs + Lres

Lres
  +  







3

4 * 
VH * t
Lres

2
 (2-49) 

where t is the time with t = 0 at dam break, ds is the dam break wave front thickness, xs is the dam 
break wave front position measured from the dam site, Cs is the wave front celerity, Hdam is the 
reservoir height at dam site, L is the reservoir length, and So is the bed slope, So = Hdam/Lres (Fig. 
2-6). The velocity VH is the uniform equilibrium flow velocity for a water depth Hdam : 

 VH  =  
8*g

f  * Hdam * So (2-50) 

where f is the Darcy friction factor which is assumed constant. Equations (2-47), (2-48) and (2-49) 
are valid for So = Sf where Sf is the friction slope, and when the free-surface is parallel to the 
bottom of the sloping channel. Equation (2-48) may be transformed : 

 
ds

Hdam
  =  

3
2 * 

Lres
xs  -  Lres

 for xs/Lres > 4  (2-48b) 

HUNT (1984,1988) developed an analytical expression of the shock front shape : 

 
x  -  xs
Lres

  =  
ds

Hdam
 * 






d

ds
  +  Ln







1  -  

d
ds

  +  
1
2  (2-51) 

where d is the depth (or thickness) measured normal to the bottom, and ds and xs may be calculated 
using Equations (2-47) and (2-48) respectively. Note that Equation (2-51) applies only to the 
rounded nose of the shock. 
 
2.4.3 Discussion 
The above development is valid for turbulent dam break waves. HUNT (1982) showed that the 
assumption is valid after the wave front travelled approximately four reservoir lengths downstream 
of the gate : i.e., xs/Lres > 4. The assumption is not valid in the initial instants after dam break nor 
until the free-surface becomes parallel to the chute invert. HUNT (1984) commented however that 
his approach could be adapted for xs/Lres < 4 : "it is possible that an approach similar [...] could 
be used to route the flood downstream and that the result might be valid even for relatively small 
distance downstream". The dynamic wave equation is simplified by neglecting acceleration and 
inertial terms, and the free-surface is assumed parallel to the channel bottom (So ≈ Sf). The 
kinematic wave approximation gives the relationship between the velocity and the water depth : 

 V  =  VH * 
d

Hdam
 (2-52) 

Once the flood wave has travelled approximately four lengths of reservoir downstream of the dam 
site, the free-surface profile of the dam break wave follows : 

 
x  +  Lres

Lres
  =  

d
Hdam

  +  
3
2 * 

VH * t
Lres

 * 
d

Hdam
 for  x  ≤  xs  and  xs/L  >  4  (2-53) 

The elegant development of HUNT (1982, 1984) was verified by several series of experiments (e.g. 
HUNT 1984, NSOM et al. 2000). Importantly, it was found to be robust and applicable to a wide 
range of flow situations including turbulent flow motion on smooth and very-rough inverts (HUNT 
1984, CHANSON 2004c,d), laminar flow motion (HUNT 1994, DEBIANE 2000), and even non-
Newtonian thixotropic fluid flows with some extension (CHANSON et al. 2004). 
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3. IDEAL-FLUID FLOW SOLUTIONS OF THE DAM BREAK PROBLEM 

3.1 PRESENTATION 
An understanding of one-dimensional and two-dimensional flow of ideal fluid provides the 
engineer with a broader approach to real-fluid flow situations. Although no ideal fluid actually 
exists, many real fluids have small viscosity and the effects of compressibility may be small. 
Practical applications include the motion of a dam break wave (Fig. 3-1) surging down an 
horizontal plane (RITTER's solution) for which an ideal fluid flow solution is directly applicable, 
but for the initial instants and in the leading edge of the surging waters. 
For an ideal fluid flow, the Saint-Venant equations may be simplified since the flow resistance, 
hence the friction slope, are zero : 

 
∂ d
∂t   +  

A
B * 

∂ V
∂x   +  V * 

∂ d
∂x   +  

V
B * 







∂ A

∂x d=constant
  =  0 Continuity equation  (3-1) 

 
∂ V
∂t   +  V * 

∂ V
∂x   +  g * 

∂ d
∂x   -  g * So  =  0 Dynamic equation  (3-2) 

where So is the bed slope (So = sinθ), θ is the angle between the bed and the horizontal, with θ > 0 
for a downward slope. It yields a characteristic system of equations : 

 
D
Dt(V  +  2 * C)  =  g * So forward characteristic  (3-3a) 

 
D
Dt(V  -  2 * C)  =  g * So backward characteristic  (3-3b) 

along : 

 
d x
dt   =  V  +  C forward characteristic C1  (3-4a) 

 
d x
dt   =  V  -  C backward characteristic C2  (3-4b) 

Basically (V + 2*C - g*So*t) is constant along a forward characteristic while (V - 2*C - g*So*t) is 
a constant on each backward characteristic for a constant slope channel. 
 
Simple wave theory 
Simple solutions of the Saint-Venant equations may be developed for a "simple wave". A simple 
wave is defined as a wave for which (So = Sf = 0) with initially constant water depth and flow 
velocity. An example is the dam break wave on a horizontal, friction channel (RITTER's solution). 
The characteristic system of equations for a simple wave is : 

 
D
Dt(V  +  2 * C)  =  0 forward characteristic  (3-5a) 

 
D
Dt(V  -  2 * C)  =  0 backward characteristic  (3-5b) 

along : 

 
d x
dt   =  V  +  C forward characteristic C1  (3-6a) 

 
d x
dt   =  V  -  C backward characteristic C2  (3-6b) 

In simple terms, (V+2*C) is a constant along the forward characteristic. For an observer moving at 
the absolute velocity (V + C), the term (V + 2*C) is constant. Similarly (V - 2*C) is constant along 
the backward characteristic. When the characteristic trajectories can be plotted in the (x, t) plane, 
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they represent the path of the observers travelling on the forward and backward characteristics. On 
each forward characteristic, the slope of the trajectory is 1/(V+C) and (V+2*C) is a constant along 
the characteristic trajectory. Altogether the characteristic trajectories form contour lines of (V+2*C) 
and (V-2*C). 
In a simple wave problem (So = Sf = 0), a family of characteristic trajectories is a series of straight 
lines if any one curve of the family (i.e. C1 or C2) is a straight line (HENDERSON 1966). For the 
dam break wave on a horizontal, frictionless channel, the initial backward characteristic is a straight 
line (section 2.2). Hence all backward characteristics are straight lines. 
Note that the locations of the dam break wave front form a singularity line, which might be 
considered as a forward characteristic trajectory in RITTER's solution. 
 
Fig. 3-1 - Photograph of the Möhne dam break (17 May 1943) - View from the left bank 
 

 
 

3.2 DAM BREAK IN A FRICTIONLESS HORIZONTAL CHANNEL INITIALLY FILLED 
WITH WATER WITH NON-ZERO INITIAL VELOCITIES 
3.3.1 Presentation 
Although many developments consider an initially dry channel, some practical applications 
comprise situations where some fluid is at rest or in motion in the downstream channel. It is 
however a different situation from an initially dry channel bed because the dam break wave is led 
by a positive surge (Fig. 3-2). In other words, a dam break wave on a dry bed is not comparable to a 
dam break wave propagating over some water, and the shock front is a totally different process (see 
Applications in Section 5.). This problem was solved by BARRÉ de SAINT-VENANT (1871b) for 
a rising tide in a channel with initial water depth. 
Considering the propagation of a dam break wave over a layer water, the initial downstream depth 
d3 satisfies d3 > 0 and the initial velocity is V3 (Fig. 3-2). Further the flow velocity behind the dam 
is Vo for t < 0 and the dam wall advances at a translation speed Vo prior to dam removal. Dam 
removal takes place at t = 0 when the dam is located at x = 0. The dam break is idealised by a 
vertical wall that is suddenly removed (Fig. 3-2). 
The basic flow equations are the characteristic system of equations, and the continuity and 
momentum equations across the positive surge front. That is : 

 
D
Dt(V  +  2 * C)  =  0 along 

d x
dt   =  V  +  C  (forward characteristic)  (3-5a) 
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D
Dt(V  -  2 * C)  =  0 along 

d x
dt   =  V  -  C  (backward characteristic)  (3-5b) 

 d1 * (U + V3)  =  d2 * (U  -  V2) Continuity equation  (3-7) 

 d2 * (U - V2)2  -  d3 * (U + V3)2  =  
1
2 * g * d3

2  -  
1
2 * g * d2

2 

  Momentum equation  (3-8) 

where U is the positive surge celerity for an observer fixed on the channel bank, and the subscripts 
3 and 2 refer respectively to the flow conditions upstream and downstream of the positive surge 
front: i.e., initial flow conditions and new flow conditions behind the surge front (Fig. 3-2). Note 
that V3 is positive upstream while Vo, V2 and U are positive in the downstream direction (Fig. 3-
2). 
 
Fig. 3-2 - Sketch of a dam break wave in a horizontal channel initially filled with water 
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For the positive surge, the continuity and momentum equations yield : 
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d2
d3

  =  
1
2 * 



1  +  8 * Fr3

2  -  1  (3-9) 

 Fr2  =  
23/2 * Fr3





1 + 8 * Fr3

2  -  1
3/2 (3-10) 

where the surge Froude numbers Fr1 and Fr2 are defined as : 

 Fr1  =  
U + V3

g * d3
 upstream surge Froude number 

 Fr2  =  
U - V2

g * d2
 downstream surge Froude number 

Immediately after the dam break, a negative surge propagates into the reservoir with known water 
depth do and velocity Vo. In the (x, t) plane, the initial negative wave characteristic has a slope 
dt/dx = -1/(Co-Vo) where Co = g*do assuming a rectangular channel (Fig. 3-2). The initial 
backward characteristic is a straight line, hence all the C2 characteristics are straight lines. 
For t > 0, the forward characteristics issuing from the initial backward characteristics cannot 
intersect the downstream water level (d = d3) because it would involve a discontinuity in velocity. 
The velocity in the downstream channel is a constant (V = V3) but, on the forward characteristics, it 
satisfies : 
 V  +  2 * C  =  Vo  +  2 * Co (3-11) 

Such a discontinuity in flow velocity and depth can only take place as a positive surge which is 
sketched in Figure 3-2. 
 
3.2.2 Detailed solution 
Considering a horizontal, rectangular channel, the water surface is horizontal and the water depth 
equals do upstream of the leading edge of the negative wave (Fig. 3-2, left of point E1). Between 
the leading edge of the negative wave (point E1) and the point E2, the free-surface profile is a 
parabola: 

 
x
t   =  Vo  +  2 * g * do  -  3 * g * d xE1  ≤ x ≤ xE2  (3-12) 

and the location of the point E1 is given by : 
 xE1  =  (Vo  -  Co) * t (3-13) 
Between the point E2 and the positive surge (point E3), the free-surface profile is horizontal. The 
flow depth d2 and velocity V2 must satisfy the continuity and momentum equations across the 
positive surge front, as well as the condition along the C1 forward characteristics issuing from the 
initial negative characteristic and reaching point E2 : 
 V2  +  2 * g * d2  =  Vo  +  2 * g * do Forward characteristics  (3-14) 

The combination of Equation (3-14) and of the continuity and momentum equations across the 
surge front (Eq. (3-7) and (3-8)) forms a system of three equations with three unknowns V2, d2 and 
U. The system of equations may be solved graphically. 
Once the positive surge forms (Fig. 3-2), the locations of the points E2 and E3 satisfy respectively: 
 xE2  =  (V2  -  C2) * t (3-15) 

 xE3  =  U * t (3-16) 

where C2 = g*d2 for a rectangular channel. It can be shown that the surge front (point E3) 
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advances faster than the point E2. 
The surge celerity U satisfies : 

 
do
d3

 * 








1  + 
1
2 * 

Vo
g*do

  =  
1
2 * 

U
g * d3

 * 



1 - 

1
X   -  

1
2 * 

V3
g * d3

 * 
1
X  +  X (3-17) 

where 

 X  = 
1
2 * 











1  +  8 * 
(U + V3)2

g * d3
   -  1  (3-18) 

Note that X = d2/d3 and that the flow conditions behind the surge front (d2, V2) are deduced from 
the quasi-steady flow analogy (Eq. (3-7) to (3-10)). 
The above result shows that the dimensionless surge velocity U/ g*d3 is a function of the ratio 
do/d3 and of the initial flow Froude numbers Vo/ g*do and V3/ g*d3. For Vo > 0 and V3 = 0, 
the above result shows a faster surge celerity for a given ratio do/d3 than for Vo = V3 = 0. The 
latter solution is commonly treated in textbooks (e.g. HENDERSON 1966, MONTES 1998, 
CHANSON 2004a,b). 
 
Fig. 3-3 - Graphical solution of the flow conditions for a dam break wave in a horizontal channel 
initially filled with water and with zero initial velocity (Vo = V3 = 0) (after CHANSON 2004b) 
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3.3 Discussion 
Experimental observations compared well with the above development, and they showed that 
bottom friction is negligible. Experimental evidences included BAZIN (1865b, pp. 536-553) (see 
also DARCY and BAZIN 1865), SCHOKLITSCH (1917), CAVAILLE (1965) (6), ESTRADE 
(1967) and more recently CHANSON et al. (2002). Interestingly, BAZIN (1865b) repeated 
experiments in a large canal with different initial conditions. 
                                                 
6CAVAILLE (1965) repeated identical experiments on smooth and rough inverts for three initial 
water depth to reservoir height ratios. 
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For the simple case of a channel initially filled with still water (V3 = 0) and with zero initial 
reservoir translation (Vo = 0), a graphical solution of the basic equations is presented in Figure 3-3. 
Figure 3-3 shows U/ g*d3, d2/d3 and V2/ g*d2 (Right axis), and (V2-C2)/ g*d3 (Left axis) as 
functions of the ratio do/d3, where C2 = g*d2. 
 

3.3 DAM BREAK IN A DRY FRICTIONLESS HORIZONTAL CHANNEL WITH AN INITIAL 
VELOCITY 
Considering an ideal dam break surging over a dry frictionless horizontal bed, the initial flow 
velocity behind the dam is Vo (i.e. for t < 0) and the dam advances at a translation speed Vo prior to 
dam removal. Dam removal takes place at t = 0 when the dam is at x = 0. The dam break is 
idealised by a vertical wall that is suddenly removed (Fig. 3-4). After removal of the wall, a 
negative wave propagates upstream (for Vo < Co) and a dam break wave moves downstream. 
The basic equations are those of the simple wave. The instantaneous dam break creates a negative 
wave propagating upstream into a fluid with known water depth do and velocity Vo. In the (x, t) 
plane, the initial negative wave characteristic has a slope dt/dx = -1/(Co-Vo) where Co = g*do 
assuming a rectangular channel (Fig. 3-4). The initial backward characteristic is a straight line. 
Forward characteristics can be drawn issuing from the initial backward characteristic for t > 0 (Fig. 
3-4, trajectory E1-G1). On each forward characteristic, the flow conditions satisfy : 
 V  +  2 * C  =  Vo  +  2 * Co (3-19) 

because V = Vo and C = Co = g*do everywhere in the reservoir (Fig. 3-4, point E1).  
The forward characteristic issuing from the origin (x = 0, t = 0) propagates downstream while 
satisfying : 
 V  +  2 * C  =  Vo  +  2 * Co  

and d = 0 (hence C = 0) at the leading edge of the wave front. The propagation speed of the dam 
break wave front equals : 

 
U

g * do
  =  2  +  

Vo
g * do

 (3-20) 

Considering any backward characteristic issuing from the dam break wave front (Fig. 3-4, 
trajectory F1-G1), the C2 characteristic is a straight line because the initial backward characteristic 
is a straight line. The inverse slope of the backward characteristic is a constant : 

 
d x
dt   =  V  -  C  =  Vo  +  2 * Co  -  3 * C (3-21) 

The integration of the inverse slope gives the water surface profile at the intersection of the C2 
characteristic with a horizontal line t = constant (Fig. 3-4, point G1). That is, at a given time, the 
free-surface profile between the leading edge of the negative wave and the wave front is a parabola: 

 
x

t * g * do
  =  2  +  

Vo
g * do

  -  3 * 
d
do

 

  for  
Vo
g*do

 - 1  ≤  
x

t * g * do
  ≤  2  +  

Vo
g*do

  (3-22) 

At the location (x = Vo*t), the above equation predicts a constant water depth during the dam break 
wave d(x=Vo*t) = 4/9*do.  
Note that the reasoning is valid for Vo < 0 or Vo > 0, including for Vo > Co. It is a simple 
extension of RITTER's solution (paragraph 2.2). It may be compared with the solution for an initial 
non-zero downstream water depth (paragraph 3.2) with d3 > 0. 
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Fig. 3-4 - Sketch of a dam break wave in a dry frictionless horizontal channel with non-zero initial 
velocity 
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3.4 DAM BREAK WAVE ON A DRY FRICTIONLESS SLOPING UPWARD CHANNEL 
3.4.1 Basic equations 
For a dam break wave in a dry, sloping upward channel with zero initial velocity, in a prismatic, 
wide rectangular channel, the method of characteristics may be applied : 

 
D
Dt(V  +  2 * C)  =  g * So forward characteristic  (3-3a) 

 
D
Dt(V  -  2 * C)  =  g * So backward characteristic (3-3b) 

along : 

 
d x
dt   =  V  +  C forward characteristic C1  (3-4a) 

 
d x
dt   =  V  -  C backward characteristic C2  (3-4b) 

That is, (V + 2*C - g*So*t) is a constant along a forward characteristic and (V - 2*C - g*So*t) is 
constant on a backward characteristic for a constant slope channel. 
The dam break with zero initial velocity may be idealised by a vertical wall that is suddenly 
removed (Fig. 3-5). The instantaneous dam break creates a negative wave propagating upstream 
into a fluid at rest with known water depth (i.e. do at the gate). In the (x, t) plane, the initial 
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negative wave characteristic has a slope dt/dx = -1/C with C = Co for t = 0 (Fig. 3-5) (7). 
Forward characteristics can be drawn issuing from the initial backward characteristic for t > 0 (Fig. 
3-5). On the forward characteristic issuing from the origin (x = 0, t = 0), the flow conditions must 
satisfy : 
 VF1  +  2 * CF1  -  g * So * tF1  =  VO  +  2 * CO  -  g * So * tO 
    =  2 * Co  -  g * So * tE1  (3-23) 

since V = 0 at the origin (Fig. 3-5). At the leading edge of the dam break wave front, the water 
depth is zero, hence CF1 = 0, and the propagation speed of the dam break wave front equals : 
 U  =  2 * Co  +  g * So * tF1 (3-24) 

 
Fig. 3-5 - Sketch of a dam break wave in a dry, frictionless, sloping upward, rectangular channel 
with zero initial velocity 
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In dimensionless form, an estimate of the dam break wave celerity for a flat slope is : 

 
U

g * do
  =  2  +  So 

g
do

 * t (3-25) 

where So is negative for an inclined upward slope as sketched in Figure 3-5. Since U = dxs/dt, the 
location xs of the wave front is : 

 
xs

t * g * do
  =  2  +  

1
2 * So * 

g
do

 * t (3-26) 

                                                 
7For a flat slope, the initial backward characteristic propagates upstream with a celerity Co = g*do 
in first approximation. 
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Note that the dam break wave celerity becomes zero (U = 0) when : 

 
g
do

 * t  =  - 
2

So
 U = 0  (3-26) 

corresponding to 

 
(xs)max

do
  =  - 

2
So

 U = 0  (3-27) 

For an upward slope, the maximum elevation reached by the wave front runup is zmax = 2*do. The 
result is independent of the bed slope. However, this reasoning is based upon equations derived for 
the initial stage of the dam break wave on a flat slope. 
 
3.4.2 Free-surface profile 
Considering any backward characteristic issuing from the dam break wave front (Fig. 3-5, 
trajectory F1-G1), the inverse slope of the backward characteristics is : 

 
d x
dt   =  V  -  C 

Considering the point G1 at the intersection of the C2 characteristics with a forward characteristic 
issued from the initial backward characteristic (Fig. 3-5, trajectory E1-G1), the characteristic 
equations yield : 
 V  +  2 * C  -  g * So * t  =  2 * CE1  -  g * So * tE1 (3-28) 

Hence the inverse slope of the backward characteristics is : 

 
d x
dt   =  2 * CE1  -  3 * C  +  g * So *(t  -  tE1) (3-29) 

Assuming that  tE1 << t and CE1 ≈ Co (8), the integration of the inverse slope gives the water 
surface profile at the intersection of the C2 characteristics with a horizontal line t = constant (Fig. 3-
5, point G1). At a given time t, the free-surface profile between the leading edge of the negative 
wave and the wave front is : 

 
x

t * g * do
  =  2  -  3 * 

d
do

  +  
1
2 * So * 

g
do

 * t 

  for  -1  ≤  
x

t * g*do
  ≤  2 + 

1
2*So*

g
do

*t  (3-30) 

The free-surface profile may be sometimes rewritten in terms of the celerity of small disturbance C 
and of the water depth d: 
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*t  (3-31) 
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do
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1
2*So*

g
do

*t  (3-32) 

                                                 
8That is, the negative characteristics are straight lines. 
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Along the free-surface profile, the flow velocity V equals : 

 
V

g * do
 =  

2
3 * 









1  +  So * 
g
do

 * t  +  
x

t * g * do
 

  for  -1  ≤  
x

t * g*do
  ≤  2 + 

1
2*So*

g
do

*t  (3-33) 

At the dam location (x = 0), the water depth and flow velocity become functions of time. For an 
inclined upward plane, the flow rate at the dam site decreases with time : 
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g * do
3
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8
27 * 


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1
4 * 

g
do
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 * 

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


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

1  +  
g
do

 * So * t  (3-34) 

For a horizontal channel (So = 0), the results yield RITTER's solution (paragraph 2.2). 
It must be emphasised again that the development is limited to the initial stages of the dam break 
wave on a flat slope (paragraph 3.4.1). 
 

3.5 DAM BREAK WAVE ON A DRY FRICTIONLESS SLOPING UPWARD CHANNEL WITH 
SOME INITIAL VELOCITY 
3.5.1 Basic equations 
For a dam break wave in a dry, sloping upward channel with some initial velocity Vo, in a 
prismatic, wide rectangular channel, the method of characteristics may be applied. The dam break is 
idealised by a vertical wall that is suddenly removed at t = 0 when the dam wall is at x = 0. 
The instantaneous dam break creates a negative wave propagating upstream into a fluid with known 
water depth and flow velocity. During the initial stages of a dam break wave on a flat slope, it is 
reasonable to assume that the initial negative wave characteristic has a slope dt/dx ≈ -1/(Co-Vo) 
where Co = g*do. Forward characteristics can be drawn issuing from the initial backward 
characteristic for t > 0. Considering the initial forward characteristic issuing from the origin (Fig. 3-
6, trajectory O-F1), the flow conditions satisfy : 
 Vo  +  2 * Co  =  VF1  +  2 * CF1  -  g * So * tF1 (3-35) 

where Co = g*do. 
At the leading edge of the dam break wave front, the water depth is zero (i.e. CF1 = 0), and the 
propagation speed of the dam break wave front equals : 
 U  =  2 * Co  +  Vo  +  g * So * tF1 (3-36) 

In the initial stages of the dam break wave on a flat slope, the dimensionless expression of the dam 
break wave celerity is : 

 
U

g * do
  =  2  +  

Vo
g * do

  +  So 
g
do

 * t (3-37) 

where So is negative for an inclined upward slope as sketched in Figure 3-6. Since U = dxs/dt, the 
location xs of the wave front is : 

 
xs

t * g * do
  =  2  +  

Vo
g * do

  +  
1
2 * So * 

g
do

 * t (3-38) 

For an upward sloping channel, the dam break wave celerity becomes zero (U = 0) when : 

 
g
do

 * t  =  - 

2  +  
Vo
g * do

So
 U = 0  (3-39) 
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corresponding to 
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do
  =  - 

2
So

 * 



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


1  +  
1
2 * 

Vo
g * do

2
 U = 0  (3-40) 

The maximum elevation reached by the wave front runup is : zmax/do = 2 + Vo/ g*do. The result 
is independent of the bed slope, but the reasoning is based upon equations derived for the initial 
stages of the dam break wave on a flat slope. 
 
Remarks 
PEREGRINE and WILLIAMS (2001) proposed a complete solution of the problem using a slightly 
different approach. 
 
Fig. 3-6 - Sketch of a dam break wave in a dry, frictionless, sloping upward, rectangular channel 
with some initial velocity 
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3.5.2 Free-surface profile 
Considering any backward characteristic issuing from the dam break wave front (Fig. 3-6, 
trajectory F1-G1), the inverse slope of the backward characteristics is : 

 
d x
dt   =  V  -  C 

Considering the point G1 at the intersection of the C2 characteristics with a forward characteristic 
issued from the initial backward characteristic (Fig. 3-6, trajectory E1-G1), the characteristic 
equations yield : 
 V  +  2 * C  -  g * So * t  =  Vo  +  2 * Co  -  g * So * tE1 (3-41) 

Hence the inverse slope of the backward characteristics is : 
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d x
dt   =  Vo  +  2 * Co  -  3 * C  +  g * So *(t  -  tE1) (3-42) 

Assuming that tE1 << t and that the negative characteristics are straight lines, the integration of the 
inverse slope gives the water surface profile at the intersection of the C2 characteristics with a 
horizontal line t = constant (Fig. 3-6, point G1). At a given time t, the free-surface profile between 
the leading edge of the negative wave and the wave front is : 
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 * t  (3-43) 

The free-surface profile may be sometimes as in terms of the celerity of small disturbance C and of 
the water depth d: 

 
C

g * do
 =  

1
3 * 









2  +  
Vo
g * do

  +  
1
2 * So * 

g
do

 * t  -  
x

t * g * do
 

  for  
Vo
g * do

  -  1  ≤  
x

t * g*do
  ≤  2  +  

Vo
g * do

  +  
1
2 * So * 

g
do

 * t  (3-44) 

 
d
do

  =  
1
9 * 









2  +  
Vo
g * do

  +  
1
2 * 

g
do

 * So * t  -  
x
t

2
 

  for  
Vo
g * do

  -  1  ≤  
x

t * g*do
  ≤  2  +  

Vo
g * do

  +  
1
2 * So * 

g
do

 * t  (3-45) 

Along the free-surface profile, the flow velocity V equals : 
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For a horizontal channel, the results yield the solutions developed in paragraph 2.2 and 3.3 for Vo = 
0 and Vo > 0 respectively. 
It must be emphasised again that the development is limited to the initial stages of the dam break 
wave on a flat slope (paragraph 3.5.1). 
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4. REAL-FLUID FLOW SOLUTIONS OF THE DAM BREAK PROBLEM 
(TURBULENT FLOW MOTION) 

4.1 PRESENTATION 
Experimental observations showed that the dam break front propagates at a slower pace than the 
ideal fluid flow predictions. Further the leading edge of the shock has a rounded shape. These 
findings were confirmed by a few prototype data : e.g., for the Malpasset dam break (FAURE and 
NAHAS 1965). Both results have direct implications for the predictions of real dam break waves 
(e.g. Fig. 4-1). 
In this section, flow resistance is taken into account. Simple solutions are developed for turbulent 
flow motion in horizontal and flat-slope channels. The results are compared with experimental 
observations (App. B), and practical applications are developed in Section 6. Laminar flow 
solutions are developed in Section 5. 
 
Fig. 4-1 - Photograph of the Dale Dyke dam break (11 March 1864) (Courtesy of Michael 
ARMITAGE) - Looking upstream at the ruptured dam - More than 150 people died in the 
catastrophe 

 
 

4.2 DAM BREAK IN A DRY HORIZONTAL CHANNEL WITH BED FRICTION AND ZERO 
INITIAL VELOCITY (DIFFUSIVE WAVE MODEL) 
4.2.1 Presentation 
For a dam break wave in a dry horizontal channel with a semi-infinite reservoir, experiments 
showed that RITTER's theory is not valid to predict the flow properties at the leading tip of the 
wave front. Let us consider a dam break wave fed by a semi-infinite reservoir into a horizontal, 
prismatic, wide rectangular channel. The dam break is idealised by a vertical wall located at x = 0 
that is suddenly removed at t = 0 (Fig. 4-2). 
Experimental measurements (App. B) demonstrated that the wave front has a rounded shape and its 
celerity U is less than 2*Co. These observations demonstrated further that the flow properties were 
well approximated by RITTER's theory between the most upstream extent of the initial backward 
characteristic and a flow region immediately upstream of the dam break wave leading tip. Herein 
the dam break flow is analysed as an ideal-fluid flow region behind a flow resistance-dominated tip 
zone. The transition between the ideal dam break wave profile and the wave tip region is denoted 
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F2 as shown in Figure 4-2. Point F2 is located at x = x1 where the flow depth is d1 and the velocity 
is V1. 
In the wave tip region (x1 ≤ x ≤ xs), flow resistance is dominant, and the acceleration and inertial 
terms are small. The flow velocity does not vary rapidly in the forward tip zone and experimental 
data showed that it is about the wave front celerity U (DRESSLER 1952,1954, ESTRADE 1967, 
LAUBER 1997). The dynamic wave equation may be reduced into a diffusive wave equation : 

 
∂ d
∂x   +  

f
8 * 

U2
g*d  =  0 Wave tip region  (4-1) 

Next to the leading edge of the wave, the slope of the free-surface becomes important to 
counterbalance the flow resistance. The integration of the diffusive wave equation (Eq. (4-1)) yields 
the shape of the wave front 

 d  =  
f

4 * g * U2 * (xs - x) Wave front profile  (4-2) 

assuming a constant Darcy friction factor f in the wave tip region and where xs is the wave front 
location. Equation (4-2) would be suitable to turbulent flow motion, but another result is obtained 
for laminar flow motion (Section 5). 
The above equations are not strictly correct. In the wave tip region, the free-surface curvature is not 
negligible and the flow resistance is very significant. As a result, the Saint-Venant equations are not 
valid. But Equations (4-1) and (4-2) provide a simple, yet relatively realistic estimate of the wave 
tip shape (see below). 
 
Fig. 4-2 - Sketch of dam break wave in a horizontal dry channel with bottom friction 
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4.2.2 Detailed solution 
The instantaneous dam break creates a negative wave propagating upstream into a still fluid with 
known water depth do. In the (x, t) plane, the initial negative wave characteristic has a slope dt/dx = 
-1/Co where Co = g*do. Note that the initial backward characteristic is a straight line, but the 
other backward characteristics are not (1). Forward characteristics can be drawn issuing from the 
initial backward characteristic for t > 0 (Fig. 4-2). Between the points E1 and F2, the flow 
properties satisfy the ideal dam break wave properties : 
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where d and V are the flow depth and velocity respectively at a distance x from the dam, and t is the 
time from the instantaneous dam removal. 
For x1 ≤ x ≤ xs (i.e. wave tip region), it is assumed that the velocity of water does not vary rapidly 
and that it equals the wave front celerity U. The flow properties in the wave tip region may be 
estimated using the diffusion wave equation taking into account flow resistance (Eq. (4-1)) 
assuming V = U. The integration of the diffusive wave equation yields the wave front profile: 
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assuming a constant Darcy friction factor for x1 ≤ x ≤ xs. 
Since the free-surface and velocity must be continue at the point F2, its flow properties (x1, V1, d1) 
must satisfy : 
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The conservation of mass must be further satisfied. Specifically the mass of fluid in the wave tip 
region (i.e. x1 ≤  x ≤ xs) must equal the mass of fluid in the ideal fluid flow profile for x1 ≤ x ≤ 
2* g*do*t. It yields : 
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 * dx (4-10) 

Note that the continuity equation becomes a differential equation in terms of the wave front location 
xs and celerity U = dxs/dt. It must be stressed that the development is limited. The Saint-Venant 
                                                 
1Because the problem is not a simple wave since Sf > 0. 
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equations, hence the diffusive wave equation, are not valid near the wave leading edge where the 
free-surface curvature is not small and where the flow resistance becomes very significant. 
The above equations may be transformed to express d1 and x1 as functions of U: 
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The continuity equation (Eq. (4-10)) yields a polynomial equation in terms of the wave front 
location xs, wave celerity U = dxs/dt and location x1 of the point F2 : 
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 (4-13) 

Since the wave tip region has a parabolic free-surface profile, the water depth at point F2 satisfies: 
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and hence the wave tip region length is: 
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By replacing into the continuity equation, the exact solution in terms of the wave front celerity is : 
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while the wave front location equals: 
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and the free-surface profile satisfies : 

 
d
do

  =  1 
x
do

  ≤  - 
g
do

 * t  (4-17a) 

 
d
do

  =  
1
9 * 







2  -  

x
t * g * do

2
 

  - 
g
do

 * t  ≤  
x
do

  ≤  






3

2 * 
U

g * do
 - 1  * 

g
do

 * t      (4-17b) 

 
d
do

  =  
f
4 * 

U2
g * do

 * 
xs - x

do
 







3

2 * 
U

g * do
 - 1  * 

g
do

 * t  ≤  
x
do

  ≤  
xs
do

  (4-17c) 



34 

 
d
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  (4-17d) 

The location of point F2 is given by : 
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Typical analytical results are summarised in Figure 4-3 for several values of the Darcy friction 
factor f and they are compared with experimental observations of wave front properties and free-
surface profile. 
 
Fig. 4-3 - Dimensionless wave front location, celerity and free-surface profile solutions as functions 
of the Darcy friction factor 
(A) Dimensionless wave front location - Comparison with experimental data (DRESSLER 1954, 
LAUBER 1997) 
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(B) Dimensionless wave front celerity - Comparison with the theoretical results of WHITHAM 
(1955) and the semi-empirical model of LAUBER (1997) for f = 0.03 
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(C) Dimensionless free-surface profiles - Comparison with experimental data 
(C1) Comparison with SCHOKLITSCH's (1917) data 
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(C2) Comparison with DRESSLER's (1954) data on sand paper invert 
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(C3) Comparison with DRESSLER's (1954) data on slats (strip roughness) 
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(C4) Comparison with CAVAILLE's (1965) data on smooth invert 
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4.2.3 Comparison with experimental data 
The present solution was compared with the analytical solutions of DRESSLER (1952) and 
WHITHAM (1955), and a semi-empirical model by LAUBER (1997) (2). Asymptotic 
approximations for small and large times t are summarised in Table 4-1, while the wave front 
celerity expression is listed in Table 4-2. These are compared with well-known solutions. 
The present development was successfully compared with experimental data in turbulent flows by 
SCHOKLITSCH (1917), DRESSLER (1954), FAURE and NAHAS (1961), CAVAILLE (1965), 
ESTRADE (1967) and LAUBER (1997). Some examples are presented in Figure 4-3. The theory is 
compared qualitatively with viscous flow solutions in Section 5. Note that the above development 
makes no assumption on the type of flow motion. It is applicable provided that the Darcy friction 
factor may be assumed constant. Such an approximation is usually valid in turbulent flows. 
Great care must be taken in the selection of the Darcy friction factor. Since the water depth along 
the dam break wave ranges from zero at the wave front to the reservoir depth at the upstream end, 
friction factor estimates must be calibrated and validated with experimental data. Typical results are 
summarised in Table 4-3. For the data sets listed in Table 4-3, the friction factor was found to be 
almost independent of time and experimental flow conditions for a given type of roughness. The 
results were further consistent between independent data sets (Table 4-3). Note that accurate 
calibrations of the flow resistance must be performed using instantaneous free-surface profiles. 
These provide a Lagrangian description on the flow. Alternate techniques based upon wave front 
location and celerity, or fixed point measurements, are less accurate and they might provide only 
some order of magnitude. 
In the present study, the flow resistance is assumed to be a step function with a constant friction 
coefficient in the wave tip region and zero flow resistance in the flow behind. A typical longitudinal 
distribution of boundary shear stress is presented in Figure 4-4. The results are compared with the 
theoretical result of DRESSLER (1952) for the same friction factor and dimensionless time. On the 
same graph, the theoretical free-surface profiles are plotted also. Basically both approaches 
(DRESSLER, Present study) yield very close free-surface profiles although they assume different 

                                                 
2All these solutions were developed for turbulent flow motion. 
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longitudinal boundary shear stress distributions (Fig. 4-4). Lastly note that all methods 
(DRESSLER 1952, WHITHAM 1955, Present study) assume a constant Darcy friction factor f. The 
physics of such an assumption is questionable. 
 
Table 4-1 - Asymptotic solutions of dam break wave on dry horizontal channel with boundary 
friction 
 

Reference Asymptotic solution Remarks 
(1) (2) (3) 

Small time t   
DRESSLER (1952) U

g*do
  =  2  -  3.59 * 

f
8*

g
do

*t 
 

WHITHAM (1953) U
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g
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*t 
in DRESSLER (1954).

WHITHAM (1955) U
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f
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g
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*t 
 

Present study (diffusive 
wave model) U

g*do
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3
12*f*
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*t 
U
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 > 1.2 to 1.5 

Large time t   
Present study (diffusive 
wave model) 

U
g*do

  =  
8
3 * 

1

f * 
g

do
*t

 
U
g*do

 < 0.3 to 0.4 

 
Table 4-2 - Dimensionless expression of the dam break wave celerity for dam break on dry 
horizontal channel with boundary friction 
 

Reference Dam break wave celerity Remarks 
(1) (2) (3) 

WHITHAM (1955) U
g*do

  =  
2

1  +  2.90724 * 






f

8 * 
g * t2

do

0.4255 
Best fit of exact 
solution. 

LAUBER (1997) U
g*do

  =  
4 * 0.06

f * t *
g

do

 *  









1  +  
f

0.06 * t * 
g

do
  -  1

Semi-empirical 
development assuming 
a wave tip height of 
0.06*do. 

Present study 
(diffusive wave 
model) 8

3 * 
1
f * 







1  -  

1
2 * 

U
g * do

3

U2
g*do

  =  
g

do
 * t 

Exact analytical 
solution. 
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Table 4-3 - Typical flow resistance estimate for best data fit by the diffusive wave model (Present 
analysis) 
 

Data set Type of invert f (1) Remarks 
(1) (2) (3) (4) 

SCHOKLITSCH (1917) Smooth 0.03 Based upon instantaneous free-surface profiles.
40 ≤ t* g/do ≤ 110 

DRESSLER (1954)   Based upon instantaneous free-surface profiles.
 Smooth paint 0.03 40 ≤ t* g/do ≤ 70 
 Sand paper 0.05 15 ≤ t* g/do ≤ 50 
 2D strip (Slats) 

h = 0.00635 m 
l = 0.0254 m 

0.15 10 ≤ t* g/do ≤ 65 

CAVAILLE (1965)   Based upon instantaneous free-surface profiles.
 Smooth 0.02 21 ≤ t* g/do ≤ 84 
 Rough 

(cylindrical 
elements ∅ = 20 
mm in zigzag, l = 

28 mm, h= 8 
mm) 

0.3 32 ≤ t* g/do ≤ 137 

LAUBER (1997) PVC 0.015 Based upon wave front location and celerity. 
0 ≤ t* g/do ≤ 20 

 
Notes : h : roughness element height; l : longitudinal spacing between roughness element; (1) : 
value for the best data fit by the diffusive wave model. 
 
4.2.4 Discussion 
The present method yields an explicit expression of the wave front celerity, wave front location and 
wave tip region characteristics for turbulent flow motion. Equation (4-15) provides a direct 
relationship between the dimensionless wave front celerity U/ g*do and dimensionless time 
t* g/do. Equation (4-16) yields the dimensionless wave front location xs/do as a function of the 
dimensionless wave front celerity U/ g*do. Equations (4-18) and (4-19) give the entire 
dimensionless free-surface profile d/do = F(x/(t* g*do)). This simple system of linear equations 
provides a means to assess easily the effect of the flow resistance on the dam break wave 
propagation of real fluids. 
The main advantages of the present development are three-fold. It is a simple explicit method that 
compares well with experimental data and theoretical solutions. Further it a simple pedagogical 
application linking together the simple wave equations, yielding RITTER's solution, with a 
diffusive wave equation for the wave tip region. More this explicit solution may be used to validate 
simple numerical solutions of the method of characteristics applied to the dam break wave problem. 
 
Limitations of the diffusive wave model 
The comparisons show that the diffusive wave approximation (paragraph 4.2.2) is reasonable for 
relatively small times after dam break (Fig. 4-3). It might become less valuable when the wave tip 
region becomes large. It is also limited to a semi-infinite reservoir, and it assumes a constant Darcy-
Weisbach friction factor in the wave tip region. 
A further limitation of the diffusive wave model is the use of the Saint-Venant equations and their 
underlying assumptions (paragraph 1.2). For example, the Saint-Venant equations are not valid 
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during the initial instants following dam break : i.e., t* g/do < 3 (LAUBER 1997). Some 
researchers studied specifically the initial instants of the dam break and the effects of its duration. 
For example, POHLE (1952), DRESSLER (1954), ESTRADE and MARTINOT-LAGARDE 
(1964), MARTINOT-LAGARDE and ESTRADE (1966), LAUBER (1997), STANSBY et al. 
(1998) for the initial stages of dam break flow; ESTRADE (1967) and LAUBER (1997) on the 
effects of gate opening duration. Experimental observations suggested further that the celerity of 
the initial backward characteristics is initially about - 2* g*do (LAUBER 1997, LEAL et al. 
2001). It was proposed that the difference was caused by streamline curvature effects at the leading 
edge of the negative wave. 
 
Fig. 4-4 - Dimensionless boundary shear stress distributions and free-surface profiles - Comparison 
between present study and DRESSLER's (1952) theoretical results for f = 0.03 and t* g/do = 6.43 
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4.3 DAM BREAK IN A DRY HORIZONTAL CHANNEL WITH BED FRICTION AND WITH 
NON-ZERO INITIAL VELOCITY (DIFFUSIVE WAVE MODEL) 
The above problem (dam break wave in a horizontal channel with flow resistance) may be extended 
if the flow velocity behind the dam is Vo for t < 0 as sketched in Figure 4-5. It is assumed that the 
translation of both dam and reservoir at the speed Vo is frictionless prior to dam removal, and that 
the translation of the undisturbed reservoir remains frictionless for t ≥ 0. The latter assumption is 
consistent with the diffusive wave model in which the flow behind the wave tip region is assumed 
frictionless. The dam break is idealised by a vertical wall that is suddenly removed. Dam removal 
takes place instantaneously at t = 0 when the dam is at x = 0. 
The instantaneous dam break creates a negative wave propagating upstream (3) into the reservoir 
with a known water depth do. In the (x, t) plane, the initial negative wave characteristic has a slope 
dt/dx = -1/(Co-Vo) where Co = g*do assuming a rectangular channel. Note that the initial 
backward characteristic is a straight line. 

                                                 
3The negative wave propagates upstream if Vo < Co. For Vo > Co, the leading edge of the initial 
negative characteristic may propagate downstream. 



41 

Forward characteristics can be drawn issuing from the initial backward characteristic for t > 0. 
Between the points E1 and F2 (Fig. 4-5), the flow properties satisfy the ideal dam break wave 
properties : 

 
d
do

  =  
1
3 * 









2  +  
Vo
g * do

  -  
x

t * g * do
 

  for - 1 + 
Vo
g * do

  ≤  
x

t * g * do
  ≤  

x1
t * g * do

  (4-19) 

 
V

g * do
  =  

2
3 * 









1  +  
1
2 * 

Vo
g * do

  +  
x

t * g * do
 

  for - 1 + 
Vo
g * do

  ≤  
x

t * g * do
  ≤  

x1
t * g * do

  (4-20) 

 
Fig. 4-5 - Sketch of a dam break wave in a horizontal dry channel with bottom friction with initial 
reservoir motion 

do
Vo

x

y

ideal
fluid

negative wave

U

U

removed
dam wall

t

x
xs

xs

initial
backward

characteristic

backward
characteristic

forward
characteristic

trajectory
of dam break

front

zone of quiet

1

1

E1
Point F1

where d = 0 1
Point F2

where d = d

G1

Co Vo

real fluid

Wave tip
region

x1

x
x1 xs

y

oτ

Wave tip region

d1 U

 
 
For x1 ≤ x ≤ xs, the flow properties are calculated using the diffusion wave equation taking into 
account flow resistance (Eq. (4-1)). Since the flow depth and velocity must be continue at the point 
F2, the flow properties at point F2 (x1, V1, d1) and at wave front (xs, U) are deduced from : 

 
d1
do

  =  
1
3 * 









2  +  
Vo
g * do

  -  
x1

g * do * t
 (4-21) 



42 

 
V1
g*do

  =  
2
3 * 









1  +  
1
2 * 

Vo
g * do

  +  
x1

g * do * t
 (4-22) 
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 (4-23) 
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The conservation of mass must be further satisfied. The mass of fluid in the wave tip region (i.e. x1 
≤ x ≤ xs) equals the mass of fluid in the ideal fluid flow profile for x1 ≤ x ≤ (2* g*do+Vo)*t : 
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  (4-25) 

The above equations may be transformed to express d1 and x1 as functions of U: 
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 (4-26) 
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The continuity equation becomes an equation in terms of the wave front location xs and celerity U: 

2
3 * 

f
4 * 

U2
g * do

 * 






xs - x1

g * do * t

3/2
  =  

1
27 * 

4 do
g  * 

1
t
 * 








2  +  
Vo
g * do

  -  
x1

g * do * t

3
 

  (4-28) 

The wave tip region has a parabolic free-surface profile (Eq. (4-2)). The water depth at point F2 
satisfies: 
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 (4-29) 

and the wave tip region length is: 
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 (4-30) 

The exact solution in terms of the wave front celerity is : 
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while the wave front location equals: 
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and the free-surface profile satisfies : 
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Fig. 4-6 - Dimensionless wave front location and celerity for a dam break wave on a dry horizontal 
bed for different initial flow conditions (Fro = Vo/ g*do) 
(A) Dimensionless wave front location for f = 0.03 
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(B) Dimensionless wave front celerity for f = 0.03 
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The location x1 of point F2 is deduced from Equations (4-30) and (4-32). Typical results are 
presented in Figure 4-6 for several initial flow Froude numbers Fro = Vo/ g*do = Vo/Co and one 
value of the Darcy friction factor. Note that the results yield the results obtained in paragraph 4.2 
for Vo = 0 (i.e. Fro = 0). 
 

4.4 DAM BREAK IN A DRY, UPWARD SLOPING CHANNEL WITH BED FRICTION 
4.4.1 Basic equations 
Considering an ideal dam break surging over a dry river bed with some boundary friction, the 
method of characteristics may be applied. For a dam break over a dry channel, the basic equations 
are : 

 
D
Dt(V  +  2 * C)  =  - g * 






f

8 * 
V2
g*d  -  So  forward characteristic  (4-34a) 

 
D
Dt(V  -  2 * C)  =  - g * 






f

8 * 
V2
g*d  -  So  backward characteristic  (4-34b) 

along : 

 
d x
dt   =  V  +  C forward characteristic C1  (4-35a) 

 
d x
dt   =  V  -  C backward characteristic C2  (4-35b) 

where So is negative for an inclined upward plane as sketched in Figure 4-7. 
In the following development, the flow is assumed to be an ideal fluid region behind a friction 
dominated wave tip region. In the wave tip region, flow resistance is dominant, and the acceleration 
and inertial terms are small. The dynamic wave equation may be reduced into a diffusive wave 
equation (paragraphs 4.2 & 4.3) : 

 
∂ d
∂x   +  

f
8 * 

U2
g*d  -  So  =  0 Wave front  (4-36) 
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Next to the leading edge of the wave, the slope of the free-surface becomes important to 
counterbalance the flow resistance and bed slope. The integration of the diffusive wave equation 
yields the shape of the wave front 
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  Wave front  (4-37) 

assuming a constant Darcy friction factor and where xs is the wave front location. Figure 4-8 
illustrates some results in terms of the dimensionless water depth d/do. 
 
Fig. 4-7 - Sketch of a dam break wave in a dry, sloping upward, rectangular channel with boundary 
friction 
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Discussion 
Very close to the wave front ((xs-x)/do << 1), the shape of the free-surface profile may be 
approximated using a truncated Taylor series for the logarithm of 1 + x' : 

 Ln(1 + x')  =  x'  -  
x'2
2   +   

x'3
3   -  ... (4-38) 

Using the first two terms of the development, Equation (4-37) may be approximated by a parabolic 
relationship which was derived for a horizontal channel (paragraph 4.2): 
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 Wave front for (xs-x)/do << 1  (4-2b) 
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Using the first three terms of the Taylor development, the shape of the free-surface profile may be 
approximated by: 
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d
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  Wave front for (xs-x)/do << 1  (4-39) 

Very close to the leading edge of the wave, the flow resistance effect is most significant and both 
equations (4-2b) and (4-38) are reasonable approximations. 
 
Fig. 4-8 - Instantaneous free-surface profile of the wave front (Eq. (4-37)) for a dam break wave in 
a dry, sloping upward channel (diffusive wave solution) - f = 0.03, U/ g*do = 1 
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4.4.2 Complete solution 
Considering a dam break wave in a sloping upward, prismatic, wide rectangular channel with some 
flow resistance and a semi-infinite reservoir, dam removal takes place at t = 0 and the dam is 
located at x = 0 (Fig. 4-7). The dam break wave is approximated by an ideal fluid flow solution 
(paragraph 3.4) for x ≤ x1 and a diffusive wave model for x1 ≤ x ≤ xs. The transition between the 
ideal dam break wave profile and the wave tip is denoted F2 as shown in Figure 4-7. Point F2 is 
located at x = x1 where the flow depth is d1 and the velocity is V1. 
The instantaneous dam break creates a negative wave propagating upstream into a fluid at rest with 
known water depth. In the (x, t) plane, the initial negative wave characteristic has a slope dt/dx = -
1/C with C = Co for t = 0 (Fig. 4-7). (For a flat slope, the initial backward characteristic propagates 
with a celerity Co = g*do in first approximation.) 
Forward characteristics can be drawn issuing from the initial backward characteristic for t > 0. 
Between the points E1 and F2 (Fig. 4-7), the flow properties satisfy the ideal dam break wave 
properties (paragraph 3.4) : 
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  (4-40) 
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For x1 ≤ x ≤ xs (i.e. wave tip region), it is assumed that the velocity of water does not vary rapidly 
and equals the wave front celerity U. The flow properties in the wave tip region may be estimated 
using the diffusion wave equation taking into account flow resistance and bed slope : 
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assuming V = U. 
The free-surface profile and velocity must be continue at point F2. Hence the flow properties at the 
point F2 (x1, V1, d1) must satisfy : 
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 U  =  V1 (4-44) 
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  (4-45) 

The conservation of mass must be further satisfied. That is, the mass of fluid in the wave tip region 
(i.e. x1 ≤  x ≤ xs) equals the mass of fluid for x1 ≤ x in the ideal fluid flow profile: 
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where the real-fluid flow depth d (left handside term) satisfies : 
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  (4-37) 

At a time t, the above equations (Eq. (4-37), (4-42), (4-43), (4-44) & (4-45)) constitute a system of 
5 equations with 5 unknowns : i.e., the wave front celerity and location, and the flow properties at 
the point F2. 
The complete free-surface profile is : 
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   (4-47) 
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4.4.3 Simplified solution 
The problem may be solved analytically by approximating the free-surface profile in the wave tip 
region. For x1 ≤ x ≤ xs (i.e. wave tip region), the velocity of water is assumed to equal the wave 
front celerity U, and the flow properties may be estimated using a diffusion wave : 
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g*d  +  So  =  0 Wave front  (4-36) 

assuming V = U. The above equation was solved analytically in paragraph 4.4.1. A truncated 
Taylor series of the solution was 

 d  ≈  
f

4 * g * U2 * (xs - x) Wave front  (4-38) 

assuming a constant Darcy friction factor, neglecting the effect of the bed slope and where xs is the 
wave front location. 
Within this approximation, the water depth and velocity must be continue at point F2,. That is, they 
must satisfy : 
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 U  =  V1 (4-44) 
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The conservation of mass must be satisfied. The mass of fluid in the wave tip region (i.e. x1 ≤ x ≤ 
xs) must be equal the mass of fluid in the wave tip of the ideal fluid flow profile (i.e. for x1 ≤ x ≤ 
(2*( g*do+g*So/4*t)*t)) : 
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The continuity equation is a polynomial equation in terms of the wave front location xs, wave front 
celerity U = dxs/dt and location x1 of the point F2 : 
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Since the wave tip region has a parabolic free-surface profile (Eq. (4-38)), the water depth at point 
F2 satisfies: 

 
d1
do

  =  
f
4 * 

U2
g * do

 * 
xs - x1

do
 (4-51) 

and the dimensionless length of the wave tip region is : 
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Since Equation (4-43) may be rewritten : 
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and by replacing into the continuity equation, the exact solution of the dam break wave in terms of 
the wave front celerity is : 
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while the wave front location equals: 
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   (4-54) 

and the free-surface profile is : 
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  (4-55d) 

The location of point F2 is given from Equation (4-43b). 
Equation (4-53) provides an explicit relationship between the dimensionless wave front celerity 
U/ g*do and dimensionless time t* g/do. Note that the solution in terms of the wave front 
celerity is non-linear with the dimensionless time being present on both sides of Equation (4-53). 
Equation (4-54) yields the dimensionless wave front location xs/do as a function of the 
dimensionless wave front celerity U/ g*do and dimensionless time t* g/do. Equations (4-55) and 
(4-43b) give the entire dimensionless free-surface profile d/do = F(x/(t* g*do)). This simple 
system of equations provides a means to assess the effect of the flow resistance on the dam break 
wave propagation on a flat-slope invert. Typical analytical results are summarised in Figure 4-9 for 
several bed slopes. Figure 4-9A presents the dimensionless wave front location for three bed slopes, 
while Figure 4-9B shows the dimensionless wave front celerity. Figure 4-9C illustrates the wave 
front shape at a given time for three bed slopes. 
 
Discussion 
For small dimensionless times g/do*t, the effect of bed slope is small and the solution tends to the 
exact solution obtained for a horizontal channel. The asymptotic development for small 
dimensionless times is : 

 
U

g * do
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g
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 * t g/do * t  <<  1  (4-56) 

For a sloping upward channel, the wave front celerity tends to zero with increasing time. 
For sloping downward channels, Equation (4-53) has two solutions in terms of the front celerity for 
small times g/do*t, but only one is physically meaningful. There is further a limiting time for 
which there is only one solution in terms of the wave front celerity. For larger times, the wave 
reaches some form of uniform equilibrium between gravity effects and flow resistance which 
corresponds to a singularity of the differential form of the Saint-Venant equations. Indeed steady 
uniform equilibrium flow conditions are a singularity for both differential forms of Saint-Venant 
equations and backwater equation. 
 
Limitations 
The results are based upon a series of crude approximations. In particular, it is assumed that the 
wave tip region is primarily affected by bed friction while the ideal-fluid flow motion behind is 
mostly affected by inertial effects and the gravity force component. Further the development 
assumes relatively small times t and a flat bed slope. In particular, it implies C = Co anywhere on 
the initial backward characteristic, and straight backward characteristics in the ideal fluid flow 
region. 
Note that the present development is valid for turbulent flow motion assuming that of a constant 
Darcy friction factor. 
 



51 

Fig. 4-9 - Flow properties for a dam break wave in a dry, sloping upward, rectangular channel with 
boundary friction and with zero initial velocity (diffusive wave solution) assuming f = 0.03 
(A) Dimensionless wave front location 
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(B) Dimensionless wave front celerity 
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(C) Free-surface profile for t* g/do = 2.25 - Detail of the wave tip region 
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Fig. 4-10 - Sketch of a dam break wave in a dry, sloping upward, rectangular channel with 
boundary friction and with initial flow motion 
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4.5 DAM BREAK IN A DRY, UPWARD SLOPING CHANNEL WITH BED FRICTION AND 
INITIAL FLOW MOTION 
Considering a dam break wave surging over a dry river bed with some boundary friction, the above 
solution may be extended when the flow velocity behind the dam is initially Vo as sketched in 
Figure 4-10. Prior to dam break, it is assumed that the translation of both dam and reservoir is 
frictionless. After dam break, the flow is assumed to be an ideal fluid flow region behind a friction 
dominated wave tip region. Further it is assumed that the translation of the undisturbed reservoir 
remains frictionless for t > 0. 
The dam break wave occurs in a sloping, prismatic, wide rectangular channel with a semi-infinite 
reservoir. The sudden dam removal takes place at t = 0 when the dam wall is located at x = 0 (Fig. 
4-10). The dam break is approximated by an ideal fluid flow solution for x ≤ x1 and a diffusive 
wave model for x1 ≤ x ≤ xs. The transition between the ideal dam break wave profile and the wave 
tip is located at point F2 where x = x1, d = d1 and V = V1. 
The instantaneous dam break creates a negative wave propagating upstream into a fluid at rest with 
known water depth. In the (x, t) plane, the initial negative wave characteristic has a slope dt/dx = -
1/(C-Vo) with C = Co for t = 0 (Fig. 4-10). For a flat slope, the initial backward characteristic 
propagates upstream with a celerity ( g*do-Vo) in first approximation. 
Forward characteristics can be drawn issuing from the initial backward characteristic for t > 0: 
Between the points E1 and F2 (Fig. 4-10), the flow properties satisfy the ideal dam break wave 
properties : 
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For x1 ≤ x ≤ xs (i.e. wave tip region), it is assumed that the velocity of water does not vary rapidly 
and equals the wave front celerity U. The flow properties in the wave tip region may be estimated 
using the diffusion wave equation taking into account flow resistance and bed slope : 

 
∂ d
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f
8 * 

U2
g*d  -  So  =  0 Wave tip region  (4-36) 

assuming V = U (paragraph 4.4).  The above equation was solved analytically in paragraph 4.4.1. A 
truncated Taylor series of the solution is : 

 d  ≈  
f

4 * g * U2 * (xs - x) Wave front  (4-38) 

assuming a constant Darcy friction factor, neglecting the effect of the bed slope in the wave tip 
region, and where xs is the wave front location. 
The free-surface profile and velocity must be continue at point F2. Hence the flow properties at the 
point F2 (x1, V1, d1) must satisfy : 
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 U  =  V1 (4-61) 
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The conservation of mass must be satisfied. The mass of fluid in the wave tip region (i.e. x1 ≤ x ≤ 
xs) must be equal to the mass of fluid in the wave tip of the ideal fluid flow profile (i.e. for x1 ≤ x ≤ 
(2*( g*do+Vo+g*So/4*t)*t)) : 
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The continuity equation is a polynomial equation in terms of the wave front location xs, wave front 
celerity U = dxs/dt and location x1 of the point F2 : 
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Equations (4-59) and (4-60) may be rewritten to express in dimensionless form d1 and x1 as 
functions of U : 
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The wave tip region has a parabolic free-surface profile (Eq. (4-38)). The water depth at point F2 
satisfies: 
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and the dimensionless length of the wave tip region is : 
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Using Equation (4-60b) and replacing into the continuity equation (Eq. (4-64)), the exact solution 
of the dam break wave in terms of the wave front celerity is : 
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while the wave front location equals: 
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and the free-surface profile is : 
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The location of point F2 is given from Equation (4-60b). 
Equation (4-65) provides an explicit relationship between the dimensionless wave front celerity 
U/ g*do and dimensionless time t* g/do. Note that the solution in terms of the wave front 
celerity is non-linear with the dimensionless time present on both sides of Equation (4-65). 
Equation (4-66) yields the dimensionless wave front location xs/do as a function of the 
dimensionless wave front celerity U/ g*do and dimensionless time t* g/do. Equations (4-67) and 
(4-60b) give the entire dimensionless free-surface profile d/do = F(x/(t* g*do)). 
Some limited analytical results are summarised in Figure 4-11 for one bed slope and several initial 
flow conditions. Figure 4-11A presents the dimensionless wave front location for three initial flow 
conditions (Vo/Co = 0, 0.2 & 1), while Figure 4-11B shows the dimensionless wave front celerity. 
Figure 4-11C illustrates the wave front shape at a given time. For small initial flow velocities 
(Vo/Co << 1), the above solution tends to that developed in paragraph 4.4. 
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Discussion 
Note that for Vo = Co, the initial backward characteristic becomes the vertical axis in the 
characteristic diagram. 
The results are based upon a series of crude approximations. In particular, it is assumed that the 
wave tip region is primarily affected by bed friction while the ideal-fluid flow motion behind is 
mostly affected by inertial effects and the gravity force component. Further the development 
assumes small times t and a flat bed slope. In particular, it implies C = Co on the initial backward 
characteristic, and straight backward characteristics in the ideal fluid flow region. 
The present development is valid for turbulent flow motion assuming that of a constant Darcy 
friction factor. 
 
Fig. 4-11 - Flow properties for a dam break wave in a dry, sloping upward, rectangular channel 
with boundary friction and with zero initial velocity (diffusive wave solution) assuming f = 0.03 
(A) Dimensionless wave front location 
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(B) Dimensionless wave front celerity 
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(C) Free-surface profile for t* g/do = 2.25 - Detail of the wave tip region 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2

Ritter's solution (So = 0, Vo = 0)

Vo = 0, U/sqrt(g..do)=1.283

Vo/Co = 0.2, U/sqrt(g.do)=1.432

Vo/Co = 1, U/sqrt(g.do)=2.035

f = 0.03, So = - 0.01, t.sqrt(g/do)=2.25
d/do

x/(t.sqrt(g.do))

 
 

4.6 DISCUSSION 
In this study (Section 4), new analytical solutions of turbulent dam break wave with bed friction are 
presented. For each theoretical development, the dam break wave flow is analysed as a wave tip 
region where flow resistance is dominant, followed by an ideal-fluid flow region where inertial 
effects and gravity effects are dominant. The analytical results were validated by successful 
comparisons between turbulent flow motion data in large-size facilities (App. B) and theoretical 
results in terms of wave front location, wave front celerity and instantaneous free-surface profiles 
(paragraph 4.2). The latter comparison is considered to be the most accurate for the estimation of 
the flow resistance. Indeed instantaneous free-surface measurements give a Lagrangian description 
of the flow that is most accurate in the initial stages of the dam break when the flow properties 
(depth and velocity) change very rapidly with time. Further the integration of the Saint-Venant 
equations yields the exact expression of the instantaneous free-surface profile assuming a constant 
flow resistance coefficient. The best data fit between instantaneous wave profiles and analytical 
expressions gives the average friction factor at a given time t. (It was found that the flow resistance 
coefficient was basically independent of the time (Table 4-3).) Overall this approach is regarded as 
the best validation technique of a dam break wave model. 
 
The present theoretical solutions are based upon a few key assumptions. These include (a) the 
assumption V(x,t) = U(t) only in the wave tip region, (a) some discontinuity of ∂d/∂x, ∂V/∂x and τo 
at the transition between the wave tip region and the ideal fluid flow region (i.e. x = x1), and (c) the 
assumption of constant Darcy-Weisbach friction factor in the wave tip region. 
A number of experimental data set tend to support the first approximation (a) : e.g., ESTRADE 
(1967), LAUBER (1997), CHANSON (2004d). These data suggested little longitudinal variations 
in velocity in the wave tip region: "close to the positive wave front, the [longitudinal] velocity is 
essentially constant" (LAUBER 1997). Further the comparisons between the present 'diffusive 
wave theory' and experimental results were successful for a fairly wide range of experimental data 
obtained independently and including instantaneous free-surface profiles, wave front celerity, and 
wave front locations. These comparisons constitute a solid validation of the proposed theory. More 
WHITHAM (1955) and DRESSLER (1952) produced two very different analytical solutions which 
gave nearly identical results. WHITHAM's theory included a discontinuity in terms of ∂d/∂x, ∂V/∂x 
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and τo at the transition between ideal flow region and wave tip region identical to the present 
approach. DRESSLER developed a theory that did not have such a discontinuity. Yet all theories 
gave very-close results, suggesting that the discontinuity in terms of ∂d/∂x, ∂V/∂x and τo has little 
effect on the final solution in terms of wave front celerity and thickness, and instantaneous free-
surface profiles. 
It is however the writer's opinion that the strongest approximation is the assumption of constant 
friction factor f in the wave tip region (assumption (c)). This is a gross assumption that is probably 
untrue. In the wave tip region, the flow depth varies from zero to the wave tip thickness d1. For a 
given equivalent bed roughness height (ks), the Moody diagram shows that the flow resistance 
cannot be assumed constant (HENDERSON 1966, MONTES 1998). The wave tip (x = xs) is a flow 
singularity in terms of flow resistance that is not accounted for within assumption (c). 
 
The present developments (section 4) exhibit several main advantages over existing methods. First 
the theoretical results for real-fluid flows yield simple explicit analytical expressions that compares 
well with experimental data and more advanced theoretical solutions. In the next section (Section 
5), the equations are applied to three flow situations: a dam break, the swash zone, and a tsunami 
runup. It will be shown that the theoretical results may be applied to a wider range of applications 
that the simple dam break problem. 
 
Second the proposed development is a simple pedagogical application of the Saint-Venant 
equations and method of characteristics, linking together the simple wave equations yielding 
RITTER's solution, with a diffusive wave equation for the wave tip region. Both the simple wave 
and diffusive wave equations constitute relatively simple lecture materials that may be introduced 
in advanced undergraduate subjects (e.g. CHANSON 2004b) (4). The proposed development 
therefore provides a means to introduce realistic solutions of the dam break wave with bed friction 
(paragraphs 4.2 and 4.3) to undergraduate engineering and applied mathematics students. 
 
Third, these explicit analytical solutions may be used to validate numerical solutions of the method 
of characteristics applied to the dam break wave problem. Numerical modelling is commonly used 
for real-fluid flow in natural system, when the Saint-Venant equations cannot be solved analytically 
(e.g. CUNGE 1975, CUNGE et al. 1980). It is however essential that the numerical scheme be 
validated with analytical solutions. This is important in dam break wave calculations where the 
wave tip is a flow singularity with zero water depth. Further most numerical models must be 
calibrated in terms of flow resistance. Some comparison between numerical results, analytical 
solutions and experimental results under controlled flow conditions may assist in the accurate 
selection of flow resistance coefficient. 
 
Fourth the development were applied to a wider range of flow situations. For example, the effects 
of bed slope are included, although limited to relatively flat gradients and the initial flow motion 
may be taken into account. This yields to a wide range of practical applications which may 
encompass advancing flood waters in ephemeral streams, water runup downstream of wave 
breaking on beach slope and (e.g. Section 5). 
 
Fifth the simplicity of the equations may allow the extension of the method to laminar flows 
(Section 5) and non-Newtonian fluids. For example, CHANSON et al. (2004) applied successfully 
the mathematical treatment of HUNT (1982,1984) (section 3.4) to dam break wave of non-
Newtonian thixotropic fluids. Relevant applications include mud flows, self-flowing concrete and 

                                                 
4At the University of Queensland, this lecture material is taught as part of the undergraduate subject 
CIVL4120 Advanced open channel flow and design, offered as an advanced elective to civil and 
environmental engineering students in fourth year. 
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debris flows in civil engineering, but also the flow of some industrial paint, liquid dairy products, 
pasty sewage sludges and some wastewater treatment residues. 
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5. LAMINAR FLOW SOLUTIONS OF THE DAM BREAK PROBLEM 

5.1 BASIC EQUATIONS 
A dam break wave is the flow resulting from a sudden release of a mass of fluid in a channel. In 
unsteady open channel flows, the velocities and water depths change with time and longitudinal 
position. For one-dimensional applications, the continuity and momentum equations yield the Saint-
Venant equations. The application of the Saint-Venant equations is limited by some basic 
assumptions : (1) the flow is one dimensional; (2) the streamline curvature is very small and the 
pressure distributions are hydrostatic; (3) the flow resistance are the same as for a steady uniform 
flow for the same depth and velocity; (4) the bed slope is small enough to satisfy : cosθ ≈ 1 and 
sinθ ≈ tanθ ≈ θ; (5) the water density is a constant; and (6) the channel has fixed boundaries, and air 
entrainment and sediment motion are neglected. With these hypotheses, the unsteady flow can be 
characterised at any point and any time by two variables: e.g., V and d where V is the flow velocity 
and d is the water depth (e.g. LIGGETT 1994, MONTES 1998, CHANSON 2004a,b). The unsteady 
flow properties are described by a system of two partial differential equations : 
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where t is the tine, x is the streamwise co-ordinate, A is the cross-section area, B is the free-surface 
width, So is the bed slope (So = sinθ), θ is the angle between the bed and the horizontal, with θ > 0 
for a downward slope, and Sf is the friction slope. The friction slope is defined as : 
Sf = f/2*V2/(g*DH) where DH is the hydraulic diameter and the Darcy friction factor f is a non-
linear function of both relative roughness and flow Reynolds number. Equation (5-1) is the 
continuity equation and Equation (5-2) is the dynamic equation. 
Herein the dam break flow is analysed as an ideal-fluid flow region behind a flow resistance-
dominated tip zone (Fig. 5-1). DEBIANE (2000) used a a similar conceptual approach, but his 
mathematical development differs from the present simplified solution. The transition between the 
ideal dam break wave profile and the wave tip region is located at x = x1 where the water depth is d 
= d1 as shown in Figure 5-1. 
In the ideal fluid flow region, the basic equations yield the characteristic system of equations : 

 
D
Dt(V  +  2 * C)  =  0 forward characteristic  (5-3a) 

 
D
Dt(V  -  2 * C)  =  0 backward characteristic  (5-3b) 

along : 

 
d x
dt   =  V  +  C forward characteristic C1  (5-4a) 

 
d x
dt   =  V  -  C backward characteristic C2  (5-4b) 

Equations (5-3) and (5-4) are the characteristic equations of a simple wave problem (CHANSON 
2004a,b). 
In the wave tip region (x1 ≤ x ≤ xs, Fig. 5-1), flow resistance is dominant, and the acceleration and 
inertial terms are small. The flow velocity does not vary rapidly in the forward tip zone and 
experimental data showed that it is about the wave front celerity U (HUNT 1994). The dynamic 
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wave equation (Eq. (5-2)) may be reduced into a diffusive wave equation. For a horizontal channel, 
it yields : 

 
∂ d
∂x   +  

f
8 * 

U2
g * d  =  0 Wave tip region  (5-5) 

assuming a constant velocity U for x1 ≤ x ≤ xs. Next to the leading edge of the wave, the slope of 
the free-surface becomes important to counterbalance the flow resistance. For laminar flows, the 
Darcy friction factor in steady flows equals : 

 f  =  
64
Re  

where Re is the flow Reynolds number defined in terms of the hydraulic diameter DH (LIGGETT 
1994, MONTES 1998, CHANSON 2004a). Several researchers argued that the flow resistance may 
differ in unsteady dam break wave flows (e.g. AGUIRRE-PE et al. 1995, DEBIANE 2000). 
Therefore it is assumed that the flow resistance satisfies : 

 f  =  α * 
64
Re (5-6) 

where α is a correction factor. For a wide channel (i.e. DH ≈ 4*d), Equation (5-6) may be rewritten 
in the wave tip region as : 

 f  =  
16 * α * µ
ρ * U * d  (5-6B) 

where ρ and µ is the density and dynamic viscosity of the fluid respectively. The diffusive wave 
equations may rewritten as : 

 
∂ d
∂x   +  

2 * α * µ * U
ρ * g * d2   =  0 Laminar flow motion  (5-5B) 

The integration of the diffusive wave equation (Eq. (5-5)) yields the shape of wave tip region for a 
laminar flow motion : 

 d  =  
3

6 * α * 
µ * U
ρ * g  * (xs - x) Wave front profile (laminar flow)  (5-7) 

assuming that the flow resistance correction coefficient α is a constant independent of x. Equation 
(5-7) is compared with some experimental data in Figure 5-2. 
 

5.2 DETAILED SOLUTION FOR A HORIZONTAL CHANNEL WITH ZERO INITIAL 
MOTION 
Considering a laminar dam break wave in a horizontal channel with zero initial flow motion, the 
instantaneous dam break creates a negative wave propagating upstream into a still fluid with known 
water depth do. In the (x, t) plane, the initial negative wave characteristic has a slope dt/dx = -1/Co 
where Co = g*do. Note that the initial backward characteristic is a straight line, but the other 
backward characteristics are not because the problem is not a simple wave since Sf > 0. Forward 
characteristics can be drawn issuing from the initial backward characteristic for t > 0 (Fig. 5-1). 
Between the points E1 and F2, the flow properties satisfy the ideal dam break wave properties: 
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Fig. 5-1 - Sketch of dam break wave in a horizontal dry channel with bottom friction 
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Fig. 5-2 - Laminar dam break wave front data: horizontal channel (test Glus.6), glucose-syrup 
solution, ρ = 1406 kg/m3, µ = 12 Pa.s, do = 0.055 m, t = 421 s (DEBIANE 2000) - Comparison 
with Equation (5-7) assuming α = 1 and U/ g*do = 0.0064 
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d
do

  =  
1
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





2  -  

x
t * g * do

 -1  ≤  
x

t * g * do
  ≤  
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  (5-8) 
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





1  +  

x
t * g * do

 -1  ≤  
x

t * g * do
  ≤  

x1
t * g * do

  (5-9) 

where d and V are the flow depth and velocity respectively at a distance x from the dam, and t is the 
time from the instantaneous dam removal. 
For x1 ≤ x ≤ xs (i.e. wave tip region), it is assumed that the velocity of water does not vary rapidly 
and that it equals the wave front celerity U. The flow properties in the wave tip region may be 
estimated using the diffusive wave equation taking into account flow resistance (Eq. (5-5)) 
assuming V = U. The integration of the diffusive wave equation yields the wave front profile: 

 
d
do

  =  
3
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µ

ρ * g * do
3
 * 

U
g * do

 * 
xs - x

do
 

  
x1

t * g * do
  ≤  

x
t * g * do

  ≤  
xs

t * g * do
  (5-7B) 

assuming that Equation (5-6B) holds for x1 ≤ x ≤ xs. 
Since the free-surface and velocity must be continue at the point F2, its flow properties (x1, V1, d1) 
must satisfy : 
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

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 (5-10) 
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
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 (5-11) 
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 (5-12) 

 
d1
do

  =  
3

6 * α * 
µ * U

ρ * g * do
2 * 

xs - x1
do

 (5-13) 

The conservation of mass must be further satisfied. Specifically the mass of fluid in the wave tip 
region (i.e. x1 ≤  x ≤ xs) must equal the mass of fluid in the ideal fluid flow profile for x1 ≤ x ≤ 
2* g*do*t. It yields : 

 
⌡
⌠

x1 

 xs
3

6 * α * 
µ * U
ρ * g  * (xs - x) * dx  =  

⌡

⌠

x1 

 2* g*do*t

1
9 * g * 



2 * g * do  -  

x
t

2
 * dx (5-14) 

Note that the continuity equation becomes a differential equation in terms of the wave front location 
xs and celerity U = dxs/dt. It must be stressed that the development is limited. The Saint-Venant 
equations, hence the diffusive wave equation, are not valid near the wave leading edge where the 
free-surface curvature is not small and where the flow resistance becomes very significant. 
The above equations may be transformed to express d1 and x1 as functions of U: 
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d1
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 (5-15) 
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





3
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g * do
  -  1  (5-16) 

The continuity equation (Eq. (5-14)) yields a polynomial equation in terms of the wave front 
location xs, wave celerity U = dxs/dt and location x1 of the point F2 : 
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 (5-17) 

Since the wave tip region has a cubic-root free-surface profile, the water depth at point F2 satisfies: 
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µ * U
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2 * 

xs - x1
do

 (5-13) 

and hence the wave tip region length is: 
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 (5-18) 

By replacing into the continuity equation, the exact solution in terms of the wave front celerity is : 
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 * t (5-19) 

while the wave front location equals: 

 
xs
do

  =  






3

2 * 
U

g * do
  -  1  * 

g
do

 * t  +  
1

6 * α * 

ρ * g * do
3

µ
U
g*do

 * 






1  -  

1
2 * 

U
g*do

6
 

  (5-20) 

and the free-surface profile satisfies : 
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 * 

U
g * do

 * 
xs - x

do
 

  






3

2 * 
U

g * do
 - 1  * 

g
do

 * t  ≤  
x
do

  ≤  
xs
do

  (5-21c) 

 
d
do

  =  0 
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  ≤  
x
do

  (5-21d) 

The location of point F2 is given by : 

 
x1

g * do * t
  =  







3

2 * 
U

g * do
  -  1  (5-16) 

In the above development, the term : 

 Red  =  
ρ * g * do

3

µ   

is analogous to a Reynolds number. It is called herein the dam reservoir flow Reynolds number and 
it is a function of fluid properties and initial flow conditions only. Typical analytical results are 
summarised in Figure 5-3. 
 
Fig. 5-3 - Dimensionless wave front location, celerity and free-surface profile solutions for laminar 
dam break wave (horizontal channel, zero initial motion) 
(A) Dimensionless relationship between wave front celerity and time assuming α = 1 
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(B) Instantaneous dimensionless free-surface profile for Red = 10 and α = 1 and 100 

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1 1.5 2

RITTER's solution

Red=10, Alpha=1, t.sqrt(g/do)=0.21

Red=10, Alpha=1,t.sqrt(g/do)=2.56

Red=10, Alpha=100, t.sqrt(g/do)=0.22

x/(t.sqrt(g*do))

d/do

 
 
Table 5-1 - Asymptotic solutions of dam break wave on dry horizontal channel with boundary 
friction (horizontal channel with zero initial motion) 
 

Reference Asymptotic solution Remarks 
(1) (2) (3) 

Small time t   
DRESSLER (1952) U

g*do
  =  2  -  3.59 * 

f
8*

g
do

*t 
Turbulent flow 
motion. 

WHITHAM (1955) U
g*do

  =  2  -  3.452 * 
f
8*

g
do

*t 
Turbulent flow 
motion. 

Laminar flow motion 
(diffusive wave model) 

U
g*do

  =  2  -   

5
16 * α * 

µ

ρ * g * do
3

 * 
g

do
 * t

U
g*do

 > 1.2 to 1.5 

Turbulent flow motion 
(diffusive wave model) U

g*do
  =  2  -  

3
12 * f * 

g
do

 * t 
U
g*do

 > 1.2 to 1.5 

Large time t   
Laminar flow motion 
(diffusive wave model) 

U
g*do

  =  
1

8 * α * 

ρ * g * do
3

µ
g

do
*t

 

U
g*do

 < 0.3 to 0.4 

Turbulent flow motion 
(diffusive wave model) 

U
g*do

  =  
8
3 * 

1

f * 
g

do
*t

 
U
g*do

 < 0.3 to 0.4 

 



67 

Discussion 
Asymptotic approximations for small and large times t are summarised in Table 5-1. These are 
compared with turbulent flow solutions and with well-known solutions for turbulent flows. 
Overall the present method yields an explicit expression of the wave front celerity, wave front 
location and wave tip region characteristics. Equation (5-19) provides a direct relationship between 
the dimensionless wave front celerity U/ g*do and dimensionless time t* g/do. Equation (5-20) 
yields the dimensionless wave front location xs/do as a function of the dimensionless wave front 
celerity U/ g*do. Equations (5-21) and (5-16) give the entire dimensionless free-surface profile 
d/do = F(x/(t* g*do)). This simple system of linear equations provides a means to assess easily the 
effect of the flow resistance on the dam break wave propagation of real fluids. 
In the wave tip region, the dimensionless boundary shear stress may be expressed as : 

 f  =  
τo

f
8 * ρ * U2

  =  16 * α * 

U
g * do

ρ * g * do
3

µ

 * 
do
d  (5-6B) 

The boundary shear stress increases with increasing distance towards the wave tip. At the wave 
front (x = xs, d = 0), the boundary shear stress becomes infinite. Figure 5-4 illustrates an example 
assuming α = 1. 
 
Fig. 5-4 - Dimensionless distribution of boundary shear stress in laminar flow motion - Comparison 
with the laminar flow profile (Red = 10, α = 1, t* g/do = 0.35) 
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Comparison with experimental data 
The theory was compared qualitatively with the viscous flow data of DEBIANE (2000) and with 
the analytical solution of HUNT (1994) for viscous dam break wave down a sloping channel.  
DEBIANE (2000) presented an unique data set for laminar dam break wave in horizontal channel. 
He conducted basic experiments in a 3.0 m long, 0.3 m wide horizontal channel with an upstream 
reservoir length ranging from 0.11 to 0.60 m (App. B). The study was conducted with glucose-
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syrup solutions of dynamic viscosities between 12 to 170 Pa.s. During the early stages of the dam 
break, the dam break wave flow was similar to the flow conditions for an infinitely large reservoir 
and only this data set is considered herein. Figure 5-5 presents some comparison between the data 
of DEBIANE (2000) and the present theory. Figure 5-5A shows the dimensionless wave front 
location as function of the dimensionless time. DEBIANE's data are compared with RITTER's 
(1892) solution (thick solid line) and with Equation (5-20) for α = 1 (i.e. f = 64/Re) and α = 100 
(i.e. f = 6400/Re). Figure 5-5B illustrates an instantaneous free-surface profile. Overall the 
analytical development are qualitatively in agreement with the experimental trends. 
In his thesis, however, DEBIANE (2000) acknowledged a number of experimental shortcomings 
(DEBIANE 2000, pp. 161-163). His results showed systematically that the dam break front celerity 
was much smaller than theoretical predictions. His data were about 7 times lower than both 
RITTER's solution and DEBIANE's theoretical solution for laminar flows. This problem is best 
illustrated in Figure 5-5A in terms of wave front locations. DEBIANE indicated that, during his 
experiments, the gate opening was relatively slow (0.25 s typically) and could not be considered as 
an instantaneous dam break, as demonstrated by the experimental work of ESTRADE (1967). 
Further, for very viscous solutions, some fluid was affected by the gate opening motion. Some fluid 
attached to the gate while other portions were projected away from the flume. DEBIANE indicated 
further problems with sidewall effects for the most viscous solutions (µ = 170 Pa.s) as well as some 
fluid crystallisation next to the walls at the shock front (DEBIANE 2000, p. 163). 
 
Fig. 5-5 - Comparison between theory and experimental data by DEBIANE (2000) 
(A) Dimensionless wave front location for Red =4.73 - Comparison between RITTER's solution, 
Equation (5-20) and DEBIANE's data 
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(B) Instantaneous free-surface profile for Red = 0.671 - Comparison between DEBIANE's data 
(t* g/do = 114) and Equation (5-21) (for t* g/do = 9.1, α = 1, 10 and 100) 
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5.3 DETAILED SOLUTION FOR A HORIZONTAL CHANNEL WITH SOME INITIAL 
MOTION 
The laminar dam break wave in a horizontal channel may be extended if the flow velocity behind 
the dam is Vo for t < 0 as sketched in Figure 4-5. It is assumed that the translation of both dam and 
reservoir at the speed Vo is frictionless prior to dam removal, and that the translation of the 
undisturbed reservoir remains frictionless for t ≥ 0. The dam break is idealised by a vertical wall 
that is suddenly removed at t = 0 when the dam wall is located at x = 0. 
The instantaneous dam break creates a negative wave propagating upstream (1) into the reservoir 
with a known water depth do. In the (x, t) plane, the initial negative wave characteristic has a slope 
dt/dx = -1/(Co-Vo) where Co = g*do assuming a rectangular channel. Forward characteristics can 
be drawn issuing from the initial backward characteristic for t > 0. In the ideal fluid region, the flow 
properties satisfy the ideal dam break wave properties : 

 
d
do

  =  
1
3 * 









2  +  
Vo
g * do

  -  
x

t * g * do
 

  for - 1 + 
Vo
g * do

  ≤  
x

t * g * do
  ≤  

x1
t * g * do

  (5-22) 

                                                 
1The negative wave propagates upstream if Vo < Co. For Vo > Co, the leading edge of the initial 
negative characteristic may propagate downstream. 
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x
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  (5-23) 

In the wave tip region (i.e. x1 ≤ x ≤ xs), the flow properties are calculated using the diffusive wave 
equation (Eq. (5-5)). Since the flow depth and velocity must be continue at the point F2, the flow 
properties at point F2 (x1, V1, d1) and at wave front (xs, U) are deduced from : 
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 (5-24) 
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 (5-25) 
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 (5-26) 
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 * 
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 * 
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 (5-27) 

The conservation of mass must be further satisfied. The mass of fluid in the wave tip region (i.e. x1 
≤ x ≤ xs) equals the mass of fluid in the ideal fluid flow profile for x1 ≤ x ≤ (2* g*do+Vo)*t : 
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2
 * dx       (5-28) 

The above equations may be transformed to express d1 and x1 as functions of U: 
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 (5-29) 
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The continuity equation becomes an equation in terms of the wave front location xs and celerity U : 
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  (5-31) 
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The wave tip region has a parabolic free-surface profile (Eq. (5-7B)). The water depth at point F2 
Equation (5-27). Hence the wave tip region length satisfies : 
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 (5-32) 

The exact solution in terms of the wave front celerity is : 
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 * t (5-33) 

while the wave front location equals: 
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  (5-34) 

and the free-surface profile satisfies : 
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d
do

  =  0 for  
xs
do

  ≤  
x
do

  (5-35d) 

The location x1 of point F2 is deduced from Equations (5-32) and (5-34). Note that the results yield 
the results obtained in paragraph 5.2 for Vo = 0 (i.e. Fro = 0). 
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5.4 DETAILED SOLUTION FOR A MILD-SLOPE CHANNEL WITH SOME INITIAL MOTION 
Using the same technique developed in Section 4 for turbulent dam break wave, the above problem 
may be extended to a mild-slope channel. Prior to dam break, it is assumed that the translation of 
both dam and reservoir is frictionless. After dam break, the flow is assumed to be an ideal fluid 
flow region behind a friction dominated wave tip region, while the translation of the undisturbed 
reservoir remains frictionless for t > 0. The sudden dam removal takes place at t = 0 when the dam 
wall is located at x = 0. 
The instantaneous dam break creates a negative wave propagating upstream into a fluid at rest with 
known water depth. In the (x, t) plane, the initial negative wave characteristic has a slope dt/dx = -
1/(C-Vo) with C = Co for t = 0. For a flat slope, the initial backward characteristic propagates 
upstream with a celerity ( g*do-Vo) in first approximation. 
Forward characteristics can be drawn issuing from the initial backward characteristic for t > 0: In 
the ideal fluid flow region, the flow properties satisfy : 
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  (5-36) 
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where So = sinθ and So is positive for a downward slope. 
In the wave tip region, the flow properties in the wave tip region may be estimated using the 
diffusion wave equation taking into account flow resistance and bed slope : 

 
∂ d
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f
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U2
g * d  -  So  =  0 Wave tip region  (5-38) 

where the Darcy friction factor in steady laminar flows equals : 

 f  =  
64 * α

Re  (5-6) 

with Re being the flow Reynolds number. Equation (5-38) may be solved analytically. A truncated 
Taylor series of the solution is : 
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assuming that Equation (5-6) holds in unsteady flows and for a wide channel, neglecting the effect 
of the bed slope in the wave tip region, and where xs is the wave front location. 
The free-surface profile and velocity must be continue at point F2. Hence the flow properties at the 
point F2 (x1, V1, d1) must satisfy : 
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 (5-39) 
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 (5-40) 

 U  =  V1 (5-41) 

 
d1
do

  =  

3

6 * α * 

U
g * do

ρ * g * do
3

µ

 * 
xs - x1

do
 (5-42) 

The conservation of mass must be satisfied. The mass of fluid in the wave tip region (i.e. x1 ≤ x ≤ 
xs) must be equal to the mass of fluid in the wave tip of the ideal fluid flow profile (i.e. for x1 ≤ x ≤ 
(2*( g*do+Vo+g*So/4*t)*t)) : 

 
⌡
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x1 

 xs
3
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
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1
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
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1
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x
t

2
 * dx   (5-43) 

The integration of the continuity equation gives : 
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  (5-44) 

Equations (5-39) and (5-40) may be rewritten to express, in dimensionless form, d1 and x1 as 
functions of U : 
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
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 (5-39b) 
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U
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  -  
1
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  -  So * 
g
do

 * t  -  1 (5-40b) 

The wave tip region has a cubic root free-surface profile. Hence the water depth at point F2 
satisfies: 

 
d1
do

  =  

3

6 * α * 

U
g * do

ρ * g * do
3

µ

 * 
xs - x1

do
 (5-42) 

and the dimensionless length of the wave tip region is : 
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  (5-43) 

Using Equation (5-40b) and replacing into the continuity equation (Eq. (5-43)), the exact solution 
of the dam break wave in terms of the wave front celerity is : 
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  (5-44) 

while the wave front location equals: 
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and the free-surface profile is : 
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d
do

  =  0 for  
x

t * g*do
  ≤  

xs
t * g*do

  (5-46d) 

The location of point F2 is given from Equation (5-40b). 
 
Equation (5-44) provides an explicit relationship between the dimensionless wave front celerity 
U/ g*do and dimensionless time t* g/do. The solution in terms of the wave front celerity is non-
linear with the dimensionless time present on both sides of Equation (5-44). Equation (5-45) yields 
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the dimensionless wave front location xs/do as a function of the dimensionless wave front celerity 
U/ g*do and dimensionless time t* g/do. Equation (5-46) gives the entire dimensionless free-
surface profile d/do = F(x/(t* g*do)). 
 
Discussion 
The results are based upon a series of basic approximations. In particular, it is assumed that the 
wave tip region is primarily affected by bed friction while the ideal-fluid flow motion behind is 
mostly affected by inertial effects and the gravity force component. Further the development 
assumes small times t and a flat bed slope. In particular, it implies C = Co on the initial backward 
characteristic, and straight backward characteristics in the ideal fluid flow region. 
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6. NUMERICAL APPLICATIONS 

6.1 PRESENTATION 
Simple applications of the above developments are presented below for turbulent flow motion. The 
first one is an instantaneous dam break wave in a narrow, quasi-two-dimensional valley. The 
second application is a swash zone situation with wave runup on a mild beach slope. The last 
example is related to a tsunami runup on a flat coastline. In each case, the basic flow conditions are 
defined. For all investigated conditions, analytical calculations were conducted for both ideal- and 
real-fluid flows and quantitative results are presented. A comparison between different assumptions 
(e.g. ideal- versus real-fluid flow) is presented and the results are discussed. 
 
Fig. 6-1 - Example of instantaneous dam break: the St Francis dam, USA (Courtesy of Santa Clarita 
Valley Historical Society) - Looking upstream at the dam wall ruins 

 
 

6.2 DAM BREAK APPLICATION 
Considering a 65 m high concrete dam (e.g. Fig. 6-1), calculate the dam break wave characteristics 
for an instantaneous break. Consider all test cases listed in Table 6-1 assuming : 

do = 65 m  
d3 = 0 

2 
m 
m 

Dry bed 
Initial water depth 

Vo = 0 m/s  
So = 0 

+0.01 
 Horizontal 

Downward bed slope 
f = 0 

0.03 
0.1 

 Frictionless flow 
Real fluid flow (smooth bed) 
Real fluid flow (rough bed) 

Analytical results are presented in Table 6-2, in terms of the dimensionless dam break wave celerity 
U/ g*do, dimensionless wave front celerity U (in m/s) and wave front location xs (in m) at three 
different times. For example, the first series result [2.0 / 50 / 326] means : U/ g*do = 2.0, U = 50 
m/s and xs = 326 m. 
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Table 6-1 - Dam break wave application : test cases 
 

Case Flow conditions Remarks 
(1) (2) (3) 

Case 1 Ideal fluid flow on dry, horizontal bed RITTER's solution (paragraph 2.2). 
Case 3 Ideal fluid flow over still water (horizontal bed) Paragraph 3.2. 
Case 5 Ideal fluid flow on dry, sloping downward bed Paragraph 3.4. 
Case 6 Real-fluid flow (diffusive wave model) on dry, 

horizontal bed 
Paragraph 4.2. 

Case 6a Smooth downstream channel  
Case 6b Rough downstream channel  

Case 8 Real-fluid flow (diffusive wave model) on dry, 
sloping downward bed with initial flow motion 

Paragraph 4.4. 

Case 8a Smooth downstream channel  
Case 8b Rough downstream channel  

 
Table 6-2 - Dam break wave application : analytical results [U/ g*do / U (in m/s) / xs (in m)] 
 

Case t* g/do = 2.5 t* g/do = 6.3 t* g/do = 25.0 Remarks 
 t = 6.4 s t = 16.1 s t = 64.5 s  

(1) (2) (3) (4) (5) 
Case 1 2 / 50 / 326 2 / 50 / 814 2 / 50 / 3256 f = 0, So = 0 
Case 3 0.2 / 4.9 / 32 0.2 / 4.9 / 79 0.2 / 4.9 / 317 d3 = 2 m, So = 0 
Case 5 2.0 / 51 / 328 2.1 / 52 / 827 2.2 / 57 / 3460 f = 0, So = +0.01 
Case 6a 1.28 / 32 / 236 1.11 / 28 / 544 0.84 / 21 / 1833 f = 0.03, So = 0 
Case 6b 1.06 / 27 / 210 0.87 / 22 / 472 0.60 / 15 / 1547 f = 0.1, So = 0 
Case 8a 1.30 / 33 / 239 1.15 / 29 / 551 0.97 / 24 / 1891 f = 0.03, So = +0.01 
Case 8b 1.07 / 27 / 211 0.91 / 23 / 456 0.70 / 18 / 1566 f = 0.1, So = +0.01 

 
Note : Result presentation =U/ g*do / U (in m/s) / xs (in m). 
 
Discussion 
Ideal fluid flow calculations (Cases 1, 3 and 5) indicate very-different results in presence of 
downstream still waters (Cases 3). Such a trend was observed experimentally (e.g. BAZIN 1865b, 
ESTRADE 1967, CHANSON et al. 2002), and it is caused by the presence of a positive surge at the 
leading edge of the shock. 
Real fluid flow calculations (Cases 6 and 8) demonstrated the strong influence of the bed resistance 
and the relatively negligible influence of the bed slope (for a mild gradient So = +0.01) at relatively 
small times (t < 65 s). The results predict that the wave front location at 1 minute after dam break is 
1.8 km and 1.55 km downstream of the dam site for Cases 6a and 6b respectively, corresponding to 
f = 0.03 and 0.1. 
Cases 8a and 8b are possibly the most realistic situations. They yield a wave front celerity U of 
about 24 and 18 m/s respectively and a characteristic wave front thickness d1 of 27 and 39 m 
respectively at t = 65 s. 
 

6.3 SWASH ZONE APPLICATION 
The above developments may be applied to the study of sediment motion in the swash zone. For 
breaking waves on a sloping beach, the resulting swash is somehow similar to a dam break wave 
running over dry, sloping bed or over retreating waters (Fig. 6-2). Calculate the wave runup 
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characteristics for an instantaneous dam break considering each test case listed in Table 6-3 and 
assuming : 

do = 0.5 m  
d3 = 0 

0.010 
m 
m 

Dry bed 
Initial water depth 

Vo = 0 
2 

m/s  

V3 = 0 
+1 

m 
m 

Still water 
Water rundown (retreating water) 

So = 0 
-0.01 

 Horizontal 
Downward bed slope 

f = 0 
0.03 

 Frictionless flow 
Real fluid flow (sand) 

The above calculations were applied to the swash zone example, assuming a dam break wave in a 
rectangular channel, with and without friction, with and without initial downstream water level. 
Results are presented in Table 6-4 in terms of the dimensionless dam break wave celerity U/ g*do, 
dimensionless wave front celerity U (in m/s) and wave front location xs (in m) at three 
dimensionless times. 
 
Table 6-3 - Swash zone application : test cases 
 

Case Flow conditions Remarks 
(1) (2) (3) 

Case 1 Ideal fluid flow on dry, horizontal bed RITTER's solution (paragraph 2.2). 
Case 2 Ideal fluid flow on dry, frictionless bed with 

initial flow motion 
Paragraph 3.3. 

Case 3 Ideal fluid flow over still water (horizontal bed) Paragraph 3.2. 
Case 4a Ideal fluid flow over still water (horizontal bed) 

with initial flow motion (d3 > 0, V3 = 0) 
Paragraph 3.2. 

Case 4b Ideal fluid flow over still water (horizontal bed) 
with initial flow motion (d3 > 0, V3 > 0) 

Paragraph 3.2. 

Case 5 Ideal fluid flow on dry, sloping upward bed Paragraph 3.4. 
Case 6 Real-fluid flow (diffusive wave model) on dry, 

horizontal bed 
Paragraph 4.2. 

Case 7 Real-fluid flow (diffusive wave model) on dry, 
horizontal bed with initial flow motion 

Paragraph 4.3. 

Case 8 Real-fluid flow (diffusive wave model) on dry, 
sloping upward bed 

Paragraph 4.4. 

Case 9 Real-fluid flow (diffusive wave model) on dry, 
sloping upward bed slope with initial flow motion

Paragraph 4.5. 

 
Discussion 
In the ideal fluid flow calculations, the most realistic results are Cases 4a and 4b. Case 4b 
corresponds to a wave surging on the beach against some water rundown. Although Case 4 
(paragraph 3.2) assume a horizontal channel, the results may be relevant for a gentle slope. In Table 
6-4, note the strong effect that the presence of downstream water has on the wave front celerity.  
Real-fluid flow calculations emphasise the significance of the initial flow conditions. It is expected 
that Case 9 would be most representative. It predicts that the wave runup would reach 8.5 and 19 m 
from breaking point in 2 and 5 seconds respectively. 
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Table 6-4 - Swash zone application : analytical results [U/ g*do / U (in m/s) / xs (in m)] 
 

Case t* g/do = 2.2 t* g/do = 8.9 t* g/do = 22.1 Remarks 
 t = 0.5 s t = 2.0 s t = 5.0 s  

(1) (2) (3) (4) (5) 
Case 1 2 / 4.4 / 2.2 2 / 4.4 / 8.9 2 / 4.4 / 22.1 f = 0, So = 0, Vo = 0 
Case 2 2.9 / 6.4 / 3.2 2.9 / 6.4 / 12.9 2.9 / 6.4 / 32.1 f = 0, So = 0, Vo > 0 
Case 3 0.2 / 0.4 / 0.2 0.2 / 0.4 / 0.7 0.2 / 0.4 / 1.8 f = 0, So = 0, Vo = 0 
Case 4a 0.26 / 0.6 / 0.3 0.26 / 0.6 / 1.1 0.26 / 0.6 / 2.8 d3 > 0, Vo > 0, V3 = 0 
Case 4b 0.24 / 0.5 / 0.3 0.24 / 0.5 / 1.1 0.24 / 0.5 / 2.7 d3 > 0, Vo > 0, V3 > 0 
Case 5 2.0 / 4.4 / 2.2 1.9 / 4.2 / 8.7 1.8 / 3.9 / 20.9 f = 0, So = -0.01, Vo = 0 
Case 6 1.30 / 2.9 / 1.6 1.05 / 2.3 / 5.7 0.86 / 1.9 / 12.7 f = 0.03, So = 0, Vo = 0 
Case 7 2.2 / 1.98 / 4.4 1.62 / 3.6 / 8.6 1.36 / 3.0 / 19.3 f = 0.03, So = 0, Vo > 0 
Case 8 1.29 / 2.8 / 1.6 0.99 / 2.2 / 5.6 0.74 / 1.6 / 12.3 f = 0.03, So = -0.01, Vo = 0 
Case 9 1.97 / 4.4 / 2.4 1.57 / 3.5 / 8.5 1.23 / 2.7 / 18.9 f = 0.03, So = -0.01, Vo > 0 

 
Note : Result presentation =U/ g*do / U (in m/s) / xs (in m). 
 
Fig. 6-2 - Swash zone processes on the Enshu coast of Japan 
(A) Wave breaking and swash zone at Terasawa beach (Japan) on 23 Nov. 2001 around 12:00 noon 
(high tide) 
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(B) Wave runup at Terasawa beach (Japan) on 23 Nov. 2001 around 12:00 noon (high tide) - Same 
location at Fig. 6-2A - The surfer use a flatboard to "surf" the surging waters 

 
 

6.4 TSUNAMI RUNUP APPLICATION 
6.4.1 Introduction 
A tsunami wave is a long-period wave generated by ocean bottom motion during an earthquake 
typically. The wave length is typically about 200 to 350 km and the tsunami behaves as a shallow 
water wave, even in deep sea. The main characteristics (1) of a tsunami wave are : 
Wave celerity 

C  =  
g * l
2 * π * tanh



2 * π * d

l   ≈  g * d 
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d
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d
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Wave energy spectral density 
E  =  

1
2 * ρ * g * a2 

J/m2

Average energy flux 
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



1  +  
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1
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1This paragraph is based upon CHANSON et al. (2000). 
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where a is the wave amplitude, d is the still water depth, l is the wave length, ρ is the water density, 
g is the gravity acceleration, and sinh and tanh are the hyperbolic sine and tangent functions 
respectively. Note that, for long-period waves, the wave group celerity, average energy flux and 
average momentum flux may be simplified since: 

 





1  +  

4 * π * 
d
l

sinh



4 * π * 

d
l

  ≈  2 (6-1) 

Although the wave amplitude is moderate in the middle of the ocean (e.g. 0.2 to 1 m), the tsunami 
wave speed decreases near the shoreline with decreasing water depths. For a constant energy flux, 
the wave height increases accordingly until wave breaking occurs (2). The arrival of a tsunami wave 
at the shore may be characterised either by a very-slow rise in water level or by a surging bore. In 
the former situation no wave breaking take place and the horizontal runup is a slow and gradual 
flooding of the land. In the latter case, wave breaking may occur before the tsunami reaches the 
coastline and the wave front becomes a turbulent surge (e.g. Fig. 6-3). 
Several researchers developed an analogy between the wave breaking process of long-period 
waves, including tsunami waves, and solitary waves (e.g. SYNOLAKIS 1987, MONTES 1998 (3)). 
Theoretical calculations suggest that solitary waves break for Hmax/d = 0.8 to 0.85 while 
experimental observations give Hmax/d > 0.75 where Hmax is the maximum wave height at 
breaking (4) and d is the still water depth. 
Considering a tsunami wave surging over the shoreline, the initial velocity head of the surging 
waters may be approximated as: 

 
Vo

2

2 * g  ≈  
Hmax

2  +  
C2

2 * g (6-2) 

where C is the velocity of the solitary wave. Assuming a constant energy flux, the wave height 
Hmax must satisfies approximately : 

 
1
4 * ρ * g * C * Hmax

2  =  
1
4 * ρ * g * Cdw * adw

2 (6-3) 

where Cdw and adw are the deep-water wave celerity and wave amplitude respectively, and 
assuming that the wave group velocity equals the solitary wave velocity. MONTES (1998, pp. 461-
462) reviewed experimental data and computational results which are altogether best correlated by: 

 
C
g*d

  =  0.9983 * 







1 + 
Hmax

d

0.4688
 (6-4) 

where d is the still water depth and Hmax is the solitary wave height at breaking measured above 
still water level. A solitary wave is characterised by a net transport of water in the wave direction. 
The momentum flux per meter width of the surging wave is about : 
 ρ * q * Vo  ≈  ρ * V * C * Hmax momentum flux per meter width  (6-5) 

                                                 
2For short oscillatory waves (i.e. deep water waves), breaking takes place for Hmax/d = 0.35 to 0.4 
or Hmax/l > 1/24 to 1/14 where Hmax is the maximum wave height, d is the water depth and l is the 
wave length (PONDS and PICKARD 1983). 
3"Solitary waves are believed to model some important aspects of the coastal effects of tsunamis 
well." (SYNOLAKIS 1987, p. 523). "Most oscillatory waves take the characteristics of solitary 
waves when shoaling. [...] As the [wave] period increased, the solitary wave analogy was 
approached" (MONTES 1998, p. 463). 
4being measured above the still water level for a solitary wave. 
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while the initial surging water depth do above the mean still water level may be derived from 
continuity : 
 Vo * do  =  Hmax * C (6-6) 

 
6.4.2 Application 
Considering a tsunami wave (0.25 m high) generated in deep water (4,000 m), solitary wave 
calculations indicate that the wave breaking occurs near the shore for a water depth d = 6.25 m, 
with a maximum wave height of 4.4 m and a wave celerity at breaking C = 7.8 m/s. Calculate the 
surge runup characteristics on the coastline for several cases (Table 6-5) assuming : 

do = 6.25 m  
d3 = 0 

0.5 
m 
m 

Dry bed 
Initial water depth 

Vo = 0 
7.8 

m/s  

So = 0 
-0.01 

 Horizontal 
Upward bed slope 

f = 0 
0.05 

 Frictionless 
Real fluid flow 

Analytical results are presented in Table 6-6, in terms of the dimensionless dam break wave celerity 
U/ g*do, dimensionless wave front celerity U (in m/s) and wave front location xs (in m) for three 
times. 
 
Table 6-5 - Tsunami runup application : test cases 
 

Case Flow conditions Remarks 
(1) (2) (3) 

Case 1 Ideal fluid flow on dry, horizontal bed RITTER's solution (paragraph 2.2). 
Case 2 Ideal fluid flow on dry, frictionless bed with 

initial flow motion 
Paragraph 3.3. 

Case 3 Ideal fluid flow over still water (horizontal bed) Paragraph 3.2. 
Case 4 Ideal fluid flow over still water (horizontal bed) 

with initial flow motion 
Paragraph 3.2. 

Case 5 Ideal fluid flow on dry, sloping upward bed Paragraph 3.4. 
Case 6 Real-fluid flow (diffusive wave model) on dry, 

horizontal bed 
Paragraph 4.2. 

Case 7 Real-fluid flow (diffusive wave model) on dry, 
horizontal bed with initial flow motion 

Paragraph 4.3. 

Case 8 Real-fluid flow (diffusive wave model) on dry, 
sloping upward bed slope 

Paragraph 4.4. 

Case 9 Real-fluid flow (diffusive wave model) on dry, 
sloping upward bed slope with initial flow motion

Paragraph 4.5. 
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Table 6-6 - Tsunami runup application : analytical results [U/ g*do / U (in m/s) / xs (in m)] 
 

Case t* g/do = 2.5 t* g/do = 12.5 t* g/do = 25.0 Remarks 
 t = 2.0 s t = 10.0 s t = 20.0 s  

(1) (2) (3) (4) (5) 
Case 1 2.1 / 15.7 / 31.3 2.0 / 15.7 / 156 2.0 / 15.7 / 313  
Case 2 3.0 / 23.5 / 47 3.0 / 23.5 / 234 3.0 / 23.5 / 469  
Case 3 0.3 / 2.2 / 4.5 0.3 / 2.2 / 22.4 0.3 / 2.2 / 45 Small bore height: d2-d3 = 0.01 m. 
Case 4 0.5 / 3.6 / 7.3 0.5 / 3.6 / 36.3 0.5 / 3.6 / 72 Bore height: d2-d3 = 0.44 m. 

Undular bore. 
Case 5 2.0 / 15.5 / 31 1.9 / 14.7 / 152 1.7 / 13.7 / 293 Maximum runup : ~ 200 m. 

Maximum height: ~ 12 m 
Case 6 1.19 / 9.3 / 21.8 0.92 / 7.2 / 80 0.73 / 5.8 / 164  
Case 7 1.89 / 15 / 34 1.5 / 11.7 / 129 1.22 / 9.6 / 260  
Case 8 1.17 / 9.2 / 22 0.85 / 6.6 / 79 0.62 / 4.9 / 161  
Case 9 1.9 / 15 / 33 1.42 / 11.1 / 128 1.1 / 8.6 / 255  

 
Note : Result presentation =U/ g*do / U (in m/s) / xs (in m). 
 
Discussion 
First ideal fluid flow calculations (Cases 1 to 5) yield different results when the coastline is covered 
by a layer of still water (Cases 3 and 4) (see paragraph 6.4.4). This was observed experimentally by 
several researchers (e.g. BAZIN 1865b, ESTRADE 1967, CHANSON et al. 2002). For a dry 
coastline, the results show a major influence of the initial translation velocity of the reservoir Vo. 
Real fluid flow calculations (Cases 6 to 9) demonstrate the strong effect of bed resistance on wave 
propagation, even for short times t, in all situations. For example, Cases 1 and 5 (Vo = 0, So = 0), 
Cases 2 and 6 (Vo = 7.8 m/s, So = 0) and Cases 5 and 8 (Vo = 0, So = -0.01). Although the effects 
of bed slope are ignored in Cases 4 and 7, the calculations showed that these are relatively 
negligible for small to moderate times t. 
Overall, Case 9 is possibly the most realistic test case for a tsunami wave runup on a flat, dry 
coastline as illustrated in Figure 6-3, while Case 4 could be most representative of a tsunami wave 
runup in shallow waters (see paragraph 6.4.4). Present results (Case 9) yield a wave front celerity U 
= 11 m/s and a wave front location xs = 130 m at about 10 seconds after the "instantaneous dam 
break" on dry land. These results, in terms of both wave front location and celerity, are comparable 
with video observations of tsunami runup at Patong Beach, Phuket Island on 26 Dec. 2004 (e.g. Fig. 
6-3B). Figure 6-3B shows a video-frame taken about 10 seconds after tsunami wave breaking. 
Figure 6-3B is a single-frame from a video taken on 26 December 2004 at Patong Beach, Phuket 
(Thailand). Figure 6-3C shows a still photograph from about the same observation point, looking at 
the devastation one or two days later. 
In presence of still water (Case 4), for comparison, the positive surge celerity is only (!) 3.6 m/s, but 
a positive surge is a self-perpetuating process that can travel very-long distances, provided that the 
channel (i.e. coastline) shape does not change (e.g. HENDERSON 1966, CHANSON 2004a). 
Note that the calculations are highly dependent upon the initial flow conditions. These were 
deduced from a few key assumptions. 
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Figure 6-3 - Images of tsunami wave runup on 26 December 2004 in Thailand 
(A) Tsunami wave breaking before runup (Channel 9 TV News, Australia on 01/01/05 at 18:00) - 
View from a 2nd or 3rd floor, looking down at the 6-m high breaking wave coming straight at the 
building 

 
 
(B) Tsunami wave runup on dry land about 9-10 seconds after wave breaking at Patong Beach 
(ABC TV News, Australia on 27/12/05 at 19:00) - View from a building balcony, looking down at 
the wave runup (flow from right to left) - The wave front leading edge is highlighted by its 'white 
waters' 
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(C) View from the sun terrace of the Novotel, Patong Beach (Courtesy of Phil BLISS) - Photograph 
taken after the tsunami disaster 

 
 
6.4.3 Tsunami surge front 
After wave breaking in shallow waters, the tsunami waters may surge on dry or inundated coastal 
plains, in a manner somehow similar to a dam break wave. Such tsunami surges were witnessed in 
Indonesia (Western Aceh, Banda Aceh) and Thailand (Khao Lak, Patong) on 26 Dec. 2004 (Fig. 6-
4 and App. A) (CHANSON 2005). Figure 6-4 shows an advancing surge front in a street of Banda 
Aceh. While the exact location is unknown, it is believed to be about 1.5 to 3 km inland. In the 100 
m long street stretch, the surge advanced with an average celerity U of about 1.5 to 1.6 m/s. 
However the advance was neither two-dimensional nor smooth. The surge appeared to progress 
section by section, in a somewhat disorganised manner. Although this behaviour might be induced 
by flow turbulence, it might also be related to the fluid rheology. 
The time variations of water depth were estimated at four different locations of the street,. The data 
are shown in Figure 6-5 with the (bottom) horizontal axis being a time being measured from when 
the surge front reached the location, and the (left) vertical axis is the flow depth in metres. The data 
were compared with the present theoretical development for a horizontal channel. Assuming a 1 m 
high tsunami wave generated in deep water (1,000 m depth), solitary wave calculations predict 
wave breaking near the shore with a maximum wave height of 10.5 m and a wave celerity at 
breaking of Vo = 12 m/s (SYNOLAKIS 1997, MONTES 1988, CHANSON et al. 2000). 
Dam break wave calculations were conducted for comparable conditions, assuming do = 10.5 m, 
Vo = 0 and 12 m/s, x = 2 km, and a flow resistance coefficient f = 0.5. Note that, for a reservoir 
height do = 10. 5 m, corresponding to the maximum wave height, the calculations yield a water 
depth at the end of the process of 4/9*do = 4.7 m that is close to maximum flooding heights in 
Banda Aceh (TSUJI 2005; BORRERO 2005, Person. Comm., CHANSON 2005). Four cases were 
considered: ideal- and real-flows, with and without initial motion. The predictive results are 
summarised in Table 6-7. 
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Real fluid flow calculations highlighted the strong effect of bed resistance on wave propagation. 
The quantitative results in terms of surge front celerity were comparable with observations for the 
surge shown in Figure 6-4 and 6-5. Field observations were further compared with Equations (4-15) 
to (4-18) for the above conditions (do = 10.5 m, x = 2000 m). Results are presented in Figure 6-5 
for the case Vo = 0, as d/do versus x/(t* g*do). Both calculations (dotted line) and observed data 
(grey triangles) are presented in dimensionless terms corresponding to the top horizontal and right 
vertical axes. Figure 6-5 shows a surprisingly good agreement between data and theory in terms of 
the wave front shape. Despite simplistic approximations, the calculations are based upon 
physically-based principles, and the resulting method provides a simple tool to predict rapidly 
tsunami surge in emergency situations. 
 
Fig. 6-4 - Advancing mud and debris surge in Banda Aceh (26 December 2004 tsunami) - Looking 
upstream for four different times: (A) t = 8.48 s (B) t = 13.12 s (C) t = 16.0 s (D) t = 39.0 s 
 

  

  
 
Table 6-7 - Tsunami surge application: analytical results at x = 2000 m for do =10.5 m (Vo = 0 & 
12 m/s), So = 0 - Comparison between ideal- and real-fluid flow calculations 
 

Flow property at x = 2000 m Case A Case B Case C Case D 
do =10.5 m, So = 0 Ideal fluid 

Vo = 0 
Ideal fluid 

Vo = 12 m/s
Real fluid 

Vo = 0 
Real fluid 

Vo = 12 m/s
(1) (2) (3) (4) (5) 

Surge arrival time since breaking (s) = 99 62 340 200 
U (m/s) = 20.3 32.3 1.2 2.9 
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Fig. 6-5 - Time-variations of the water depth for the surge shown in Figure 6-4 (Banda Aceh, 26 
Dec. 2004) and dimensionless comparison with Equation (4-17) 
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6.4.4 Discussion 
After breaking, a tsunami surge propagating in shallow-water regions is led by a positive surge. In 
shallow rivers, the process is somehow similar to a tidal bore and the bore may propagate far 
upstream. A tsunami-induced river bore was observed in Hawaii in 1946, in Japan in 1983 and 
2003, and in 2005 in Thailand, Malaysia and Sri Lanka (SHUTO 1985, YEH 1991, CHANSON 
2005) (Fig. 6-6). Figure 6-6 shows an aerial view of an undular bore, induced by the 2003 Tokachi-
oki tsunami, propagating upstream in a Japanese river. 
In rivers and shallow-water bays, the propagation of the positive surge is associated with sediment 
scour, strong mixing and suspended sediment advection upstream. These features are well-known to 
tidal bore processes (e.g. DONNELLY and CHANSON 2002). 
Although the above approach is very simplistic and relies upon basic assumptions, it is derived 
from basic principles and physically-based equations that were successfully validated with a wide 
range of physical data in large size facilities. The resulting set of equations provides a simple tool to 
predict tsunami surge and dam break wave propagation. Such calculations can be performed in real-
time and provides very rapid information that may be vital in emergency situations. 
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Figure 6-6 -Tsunami-induced bore during the 2003 Tokachi-oki tsunami in Japan (Courtesy of 
Professor SHUTO, with assistance of Prof. Kenji SATAKE) - Bore propagation from top right to 
bottom left - The bore propagates upstream toward the bridge 
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7. SUMMARY AND CONCLUSION 
Most dams and reservoirs are designed for an optimum use at the most economical cost. A safety 
analysis must be conducted, and the optimum design is the one that minimises the real total cost : 
i.e. the cost of construction + maintenance cost + cost of safety. The cost of a failure is not always 
measurable : damage to properties is assessable, damage to the environment is real and has often a 
political value, but the loss of life is a matter of suffering. It is a human tragedy that has a very 
strong political impact, in particular in developed countries. In the past, a significant number of 
dams failed (e.g Fig. 7-1). 
The present work is focused on simple solutions of dam break wave problems using the Saint-
Venant equations and the method of characteristics for both laminar and turbulent flow motion. 
Analytical solutions are developed for an instantaneous dam break with a semi-infinite reservoir in 
a wide rectangular channel. After a review of well-known solutions, some simple ideal-fluid flow 
solutions are detailed. These include ideal dam break wave flow on horizontal and sloping 
channels, with or without initial flow motion. The effect of the presence of water in the downstream 
channel is discussed. This type of ideal dam break wave solutions is typically taught in advanced 
undergraduate subjects (e.g. HENDERSON 1966, CHANSON 2004). 
Section 4 presents new analytical solutions of dam break wave of real fluids with turbulent flow 
motion. It encompasses dam break wave in horizontal channels with bed friction, dam break wave 
with initial flow motion, and dam break waves in flat-slope channels. In the theoretical 
developments, the dam break wave flow is analysed as a wave tip region where flow resistance is 
dominant, followed by an ideal-fluid flow region where inertial effects and gravity effects are 
dominant. The analytical results were validated by successful comparisons between several 
experimental data sets obtained in large-size facilities (App. B) and theoretical results, in terms of 
instantaneous free-surface profiles, wave front location and wave front celerity. The former 
comparison with instantaneous free-surface data is considered to be the most accurate technique to 
estimate the flow resistance and the best validation technique. Section 5 presents new analytical 
solutions of dam break wave with laminar flow motion. The dam break wave flow is analysed as a 
wave tip region where viscous flow resistance is dominant, followed by an ideal-fluid flow region 
where inertial effects and gravity effects are dominant. The analytical results were validated 
qualitatively by comparisons between experimental and theoretical results. 
In the last section, the analytical results are applied to three flow situations: a dam break, the swash 
zone, and a tsunami runup. Detailed comparison was conducted between ideal- and real-fluid flow 
calculations. It was shown that the theoretical results may be applied successfully to a wider range 
of applications that the simple dam break problem. 
It is the writer's strong opinion that the present developments provide several main advantages over 
existing methods. First the theoretical results for real-fluid flows yield simple explicit analytical 
expressions that compare well with experimental data and more advanced theoretical solutions. 
Second the proposed development is a simple pedagogical application of the Saint-Venant 
equations and method of characteristics, linking together the simple wave equations yielding 
RITTER's solution, with a diffusive wave equation for the wave tip region. Third, these explicit 
analytical solutions provide simple tools to validate numerical solutions of the method of 
characteristics applied to the dam break wave problem. Fourth the development were applied to a 
wide range of flow situations, and includes the effects of bed slope and initial flow motion. This 
yields to a wide range of practical applications (e.g. Section 6). Fifth the simplicity of the equations 
may allow the extension of the method to more complex fluids (e.g. non-Newtonian fluids). 
CHANSON et al. (2004) proved the concept by applying successfully the mathematical treatment 
of HUNT (1982,1984) to dam break wave of non-Newtonian thixotropic fluids. 
 
However it is acknowledged that the present approach is limited to semi-infinite reservoir, 
rectangular channel and quasi-instantaneous dam break. The latter approximation is often 
reasonable for concrete dam failure (e.g. Fig. 6-1) and plunging breaking waves, but it is not 
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applicable to many other applications including embankment breach (e.g. COLEMAN et al. 2002, 
CHANSON 2004b,e). 
 
Fig. 7-1 - Examples of instantaneous dam break catastrophes 
(A) St Francis dam, USA (Courtesy of Santa Clarita Valley Historical Society) - Large wall section 
lying just at the foot and downstream of the remnant monolith (Fig. 1-1A) - Looking from the right 
bank - Note people examining the wreckage on the bottom right of the photograph 

 
 
(B) Malpasset dam in the late 1990s, looking from the top of the dam on the right abutment 
(Courtesy of Didier TOULOUZE) - More than 300 people died in the catastrophe 
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APPENDIX A - MAJOR TSUNAMI CATASTROPHES 
A tsunami (1) is a long-period wave generated by ocean bottom motion during an earthquake. 
Occasionally it might be caused by another earth movement (e.g. underwater landslide, volcanic 
activity) (2). The wave length is typically about 200 to 350 km and the tsunami behaves as a 
shallow water wave, even in deep sea. Although the wave amplitude is moderate in the middle of 
the ocean (e.g. 0.5 to 1 m), the tsunami wave slows down and the wave height increases near the 
shoreline, with periods ranging between 20 minutes and several hours typically. The wave runup 
height might reach several metres above the natural sea level (Table A-1, column 4). 
Table A-1 summarises major tsunami disasters, associated with well in excess of 350,000 losses of 
life. Photographs of the 26 December 2004 tsunami disaster are presented in Figure A-1, and well-
documented studies include TSUJI (2005) and CHANSON (2005). 
 
Fig. A-1 - Photographs of the 26 December 2004 tsunami disaster 
(A) Car floating after tsunami waves near Madras, India (Courtesy of AFP/Podhigai TV via LCI) 
(B) People along a beach littered with debris, coastal areas in Colombo, Sri Lanka on Sunday 26 
Dec. 004 (Courtesy of AP Photo/Eranga Jayawardena) 

   
 
(C) Town's main road after a tsunami wave hit the southern Sri Lanka town of Galle - Photograph 
taken on Monday 27 Dec. 2004 (Courtesy of AP Photo/Elizabeth Dalziel) 
(D) Group of Buddhist monks and villagers along railroad tracks at Telwatte, about 100 km South 
of Colombo, Sri Lanka on Tuesday 28 Dec. 2004 - The "Queen of the Sea" train was beaten off its 
tracks, leaving more than 1,000 dead or missing (Courtesy of AP Photo/Eranga Jayawardena) 

   

                                                 
1Japanese word meaning "harbour wave". A tsunami is also called seismic sea wave. It is 
sometimes incorrectly termed "tidal wave" but the process is not related to the tides. 
2A related case is the impulse wave generated by rockfalls, landslides, ice falls, glacier breakup or 
snow avalanches in lakes and man-made reservoirs. Some impulse waves might be induced by 
earthquake-generated falls. 
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(E) Houses being flooded by the tsunami flood wave (flow from top left to bottom right) in Sri 
Lanka (Courtesy AP Photo/Dita Alangkara) 
(F) Damage at a beach in Phuket, Thailand on 26 Dec. 2004 (Courtesy of Reuters) 

   
 
(G) Damaged boats in Victoria port in the Seychelles -  Photograph taken on 27 Dec. 2004 
(Courtesy of REUTERS/George Thande) 
(H) Photograph of St Pierre beach, Reunion island on 26 Dec. 2004 - The tsunami runup traces are 
clearly visible on the beach slope (Courtesy of Axou) 

   
 
(I) Tsunami waves wash through houses at Maddampegama, about 60 km South of Colombo, Sri 
Lanka, on 26 Dec. 2004 (Courtesy AP Photo/Gemunu Amarasinghe) 
(J) Tsunami waves wash through houses at Maddampegama, about 60 km South of Colombo, Sri 
Lanka, on 26 Dec. 2004 (Courtesy of AP Photo/Gemunu Amarasinghe) 
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(K) Aerial image showing villagers stand next to a road destroyed by tsunami waves at Telwatte, 
about 100 km South of Colombo, Sri Lanka, on 29 Dec. 2004 (Courtesy AP Photo/Vincent Thian) 
(L) Aerial view of the bodies of victims, in the city of Banda Aceh, Indonesia on 27 Dec. 2004 
(Courtesy REUTERS/Beawiharta) 

   
 
(M) Tsunami waters surging through a tourist resort (Seagull Andaman Resort) at Khao Lak, 
Thailand on 26 Dec. 2004 (Courtesy of John M. THOMPSON) 
(N) Massive destruction at Khao Lak, Thailand, on 27 Dec. 2005 (Courtesy of John M. 
THOMPSON) 
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(O) Impact of the tsunami on North-West Aceh, Indonesia: Lhoknga, located about 60-70 km South 
of Banda Aceh 
(O1) Satellite photographs, DLR / IKONOS data from Centre for Remote Imaging, Sensing and 
Processing (Credit "Space Imaging/CRISP-Singapore") - Left : Before (10 Jan. 2003); Right: After 
(29 Dec. 2004); The red circles are the barge and cement factory seen in the next Figures 

 
 
(O2) Photographs of the coastline after the tsunami 
(Left) Barge and tugboat, with the jetty and a sunk boat in the background (Courtesy of Dr. Jose 
BORRERO, University of Southern California Tsunami research group) 
(Right) Cement factory (Courtesy of Dr. Jose BORRERO, University of Southern California 
Tsunami research group) 
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(O3) Looking South at the devastated coastline, with the cement factory and barge in the 
background, photograph taken on 4 Jan. 2005 (Courtesy U.S. Navy photo by Photographer's Mate 
3rd Class Tyler J. CLEMENTS Ref. 050104-N-6817C-23) 

 
 
(O4) Lhoknga, North-West Aceh, Indonesia 
(Left) Overturned and damaged cargo ship at the harbor near cement factory on 28 Jan. 2005 
(Courtesy of Dr V. GUSIAKOV) 
(Right) Traces of tsunami run-up on the surface of small coastal hill on 28 Jan. 2005 (Courtesy of 
Dr V. GUSIAKOV) - All vegetation and soil are removed by 20-25m waves 
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Table A-1 - Major tsunami catastrophes 
 

Location [Ref.] Date Loss of 
life 

Maximu
m runup 
height 

Runup soil 
/ conditions

Remarks 

   m   
(1) (2) (3) (4) (5) (6) 

MEDITERRANEAN 
AREA 

     

Amnisos, Crete [1,6,9] BC 1500?  40  Volcanic eruption on Santorini island. 
Marked the end of Minoan civilisation. 

Istanbul/Galata, Turkey 
[6] 

14 Sept. 1509    Overtopped the walls of Constantinople 

Gargano, Italy [3] 30 July 1637 > 5,000  Lakes Runup over Lakes Lesina and Varano. 
Messina, Italy (?) [7] 1908 several 

thousands
10   

Amorgos island, Greece 9 July 1956  25  Quake magnitude 7.7 
ATLANTIC OCEAN      
Lisbon, Portugal [5,6,9] 1 Nov. 1755 ~ 60,000 5 to 10 Coast Terrible disaster during day time. Many 

people killed, attracted by the retreating 
sea prior to the bore. 

Burin peninsula, 
Newfoundland, Canada 
[6] 

18 Nov. 1929  15  Grand Banks earthquake 

PACIFIC OCEAN      
CANADA      
West Coast of Canada [8] 27 Jan. 1700  20  Earthquake at the Cascadia subduction 

zone, West Coast, Canada. 
Port Alberni, British 
Columbia, Canada [8] 

28 Mar. 1964  4.3 Cliff and 
rocks 

"Great Alaska Earthquake" at Prince 
William Sound (27/3/61). 1st wave 
arrived at 12:20am. 3 waves, the last 
being the largest. (Period ~ 1.5 to 2 
hours.) Runup velocity = 50 km/h. 

CHILE      
Valdivia, Chile [6] 16 Dec. 1575    2 Spanish gallions wrecked. 
Concepcion, Chile [6] 25 Mar. 1751    Disaster at Juan Fernandez island. 
Arica, Peru [Peru-Chile] 
(today North Chile) 
[1,10] 

13 Aug. 1868  21  Carried USS Wateree and Peruvian 
warship America inland. 

Chile [7] 1922    Seiche over the Pacific Ocean for several 
days. 

Chile [1] 23 May 1960 909 dead 
+ 834 

missing 

> 10   

INDONESIA      
Celebes, Makassar [6] 29 Dec. 1820  24   
Sunda Strait, Java-
Sumatra, Indonesia [6,9] 

27 Aug. 1883 > 36,000 40  Explosion of Krakatoa volcano. 

Indonesia [9] 2 Dec. 1992 137 26   
SE Java, Indonesia [2] 3 June 1994 > 250 5 Coastline 3 successive waves, largest runup being 

the 3rd wave. 
JAPAN      
Pacific coast, Japan [8] 27 Jan. 1700  3  Earthquake at the Cascadia subduction 

zone, West Coast, Canada. 
Sanriku coast, Honshu, 
NE Japan, Japan [6,9] 

15 June 1896 > 26,000 30  Destroyed most of Yoshihama and 
Kamaishi towns. 

Miyagi prefecture, 
Honshu, Japan [3,9] 

3 Mar. 1933 3064 27.8   

Wakayama prefecture, 
Japan [3] 

7 Dec. 1944 998    

Hokkaido, Japan [3] 4 Mar. 1952 33    
Japan [1,3] 23 May 1960 > 142   Earthquake near Chile coastline, 

travelling about 22 hours to Japan. 
Akita and Aomori 
prefectures, Japan [3] 

26 May 1983 104    
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Table A-1 - Major tsunami catastrophes 
 

Location [Ref.] Date Loss of 
life 

Maximu
m runup 
height 

Runup soil 
/ conditions

Remarks 

   m   
(1) (2) (3) (4) (5) (6) 

JAPAN      
Okushiri island, SW 
Hokkaido, Japan [3] 

12 July 1993 > 120 30.5 Coast and 
cliffs 

 

NICARAGUA      
Nicaragua[9] 2 Sept. 1992 ~170 10   
PNG      
Sissano Lagoon, Papua 
New Guinea [1] 

17 Jul. 1998 > 3,000  Lagoon  

RUSSIA      
Kamchatka, Russia [10] 1737  64   
TAIWAN      
Chaitung, Pingtung 
county Taiwan 

1781     

Yunlin County, Taiwan 1845 10,000    
Keelung, Taiwan 18 Dec. 1867 50,000   Magnitude 7.0. 
USA (incl. Alaska and 
Hawaii) 

     

Scotch Cap, Alaska [6] 1 Apr. 1946 5 32 Coast/cliff Destroying concrete lighthouse 
(2:40am). 

Hilo, Hawaii [9] 1 Apr. 1946 90 18  Earthquake near Unimak island, Alaska. 
Laie point, Oahu, Hawaii 
[10] 

9 Mar. 1957 54   Earthquake in Aleutian islands. Slow 
water rise. 

Hilo, Hawaii [10] 21 May 1960 61    
Prince Williams Sound, 
Alaska [8] 

27 Mar. 1964    "Great Alaska Earthquake". 

California, USA [9] 28 May 1964 119   Earthquake in Alaska. 
INDIAN OCEAN      
Sumatra 26 Dec. 2004 26 Dec. 2004    Magnitude 9.0. 

India  > 10,700    
Indonesia  > 220,000 > 35  Epicentre beside Aceh province. 
Malaysia  > 70    
Maldives  > 80 > 4   
Myanmar  > 55    

Somalia  > 295    
Sri Lanka  > 30,900 > 10   
Thailand  > 5,400 > 10   

 
References : [1] SARRE (1998?); [2] HEBENSTREIT (1996); [3] BUTCHER et al. (1994); [4] 
YEH et al. (1996); [5] KOMAR (1998); [6] BASCOM (1980); [7] HECK (1936); [8] CLAGUE and 
BOBROWSKY (1999); [9] MURCK et al. (1997); [10] BRYANT (1991); CHANSON et al. 
(2000), TSUJI (2005); CHANSON (2005); Present study. 
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APPENDIX B - BASIC EXPERIMENTS OF DAM BREAK WAVE 

B.1 PRESENTATION 
Physical modelling of dam break wave is relatively limited. In particular, few experiments were 
conducted in relatively large size facilities under controlled flow conditions (Table B-1). 
In retrospect, the experiments of SCHOKLITSCH (1917) were well ahead of their time, and 
demonstrated that Armin von SCHOKLITSCH (1888–1968) had a solid understanding of both 
physical modelling and dam break processes. 
 
Table B-1 - Characteristics of dam break wave experiments in dry rectangular channels 
 

Reference Bed 
slope 

Channel characteristics Reservoir characteristics Remarks 

 θ    
 deg.    

(1) (2) (3) (4) (5) 
Water flows     
SCHOKLITSCH 0 (1) L = 26 m, B = 0.6 m (1) do up to 0.25 m  
(1917) 0 (2) L = 150 m, B = 1.3 m (2) do up to 1 m  
DRESSLER (1954) 0 L = 65 m, B = 0.225 m 

(a) Painted timber 
(b) Coarse sand paper 
(c) Strips (slats) 
      h=0.00635 m, l = 0.0254 m 

do = 0.055, 0.11 and 0.22 m  

FAURE and 
NAHAS (1961) 

0.0069 L = 40.6 m, B = 0.25 m 
2 types of roughness 

do = 0.23 m So = 1.2 E-4. 

CAVAILLE (1965) 0 L = 40 m, B = 0.25 m 
Glass walls and steel invert. 
(a) Smooth invert. 
(b) Rough invert (cylindrical 
elements ∅ = 20 mm in zigzag, 
l = 28 mm, h= 8 mm) 

Lres = 18 m, rectangular 
reservoir 
(a) do = 0.115, 0.23 m 
(b) do = 0.23 m 

 

ESTRADE (1967) 0 (1) L = 23.65 m, B = 0.50 m 
(1a) Smooth invert 
(1b) Rough invert (rough 
cement) 

(1) do = 0.20 & 0.40 m, Lres 
= 13.65 m, rectangular 
reservoir 

Also ESTRADE & 
MARTINOT-
LAGARDE (1964)

 0 (2) L = 23.65 m, B = 0.25 m 
(2a) Smooth invert 
(2b) Rough invert (cylindrical 
elements ∅ = 20 mm in zigzag, 
l = 28 mm, h= 6 mm) 

(2) do = 0.30 m, Lres = 0.70 
m, rectangular reservoir 

 

LAUBER (1997) 0 L = 2 m, B = 0.5 m 
PVC invert 

0.15 ≤ do ≤ 0.6 m, Lres < 3.6 
m, rectangular reservoir 

 

 5.7, 26.5 L = 14 m, B = 0.5 m 
PVC invert 

do = 0.3 m, Lres < 3.6 m, 
trapezoidal reservoir 

Vertical gate. 

CHANSON et al. 
(2000) 

0 L = 15 m, B = 0.8 m 
Smooth paint invert 

Reservoir volume: 0.9 to 1 
m3, q(t=0) = 0.15 to 0.17 
m2/s 

Free-jet 
discharging 
vertically at one 
end of channel 

Viscous fluid flows     
DEBIANE (2000) 0 L = 3 m, B = 0.3 m do = 0.055 & 0.054 m, 0.11 ≤ 

Lres ≤0.60 m, rectangular 
reservoir 

Glucose syrup-
water solutions (12 
≤ µ ≤ 170 Pa.s, 
1413 ≤ ρ ≤ 1443 
kg/m3). 

 3, 6, 10, 
12 

L = 3 m, B = 0.3 m Triangular reservoir, gate 
normal to invert 

Glucose syrup-
water solutions. 
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Thixotropic fluid 
flows 

    

CHANSON et al. 
(2004) 

15 L = 2 m, B = 0.34 m 
Sand paper invert. 

do = 0.047 to 0.08 m, Lres ≤ 
0.755 m, triangular reservoir 
with vertical gate 

Bentonite 
suspensions. Mass 
concentrations: 
0.10 to 0.20 (1064 
≤ ρ ≤ 1115 kg/m3).

 
Notes : B : channel width; do : reservoir height; h : (strip/element) roughness height; L : total 
channel length; Lres : upstream reservoir length; l : longitudinal spacing between (strip) roughness 
element. 
 

B.2 BASIC RESULTS IN TERMS OF FREE-SURFACE PROFILES 
 
Fig. B.1 - Dimensionless instantaneous free-surface profiles in a 26 m long channel 
(SCHOKLITSCH 1917) 
(A) do =0.074 m, t = 3.75 s 

0
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Data SCHOKLITSCH
RITTER
DRESSLER f=0.011
WHITHAM f = 0.016
Diffusive wave f = 0.03

d/do

x/t.sqrt(g.do)

t.sqrt(g/do=43)
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(B) do =0.074 m, t = 9.4 s 

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

Data SCHOKLITSCH
RITTER
DRESSLER f = 0.0075
WHITHAM f = 0.0086
Diffusive wave f = 0.03

d/do

x/t.sqrt(g.do)

t.sqrt(g/do) = 108

 
 
Fig. B.2 - Dimensionless instantaneous free-surface profiles in a 65 m long channel (DRESSLER 
1954) 
(A) Smooth painted invert - do = 0.22 m, g/do*t = 42 & 66 

0
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RITTER's solution

f=0.03, t.sqrt(g/do)=15

f=0.03, t.sqrt(g/do)=42

f=0.03, t.sqrt(g/do)=66

DRESSLER, Smooth paint,
t.sqrt(g/do)=42
DRESSLER, Smooth paint,
t.sqrt(g/do)=66

x/(t.sqrt(g*do))

d/do
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(B) Sand paper invert - do = 0.11 m, g/do*t = 14 & 44 

0

0.2

0.4
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0.8
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RITTER's solution

f=0.05, t.sqrt(g/do)=15

f=0.05, t.sqrt(g/do)=44

DRESSLER, Sand paper,
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(C) Slat invert (strip roughness) - do = 0.22 m, g/do*t = 13 & 64 
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Fig. B.3 - Dimensionless instantaneous free-surface profiles in a 40 m long channel (CAVAILLE 
1965) 
(A) Smooth invert - do = 0.23 m, g/do*t = 21.5, 52.2, 56.8, 83.6 
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(B) Rough invert - do = 0.23 m, g/do*t = 32.0, 55.6, 59.0, 136.5 
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Fig. B.4 - Dimensionless free-surface profiles in a 40.6 m long channel (FAURE and NAHAS 
1961) - do = 0.23 m, x = 3.1 & 6.1 m 
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APPENDIX C - LAMINAR DAM BREAK MOTION IN A DRY HORIZONTAL 
CHANNEL WITH BED FRICTION (DIFFUSIVE WAVE MODEL) 

C.1 PRESENTATION 
A dam break wave is the flow resulting from a sudden release of a mass of fluid in a channel. In 
unsteady open channel flows, the velocities and water depths change with time and longitudinal 
position. For one-dimensional applications, the continuity and momentum equations yield the Saint-
Venant equations. The application of the Saint-Venant equations is limited by some basic 
assumptions : (1) the flow is one dimensional; (2) the streamline curvature is very small and the 
pressure distributions are hydrostatic; (3) the flow resistance are the same as for a steady uniform 
flow for the same depth and velocity; (4) the bed slope is small enough to satisfy : cosθ ≈ 1 and 
sinθ ≈ tanθ ≈ θ; (5) the water density is a constant; and (6) the channel has fixed boundaries, and air 
entrainment and sediment motion are neglected. With these hypotheses, the unsteady flow can be 
characterised at any point and any time by two variables: e.g., V and d where V is the flow velocity 
and d is the water depth (e.g. LIGGETT 1994, MONTES 1998, CHANSON 2004a,b). The unsteady 
flow properties are described by a system of two partial differential equations : 
 
Fig. C-1 - Sketch of dam break wave in a horizontal dry channel with bottom friction 
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∂ d
∂t   +  

A
B * 

∂ V
∂x   +  V * 

∂ d
∂x   +  

V
B * 







∂ A

∂x d=constant
  =  0 (C-1) 

 
∂ V
∂t   +  V * 

∂ V
∂x   +  g * 

∂ d
∂x   +  g * (Sf  -  So)  =  0 (C-2) 

where t is the tine, x is the streamwise co-ordinate, A is the cross-section area, B is the free-surface 
width, So is the bed slope (So = sinθ), θ is the angle between the bed and the horizontal, with θ > 0 
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for a downward slope, and Sf is the friction slope. The friction slope is defined as : 
Sf = f/2*V2/(g*DH) where DH is the hydraulic diameter and the Darcy friction factor f is a non-
linear function of both relative roughness and flow Reynolds number. Equation (C-1) is the 
continuity equation and Equation (C-2) is the dynamic equation. 
 

C.2 BASIC ANALYSIS 
The dam break flow is analysed as an ideal-fluid flow region behind a flow resistance-dominated 
tip zone (Fig. C-1) (3). The transition between the ideal dam break wave profile and the wave tip 
region is located at x = x1 where the water depth is d = d1 as shown in Figure C-1. 
In the ideal fluid flow region, the basic equations yield the characteristic system of equations : 

 
D
Dt(V  +  2 * C)  =  0 forward characteristic  (C-3a) 

 
D
Dt(V  -  2 * C)  =  0 backward characteristic  (C-3b) 

along : 

 
d x
dt   =  V  +  C forward characteristic C1  (C-4a) 

 
d x
dt   =  V  -  C backward characteristic C2  (C-4b) 

Equations (C-3) and (C-4) are the characteristic equations of a simple wave problem (CHANSON 
2004a,b). 
In the wave tip region (x1 ≤ x ≤ xs, Fig. C-1), flow resistance is dominant, and the acceleration and 
inertial terms are small. The flow velocity does not vary rapidly in the forward tip zone and 
experimental data showed that it is about the wave front celerity U (HUNT 1994). The dynamic 
wave equation (Eq. (C-2)) may be reduced into a diffusive wave equation : 

 
∂ d
∂x   +  

f
8 * 

U2
g * d  =  0 Wave tip region  (C-5) 

assuming a constant velocity U for x1 ≤ x ≤ xs. Next to the leading edge of the wave, the slope of 
the free-surface becomes important to counterbalance the flow resistance. 
For laminar flows, the Darcy friction factor in steady flows equals: 

 f  =  
64
Re  

where Re is the flow Reynolds number (LIGGETT 1994, MONTES 1998, CHANSON 2004a). In 
unsteady dam break flows, the flow resistance is assumed to follow a similar expression 

 f  =  α * 
64
Re (C-6) 

where α is a correction coefficient. For a wide channel, Equation (C-6) may be rewritten in the 
wave tip region as : 

 f  =  
16 * α * µ
ρ * U * d  (C-6B) 

where ρ and µ is the density and dynamic viscosity of the fluid respectively. The diffusive wave 
equations may transformed as : 

                                                 
3DEBIANE (2000) used a similar conceptual model, but his mathematical treatment and solutions 
differed. 
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∂ d
∂x   +  

2 * α * µ * U
ρ * g * d2   =  0 Wave tip region (laminar flow motion)  (C-5B) 

The integration of the diffusive wave equation (Eq. (C-5B)) yields the shape of wave tip region for 
a laminar flow motion : 

 d  =  
3

6 * α * 
µ * U
ρ * g  * (xs - x) Wave front profile (laminar flow)  (C-7) 

assuming that the flow resistance correction coefficient α is a constant independent of x. Equation 
(C-7) is compared with experimental data in Figure C-2. 
 
Fig. C-2 - Laminar dam break wave front data: horizontal channel (test Glus.6), glucose-syrup 
solution, ρ = 1406 kg/m3, µ = 12 Pa.s, do = 0.055 m, t = 421 s (DEBIANE 200) - Comparison with 
Equation (C-7) assuming α = 1 and U/ g*do = 0.0064 
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C.3 DETAILED SOLUTION 
The instantaneous dam break creates a negative wave propagating upstream into a still fluid with 
known water depth do. In the (x, t) plane, the initial negative wave characteristic has a slope dt/dx = 
-1/Co where Co = g*do. Note that the initial backward characteristic is a straight line, but the 
other backward characteristics are not because the problem is not a simple wave since Sf > 0.. 
Forward characteristics can be drawn issuing from the initial backward characteristic for t > 0 (Fig. 
C-1). Between the points E1 and F2, the flow properties satisfy the ideal dam break wave 
properties: 

 
d
do

  =  
1
3 * 







2  -  

x
t * g * do

 -1  ≤  
x

t * g * do
  ≤  

x1
t * g * do

  (C-8) 

 
V

g * do
  =  

2
3 * 







1  +  

x
t * g * do

 -1  ≤  
x

t * g * do
  ≤  

x1
t * g * do

  (C-9) 

where d and V are the flow depth and velocity respectively at a distance x from the dam, and t is the 
time from the instantaneous dam removal. 
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For x1 ≤ x ≤ xs (i.e. wave tip region), it is assumed that the velocity of water does not vary rapidly 
and that it equals the wave front celerity U. The flow properties in the wave tip region may be 
estimated using the diffusive wave equation taking into account flow resistance (Eq. (C-5)) 
assuming V = U. The integration of the diffusive wave equation yields the wave front profile: 

 
d
do

  =  
3

6 * α * 
µ * U

ρ * g * do
2 * 

xs - x
do

 

  
x1

t * g * do
  ≤  

x
t * g * do

  ≤  
xs

t * g * do
  (C-7B) 

assuming that Equation (C-6B) holds for x1 ≤ x ≤ xs. 
Since the free-surface and velocity must be continue at the point F2, its flow properties (x1, V1, d1) 
must satisfy : 

 
d1
do

  =  
1
3 * 









2  -  
x1

g * do * t
 (C-10) 

 
V1
g*do

  =  
2
3 * 









1  +  
x1

g * do * t
 (C-11) 

 
U

g * do
  =  

V1
g * do

 (C-12) 

 
d1
do

  =  
3

6 * α * 
µ * U

ρ * g * do
2 * 

xs - x1
do

 (C-13) 

The conservation of mass must be further satisfied. Specifically the mass of fluid in the wave tip 
region (i.e. x1 ≤  x ≤ xs) must equal the mass of fluid in the ideal fluid flow profile for x1 ≤ x ≤ 
2* g*do*t. It yields : 

 
⌡
⌠

x1 

 xs
3

6 * α * 
µ * U
ρ * g  * (xs - x) * dx  =  

⌡

⌠

x1 

 2* g*do*t

1
9 * g * 



2 * g * do  -  

x
t

2
 * dx (C-14) 

Note that the continuity equation becomes a differential equation in terms of the wave front location 
xs and celerity U = dxs/dt. It must be stressed that the development is limited. The Saint-Venant 
equations, hence the diffusive wave equation, are not valid near the wave leading edge where the 
free-surface curvature is not small and where the flow resistance becomes very significant. 
The above equations may be transformed to express d1 and x1 as functions of U: 

 
d1
do

  =  






1  -  

1
2 * 

U
g * do

2
 (C-15) 

 
x1

g * do * t
  =  







3

2 * 
U

g * do
  -  1  (C-16) 

The continuity equation (Eq. (C-14)) yields a polynomial equation in terms of the wave front 
location xs, wave celerity U = dxs/dt and location x1 of the point F2 : 
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3
4 * 

3
6 * α * 

µ * U
ρ * g * do

2 * 






xs - x1

do

4/3
  =  

1
27 * 

g
do

 * t * 








2  -  
x1

g * do * t

3
 

  (C-17) 

assuming that the flow resistance correction coefficient α is a constant independent of x. Since the 
wave tip region has a cubic-root free-surface profile, the water depth at point F2 satisfies: 

 
d1
do

  =  
3

6 * α * 
µ * U

ρ * g * do
2 * 

xs - x1
do

 (C-13) 

and hence the wave tip region length is: 

 
xs  -  x1

do
  =  

1
6 * α * 

ρ * g * do
2

µ * U  * 






1  -  

1
2 * 

U
g*do

6
 (C-18) 

By replacing into the continuity equation, the exact solution in terms of the wave front celerity is : 

 
1

8 * α * 
ρ * g * do

3

µ  * 






1  -  

1
2 * 

U
g * do

5

U
g*do

  =  
g
do

 * t (C-19) 

while the wave front location equals: 

 
xs
do

  =  






3

2 * 
U

g * do
  -  1  * 

g
do

 * t  +  
1

6 * α * 

ρ * g * do
3

µ
U
g*do

 * 






1  -  

1
2 * 

U
g*do

6
 

  (C-20) 

and the free-surface profile satisfies : 

 
d
do

  =  1 
x
do

  ≤  - 
g
do

 * t  (C-21a) 

 
d
do

  =  
1
9 * 







2  -  

x
t * g * do

2
 

  - 
g
do

 * t  ≤  
x
do

  ≤  






3

2 * 
U

g * do
 - 1  * 

g
do

 * t  (C-21b) 

 
d
do

  =  
3

6 * α * 
µ * U

ρ * g * do
2 * 

xs - x
do

 

  






3

2 * 
U

g * do
 - 1  * 

g
do

 * t  ≤  
x
do

  ≤  
xs
do

  (C-21c) 

 
d
do

  =  0 
xs
do

  ≤  
x
do

  (C-21d) 

The location of point F2 is given by : 
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x1

g * do * t
  =  







3

2 * 
U

g * do
  -  1  (C-16) 

In the above development, the term : 

 Red  =  
ρ * g * do

3

µ  

is analogous to a Reynolds number. It is called herein the dam reservoir flow Reynolds number and 
is a function of fluid properties and initial flow conditions only. Typical analytical results are 
summarised in Figure C-3. 
The theory was compared qualitatively with the viscous flow data of DEBIANE (2000) (see below) 
and with the analytical solution of HUNT (1994) for viscous dam break wave down a sloping 
channel. 
 
Fig. C-3 - Dimensionless wave front location, celerity and free-surface profile solutions for laminar 
dam break wave 
(A) Dimensionless relationship between wave front celerity and time assuming α = 1 
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(B) Instantaneous dimensionless free-surface profile for Red = 10 and α = 1 and 100 
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Table C-1 - Asymptotic solutions of dam break wave on dry horizontal channel with boundary 
friction 
 

Reference Asymptotic solution Remarks 
(1) (2) (3) 

Small time t   
DRESSLER (1952) U

g*do
  =  2  -  3.59 * 

f
8*

g
do

*t 
Turbulent flow 
motion. 

WHITHAM (1955) U
g*do

  =  2  -  3.452 * 
f
8*

g
do

*t 
Turbulent flow 
motion. 

Laminar flow motion 
(diffusive wave model) 

U
g*do

  =  2  -   

5
16 * α * 

µ

ρ * g * do
3

 * 
g

do
 * t

U
g*do

 > 1.2 to 1.5 

Turbulent flow motion 
(diffusive wave model) U

g*do
  =  2  -  

3
12 * f * 

g
do

 * t 
U
g*do

 > 1.2 to 1.5 

Large time t   
Laminar flow motion 
(diffusive wave model) 

U
g*do

  =  
1

8 * α * 

ρ * g * do
3

µ
g

do
*t

 

U
g*do

 < 0.3 to 0.4 

Turbulent flow motion 
(diffusive wave model) 

U
g*do

  =  
8
3 * 

1

f * 
g

do
*t

 
U
g*do

 < 0.3 to 0.4 
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C.4 COMPARISON WITH EXPERIMENTAL DATA 
DEBIANE (2000) presented an unique data set for laminar dam break wave in horizontal channel, 
the only set known to the writer. DEBIANE conducted basic experiments in a 3.0 m long, 0.3 m 
wide horizontal channel with an upstream reservoir length ranging from 0.11 to 0.60 m (App. B). 
The study was conducted with glucose-syrup solutions with dynamic viscosities between 12 to 170 
Pa.s. During the initial stages of the dam break, the dam break wave flow was similar to the flow 
conditions for an infinitely large reservoir and only this data set is considered herein. 
Figure C-4 presents some comparison between the data of DEBIANE (2000) and the present 
theory. Figure C-4A shows the dimensionless wave front location as function of the dimensionless 
time. DEBIANE's data are compared with RITTER's (1892) solution (thick solid line) and with 
Equation (C-20) for α = 1 (i.e. f = 64/Re) and α = 100 (i.e. f = 6400/Re). Figure C-4B illustrates an 
instantaneous free-surface profile. Overall the analytical development are qualitatively in agreement 
with the experimental trends. 
 
Experimental problems experienced by DEBIANE (2000) 
In his thesis, however, DEBIANE (2000) acknowledged a number of experimental issues 
(DEBIANE 2000, pp. 161-163). His results showed systematically that the dam break front celerity 
was much smaller than theoretical predictions. His data were about 7 times lower than both 
RITTER's solution and DEBIANE's theoretical solution for laminar flows. This problem is best 
illustrated in Figure C-4A in terms of wave front locations. 
DEBIANE indicated that, during his experiments, the gate opening was relatively slow (0.25 s 
typically) and could not be considered as an instantaneous dam break, as demonstrated by the 
experimental work of ESTRADE (1967). Further, for very viscous solutions, some fluid was 
affected by the gate opening motion. Some fluid attached to the gate while other were projected 
away from the flume. DEBIANE indicated further problems with sidewall effects for the most 
viscous solutions (µ = 170 Pa.s) as well as some fluid crystallisation next to the walls at the shock 
front (DEBIANE 2000, p. 163). 
 
Fig. C-4 - Comparison between theory and experimental data by DEBIANE (2000) 
(A) Dimensionless wave front location for Red =4.73 - Comparison between RITTER's solution, 
Equation (C-20) and DEBIANE's data 
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(B) Instantaneous free-surface profile for Red = 0.671 - Comparison between DEBIANE's data 
(t* g/do = 114) and Equation (C-21) (for t* g/do = 9.1, α = 1, 10 and 100) 
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C.5 DISCUSSION 
The diffusive wave approximation is limited to a semi-infinite reservoir, and it assumes that 
Equation (C-6) holds in highly unsteady flows and in the next to the wave tip where streamline 
curvature is important. A further limitation is the use of the Saint-Venant equations and their 
underlying assumptions. For example, the Saint-Venant equations are not valid during the initial 
instants following dam break. 
Asymptotic approximations for small and large times t are summarised in Table C-1. These are 
compared with turbulent flow solutions and with well-known solutions for turbulent flows. 
The present method yields an explicit expression of the wave front celerity, wave front location and 
wave tip region characteristics. Equation (C-19) provides a direct relationship between the 
dimensionless wave front celerity U/ g*do and dimensionless time t* g/do. Equation (C-20) 
yields the dimensionless wave front location xs/do as a function of the dimensionless wave front 
celerity U/ g*do. Equations (C-21) and (C-16) give the entire dimensionless free-surface profile 
d/do = F(x/(t* g*do)). This simple system of linear equations provides a means to assess easily the 
effect of the flow resistance on the dam break wave propagation of real fluids. 
The main advantages of the present development are four-fold. It is a simple explicit method that 
compares well with experiments and theoretical solutions. Further it a simple pedagogical 
application linking together the simple wave equations, yielding RITTER's solution, with a 
diffusive wave equation for the wave tip region. More this explicit solution may be used to validate 
simple numerical solutions of the method of characteristics applied to the dam break wave problem. 
Lastly the development may be extended simply for mid channel slopes and to account for initial 
flow motion, using the same approach as for turbulent flows. 
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APPENDIX D - FULLY-ROUGH TURBULENT DAM BREAK MOTION IN A 
DRY HORIZONTAL CHANNEL WITH BED FRICTION (DIFFUSIVE WAVE 

MODEL) 

D.1 PRESENTATION 
A dam break wave is the flow resulting from a sudden release of a mass of fluid in a channel. In 
unsteady open channel flows, the velocities and water depths change with time and longitudinal 
position. For one-dimensional applications, the continuity and momentum equations yield the Saint-
Venant equations. The application of the Saint-Venant equations is limited by some basic 
assumptions : (1) the flow is one dimensional; (2) the streamline curvature is very small and the 
pressure distributions are hydrostatic; (3) the flow resistance are the same as for a steady uniform 
flow for the same depth and velocity; (4) the bed slope is small enough to satisfy : cosθ ≈ 1 and 
sinθ ≈ tanθ ≈ θ; (5) the water density is a constant; and (6) the channel has fixed boundaries, and air 
entrainment and sediment motion are neglected. With these hypotheses, the unsteady flow can be 
characterised at any point and any time by two variables: e.g., V and d where V is the flow velocity 
and d is the water depth (e.g. LIGGETT 1994, MONTES 1998, CHANSON 2004a,b). The unsteady 
flow properties are described by a system of two partial differential equations : 
 
Fig. D-1 - Sketch of dam break wave in a horizontal dry channel with bottom friction 
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∂ d
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
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
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∂ V
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∂ d
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where t is the tine, x is the streamwise co-ordinate, A is the cross-section area, B is the free-surface 
width, So is the bed slope (So = sinθ), θ is the angle between the bed and the horizontal, with θ > 0 
for a downward slope, and Sf is the friction slope. The friction slope is defined as : 
Sf = f/2*V2/(g*DH) where DH is the hydraulic diameter and the Darcy friction factor f is a non-
linear function of both relative roughness and flow Reynolds number. Equation (1) is the continuity 
equation and Equation (2) is the dynamic equation. 
 

D.2 BASIC ANALYSIS 
The dam break flow is analysed as an ideal-fluid flow region behind a flow resistance-dominated 
tip zone (Fig. C-1). Herein the transition between the ideal dam break wave profile and the wave tip 
region is located at x = x1 where the water depth is d = d1 as shown in Figure C-1. 
In the ideal fluid flow region, the basic equations yield the characteristic system of equations : 

 
D
Dt(V  +  2 * C)  =  0 forward characteristic  (D-3a) 

 
D
Dt(V  -  2 * C)  =  0 backward characteristic  (D-3b) 

along : 

 
d x
dt   =  V  +  C forward characteristic C1  (D-4a) 

 
d x
dt   =  V  -  C backward characteristic C2  (D-4b) 

Equations (D-3) and (D-4) are the characteristic equations of a simple wave problem (CHANSON 
2004a,b). 
In the wave tip region (x1 ≤ x ≤ xs, Fig. D-1), flow resistance is dominant, and the acceleration and 
inertial terms are small. The flow velocity does not vary rapidly in the forward tip zone and 
experimental data showed that it is about the wave front celerity U (DRESSLER 1952,1954, 
ESTRADE 1967, LAUBER 1997). The dynamic wave equation (Eq. (D-2)) may be reduced into a 
diffusive wave equation : 

 
∂ d
∂x   +  

f
8 * 

U2
g * d  =  0 Wave tip region  (D-5) 

assuming a constant velocity U for x1 ≤ x ≤ xs. Next to the leading edge of the wave, the slope of 
the free-surface becomes important to counterbalance the flow resistance. 
For turbulent flows, the flow resistance may be approximated by the Altsul formula : 

 f  =  0.1 * 








1.46 * 
ks

DH
  +  

100
Re

1/4
 (D-6) 

where ks is the equivalent sand roughness height, DH is the hydraulic diameter and Re is the flow 
Reynolds number (IDELCHIK 1969,1986,1994, CHANSON 2004a). The Altsul is a slightly less-
accurate formula which can be used to initialise the calculation with the Colebrook-White formula. 
In fully-rough turbulent flows, it becomes : 

 f  =  0.11 * 






ks

DH

1/4
 fully-rough turbulent flow (D-7) 

Assuming that Equation (D-7) holds in unsteady flows, and for a wide channel (i.e. DH ≈ 4*d), it 
may be rewritten in the wave tip region as : 
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 f  =  0.0778 * 





ks

d

1/4
 (D-7B) 

where d is the water depth. The diffusive wave equations may transformed as : 

 
∂ d
∂x   +  

0.0778 * ks
1/4

8  * 
U2

g * d5/4  =  0Wave tip region (fully-rough turbulent motion)  (D-5B) 

The integration of the diffusive wave equation (Eq. (D-5)) yields the shape of wave tip region for a 
fully-rough turbulent motion : 

 d  =  





9

4 * 
0.0778 * ks

1/4

8  * 
U2
g  * (xs - x)

4/9

 

  Wave front profile (fully-rough turbulent motion)  (D-8) 

assuming a constant invert equivalent sans roughness height ks. 
 

D.3 DETAILED SOLUTION 
The instantaneous dam break creates a negative wave propagating upstream into a still fluid with 
known water depth do. In the (x, t) plane, the initial negative wave characteristic has a slope dt/dx = 
-1/Co where Co = g*do. Note that the initial backward characteristic is a straight line, but the 
other backward characteristics are not because the problem is not a simple wave since Sf > 0.. 
Forward characteristics can be drawn issuing from the initial backward characteristic for t > 0 (Fig. 
D-1). Between the points E1 and F2, the flow properties satisfy the ideal dam break wave 
properties: 

 
d
do

  =  
1
3 * 







2  -  

x
t * g * do

 -1  ≤  
x

t * g * do
  ≤  

x1
t * g * do

  (D-9) 

 
V

g * do
  =  

2
3 * 







1  +  

x
t * g * do

 -1  ≤  
x

t * g * do
  ≤  

x1
t * g * do

  (D-10) 

where d and V are the flow depth and velocity respectively at a distance x from the dam, and t is the 
time from the instantaneous dam removal. 
For x1 ≤ x ≤ xs (i.e. wave tip region), it is assumed that the velocity of water does not vary rapidly 
and that it equals the wave front celerity U. The flow properties in the wave tip region may be 
estimated using the diffusive wave equation taking into account flow resistance (Eq. (D-5)) 
assuming V = U. The integration of the diffusive wave equation yields the wave front profile: 

 
d
do

  =  





9
4 * 

0.0778 * 






ks
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1/4

8  * 
U2

g * do
 * 
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x1

t * g * do
  ≤  

x
t * g * do

  ≤  
xs

t * g * do
  (D-8B) 

assuming that Equation (D-7B) holds for x1 ≤ x ≤ xs. 
Since the free-surface and velocity must be continue at the point F2, its flow properties (x1, V1, d1) 
must satisfy : 

 
d1
do

  =  
1
3 * 









2  -  
x1

g * do * t
 (D-11) 
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V1
g*do

  =  
2
3 * 









1  +  
x1

g * do * t
 (D-12) 

 
U

g * do
  =  

V1
g * do

 (D-13) 

 
d1
do

  =  





9
4 * 

0.0778 * 






ks

do

1/4

8  * 
U2

g * do
 * 

(xs - x1)
do
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 (D-14) 

The conservation of mass must be further satisfied. Specifically the mass of fluid in the wave tip 
region (i.e. x1 ≤  x ≤ xs) must equal the mass of fluid in the ideal fluid flow profile for x1 ≤ x ≤ 
2* g*do*t. It yields : 

⌡


⌠

x1 

 xs







9

4 * 
0.0778 * ks

1/4

8  * 
U2
g  * (xs - x)

4/9

 * dx  =  
⌡

⌠

x1 

 2* g*do*t

1
9 * g * 



2 * g * do  -  

x
t

2
 * dx 

  (D-15) 

Note that the continuity equation becomes a differential equation in terms of the wave front location 
xs and celerity U = dxs/dt. It must be stressed that the development is limited. The Saint-Venant 
equations, hence the diffusive wave equation, are not valid near the wave leading edge where the 
free-surface curvature is not small and where the flow resistance becomes very significant. 
The above equations may be transformed to express d1 and x1 as functions of U: 

 
d1
do

  =  






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1
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U
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2
 (D-16) 

 
x1

g * do * t
  =  







3

2 * 
U

g * do
  -  1  (D-17) 

The continuity equation (Eq. (D-15)) yields a polynomial equation in terms of the wave front 
location xs, wave celerity U = dxs/dt and location x1 of the point F2 : 

9
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

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

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

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       (D-18) 

The water depth at point F2 satisfies: 
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
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 * 

(xs - x1)
do

4/9

 (D-14) 

while Equations (D11) to (D13) yield : 
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Hence the dimensionless wave tip length is: 
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 (D-20) 

By replacing into the continuity equation, the exact solution in terms of the wave front celerity is : 
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while the wave front location equals: 
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and the free-surface profile satisfies : 
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Fig. D-2 - Dimensionless wave front location, celerity and free-surface profile solutions for fully-
rough turbulent dam break wave 
(A) Dimensionless relationship between wave front celerity and time for ks/do = 0.001 and 0.01 - 
Comparison with analytical solution for f = 0.05 
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(B) Instantaneous dimensionless free-surface profile for ks/do = 0.091 and t* g/do = 15 and 44 - 
Comparison with DRESSLER's (1954) data (sand paper) and the analytical solution assuming f = 
0.05 
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Table D-1 - Asymptotic solutions of dam break wave on dry horizontal channel with boundary 
friction 
 

Reference Asymptotic solution Remarks 
(1) (2) (3) 

Small time t   
Laminar flow motion 
(diffusive wave model) 

U
g*do

  =  2  -   

5
16 * 

µ

ρ * g * do
3

 * 
g

do
 * t

U
g*do
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Turbulent flow motion 
(diffusive wave model) 

  

constant Darcy-Weisbach 
friction factor f U

g*do
  =  2  -  

3
12 * f * 

g
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 * t 
U
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
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 * 

g
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 * t
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U
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Large time t   
Laminar flow motion 
(diffusive wave model) 

U
g*do

  =  
1
8 * 

ρ * g * do
3

µ
g

do
*t

 

U
g*do

 < 0.3 to 0.4 

Turbulent flow motion 
(diffusive wave model) 

  

constant Darcy-Weisbach 
friction factor f 

U
g*do

  =  
8
3 * 

1

f * 
g

do
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U
g*do

 < 0.3 to 0.4 

fully-rough turbulent flow U
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  =   

4
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1
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





ks
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8  * 
g

do
*t

U
g*do
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The location of point F2 is given by : 

 
x1

g * do * t
  =  







3

2 * 
U

g * do
  -  1  (D-17) 

Typical analytical results are summarised in Figure D-2. They are compared qualitatively with the 
analytical results. derived assumed a constant Darcy-Weisbach friction factor in the wave tip region 
(CHANSON 2005). Figure D-2B shows also a comparison with some experimental data by 
DRESSLER (1954). 
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D.4 DISCUSSION 
Asymptotic approximations for small and large times t are summarised in Table D-1. These are 
compared with turbulent flow solutions and with well-known solutions for turbulent flows. 
The present method yields an explicit expression of the wave front celerity, wave front location and 
wave tip region characteristics. Equation (D-21) provides a direct relationship between the 
dimensionless wave front celerity U/ g*do and dimensionless time t* g/do. Equation (D-22) 
yields the dimensionless wave front location xs/do as a function of the dimensionless wave front 
celerity U/ g*do. Equations (D-23) and (D-17) give the entire dimensionless free-surface profile 
d/do = F(x/(t* g*do)). This simple system of linear equations provides a means to assess easily the 
effect of the flow resistance on the dam break wave propagation of real fluids. 
The main advantages of the present development are four-fold. It is a simple explicit method that 
compares well with experiments and theoretical solutions. Further it a simple pedagogical 
application linking together the simple wave equations, yielding RITTER's solution, with a 
diffusive wave equation for the wave tip region. More this explicit solution may be used to validate 
simple numerical solutions of the method of characteristics applied to the dam break wave problem. 
Lastly the development may be extended simply for mid channel slopes and to account for initial 
flow motion, using the same approach as for turbulent flows. 
 




