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Abstract

In this paper we present an architecture to represent and
reason on e-Contracts based on the DR-device architecture
supplemented with a deontic defeasible logic of violation.
We motivate the choice for the logic and we show how to ex-
tend RuleML to capture the notions relevant to describe e-
contracts for a monitoring perspective in Defeasible Logic.

1. Introduction

Business contracts are mutual agreements between two
or more parties engaging in various types of economic ex-
changes and transactions. They are used to specify the obli-
gations, permissions and prohibitions that the signatories
should be hold responsible to and to state the actions or
penalties that may be taken in the case when any of the
stated agreements are not being met.

We will focus on the monitoring of contract execution
and performance: contract monitoring is a process whereby
activities of the parties listed in the contract are governed
by the clauses of the contract, so that the correspondence of
the activities listed in the contract can be monitored and vi-
olations acted upon. In order to monitor the execution and
performance of a contract we need a precise representation
of the ‘content’ of the contract to perform the required ac-
tions at the required time.

The clauses of a contract are usually expressed in a cod-
ified or specialised natural language, e.g., legal English. At
times this natural language is, by its own nature, imprecise
and ambiguous. However, if we want to monitor the exe-
cution and performance of a contract, ambiguities must be
avoided or at least the conflicts arising from them resolved.
A further issue is that often the clauses in a contract show
some mutual interdependencies and it might not be evident
how to disentangle such relationships. To implement an
automated monitoring system all the above issues must be
addressed.

To deal with some of these issues we propose a formal
representation of contracts. A language for specifying con-

tracts needs to be formal, in the sense that its syntax and
its semantics should be precisely defined. This ensures that
the protocols and strategies can be interpreted unambigu-
ously (both by machines and human beings) and that they
are both predictable and explainable. In addition, a for-
mal foundation is a prerequisite for verification or valida-
tion purposes. One of the main benefits of this approach is
that we can use formal methods to reason with and about
the clauses of a contract. In particular we can

• analyse the expected behaviour of the signatories in a
precise way, and

• identify and make evident the mutual relationships
among various clauses in a contract.

Secondly, a language for contracts should be conceptual.
This, following the well-known Conceptualization Princi-
ple of [14], effectively means that the language should al-
low their users to focus only and exclusively on aspects
related to the content of a contract, without having to deal
with any aspects related to their implementation.

Every contract contains provisions about the obliga-
tions, permissions, entitlements and others mutual norma-
tive positions the signatories of the contract subscribe to.
Therefore a formal language intended to represent con-
tracts should provide notions closely related to the above
concepts.

A contract can be viewed as a legal document consisting
of a finite set of articles, where each article consists of finite
set of clauses. In general it is possible to distinguish two
types of clauses:

1. definitional clauses, which define relevant concepts
occurring in the contract;

2. normative clauses, which regulate the actions of the
parties for contract performance, and include deontic
modalities such as obligations, permissions and prohi-
bitions.

For example the following fragment of a contract of service
taken from [8] are definitional clauses
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3.1 A “Premium Customer” is a customer who
has spent more that $10000 in goods.

3.2 Service marked as “special order” are subject
to a 5% surcharge. Premium customers are ex-
empt from special order surcharge.

while

5.2 The (Supplier) shall on receipt of a purchase
order for (Services) make them available within
one day.

and

5.3 If for any reason the conditions stated in 4.1
or 4.2 are not met the (Purchaser) is entitled to
charge the (Supplier) the rate of $100 for each
hour the (Service) is not delivered.

are normative clauses. The above fragment should make it
it clear that there is a deep conceptual difference between
Clauses 3.1 and 3.2 on one side, and Clauses 5.2 and 5.3
on the other. The first two clauses are factual/definitional
clauses describing states of affairs, defining notions in the
conceptual space of the contract. For example clause 3.1
defines the meaning of “Premium Customer” for the con-
tract, and Clause 3.2 gives a recipe to compute the price
of services. On the other hand Clauses 5.2 and 5.3 state
the (expected) legal behaviour of the parties involved in
the transaction. In addition there is a difference between
Clause 5.2 and Clause 5.3. Clause 5.2 determines an obli-
gation for one of the parties; on the other hand Clause 5.3
establishes a permission. Hence, according to our previous
discussion about the functionalities of the representation
formalism, a logic meant to capture the semantics of con-
tracts has to account for such issues. For contracts we must
be able to distinguish whether the non-compliance with a
clause of a contract constitutes a breech of the contract or
not (for normative clauses) or when it is just outside the
scope of the contract (for definitional clauses).

Since the seminal work by Lee [17] Deontic Logic has
been regarded as one on the most prominent paradigms to
formalise contracts. In [8] we further motivate on the need
of deontic logic to capture the semantics of contracts and
the reasons to choose it over other formalisms.

Clause 3.2 points out another feature. Contracts should
account for exceptions. In addition, given the normative
nature of contracts, exceptions can be open ended, that is,
it is not possible to give a complete list of all possible ex-
ception to a condition. This means that we have to work
in an environment where conclusions are defeasible, i.e., it
is possible to retract conclusions when new pieces of infor-
mation become available.

From a logical perspective every clause of a contract
can be understood as a rule where we have the conditions

of applicability of the clause and the expected behaviour.
Thus we have that we can represent a contract by a set of
rules, and as we have already argued these rules are non-
monotonic. Thus we need a formalism that is able to reason
within this kind of scenario. Our choice here is Defeasible
Logic (we will motivate this choice in section 2).

Finally Clause 5.3 highlights an important aspect of
contracts: contracts often contain provisions about obliga-
tions/permissions arising in response to violations. Stan-
dard Deontic Logic is not very well suited to deal with vi-
olations. Many formalisms have devised to obviate some
problems of violations in deontic logic. In this paper we
will take a particular approach to deal with violation that
can be easily combined with the other component we have
outlined here.

The paper is organised as follows: in Section 2 we
present the logic on which the DR-CONTRACT architec-
ture is based. Then in Section 3 we explain the extension of
RuleML corresponding to the logic of the previous section,
and we establish a mapping between the two languages.
Then, in Section 4 we discuss the system architecture of the
DR-CONTRACT framework. Finally we relate our work to
similar approaches and we give some insights about future
developments in Section 5.

2. Defeasible Deontic Logic of Violation

For a proper representation of contracts and to be able
to reason with and about them we have to combine and in-
tegrate logics for various essential component of contracts.
In particular we will use the Defeasible Deontic Logic of
Violation (DDLV) proposed in [8]. This logic combines
deontic notions with defeasibility and violations. More pre-
cisely DDLV is obtained from the combination of three log-
ical components: Defeasible Logic, deontic concepts, and
a fragment of a logic to deal with normative violations. Be-
fore presenting the logic we will discuss the reasons why
such notions are necessary for the representation of con-
tracts.

In [15] courteous logic programming (CLP) has been
advanced as the inferential engine for business contracts
represented in RuleML. Here, instead, we propose Defea-
sible Logic (DL) as the inferential mechanism for RuleML.
In fact, CLP is just one of the many variants of DL [4].
Over the years DL proved to be a flexible non-monotonic
formalism able to capture different and sometimes incom-
patible facets of non-monotonic reasoning [1], and effi-
cient and powerful implementations have been proposed
[3, 19, 6, 5]. The primary use of DL in the present con-
text is aimed at the resolution of conflicts that might arise
from the clauses of a contract; in addition DL encompasses
other existing formalisms proposed in the AI & Law field
(see, [9]), and recent work shows that DL is suitable for



extensions with modal and deontic operators [11, 13].
DL analyses the conditions laid down by each rule in the

contract, identifies the possible conflicts that may be trig-
gered and uses priorities, defined over the rules, to eventu-
ally solve a conflict. A defeasible theory contains here four
different kinds of knowledge: facts, strict rules, defeasible
rules, and a superiority relation.

Facts are indisputable statements, for example, “the
price of the spam filter is $50”. Facts are represented by
predicates

Price(SpamFilter,50).

Strict rules are rules in the classical sense: whenever the
premises are indisputable then so is the conclusion. An
example of a strict rule is “A ‘Premium Customer’ is a cus-
tomer who has spent $10000 on goods”, formally:

TotalExpense(X ,10000)→ PremiumCustomer(X).

Defeasible rules are rules that can be defeated by contrary
evidence. An example of such a rule is “Premium Cus-
tomer are entitled to a 5% discount” (Clause 3.1):

PremiumCustomer(X)⇒ Discount(X).

The idea is that if we know that someone is a Premium
Customer, then we may conclude that she is entitled to a
discount unless there is other evidence suggesting that she
may not be (for example if she buys a good in promotion).

The superiority relation among rules is used to define
priorities among them, that is, where one rule may over-
ride the conclusion of another rule. For example, given the
defeasible rules

r : PremiumCustomer(X)⇒ Discount(X)
r′ : SpecialOrder(X)⇒¬Discount(X)

which contradict one another, no conclusive decision can
be made about whether a Premium Customer who has
placed a special order is entitled to the 5% discount. But if
we introduce a superiority relation > with r′ > r, then we
can indeed conclude that special orders are not subject to
discount.

We now give a short informal presentation of how con-
clusions are drawn in Defeasible Logic. A conclusion p can
be derived if there is a rule whose conclusion is p, whose
prerequisites (antecedent) have either already been proved
or given in the case at hand (i.e. facts), and any stronger
rule whose conclusion is ¬p has prerequisites that fail to be
derived. In other words, a conclusion p is derivable when:

• p is a fact; or

• there is an applicable strict or defeasible rule for p,
and either

– all the rules for ¬p are discarded (i.e., are proved
to be not applicable) or

– every applicable rule for ¬p is weaker than an
applicable strict1 or defeasible rule for p.

For a full presentation of Defeasible Logic see [2, 8].
We illustrate the inferential mechanism of Defeasible

Logic with the help of an example. Let us assume we have
a theory containing the followign rules:

r1 : PremiumCustomer(X)⇒ Discount(X)
r2 : SpecialOrder(X)⇒¬Discount(X)

r3 : Promotion(X)⇒¬Discount(X)

where the superiority relation is thus defined: r3 > r1 and
r1 > r2. The theory states that services in promotion are not
discounted, and so are special orders with the exception
of special orders placed by premium customers, who are
normally entitled to a discount.

In a scenario where all we have is that we received a
special order, then we can conclude that the price has to be
calculated without a discount since rule r1 is not applicable
(we do not know whether the customer is a premium cus-
tomer or not). In case the special order is received from a
special customer for a service not in promotion, we can de-
rive that the customer is entitled to a discount. Indeed rule
r1 is now applicable and it is stronger than rule r2, and r3,
which is stronger than r2 is not applicable (i.e., the service
is not in promotion).

The next step is to integrate deontic logic in defeasible
logic. To this end we follow the idea presented in [11]. In
the context of contract we introduced the directed deontic
operators Os,b and Ps,b. Thus, for example the expression
Os,bA means that A is obligatory such that s is the subject of
such an obligation and b is its beneficiary; similarly for Ps,b.
In this way it is possible to express rules like the following

PurchaseOrder ⇒ OSupplier,PurchaserDeliver Within1Day

that encodes Clause 5.2 of the contract presented above.
Finally, let us sketch how to incorporate a logic for deal-

ing with normative violations within the framework we
have described so far. A violation occurs when an obli-
gation is disattended, thus ¬A is a violation of the obliga-
tion OA. However, a violation of an obligation does not
imply the cancellation of such an obligation. This makes
often difficult to characterise the idea of violation in many
formalisms for defeasible reasoning [23]. We will take
and adapt some intuitions we developed fully in [10, 12].
To reason on violations we have to represent contrary-
to-duties (CTDs) or reparational obligations. As is well-
known, these last are in force only when normative viola-
tions occur and are meant to “repair” violations of primary

1Notice that a strict rule can be defeated only when its antecedent is
defeasibly provable.



<!ELEMENT Atom (Not?,Rel,(Ind|Var)*)>
<!ELEMENT Not (Rel)>
<!ELEMENT Rel (#PCDATA)>
<!ELEMENT Var (#PCDATA)>
<!ELEMENT Ind (#PCDATA)>
<!ELEMENT Fact (Atom)>
<!ELEMENT Imp ((Head,Body)|(Body|Head))>
<!ATTLIST Imp label ID strength #PCDATA>
<!ELEMENT Body (And)>
<!ELEMENT And (Atom|Obligation|Permission)*>
<!ELEMENT Head (Atom|Obligation|Permission|Behaviour)>
<!ELEMENT Behaviour ((Obligation)+,Permission?)>
<!ELEMENT Obligation (Not?,Rel,(Ind|Var)*)>
<!ATTLIST Obligation subject IDREFS beneficiary IDREFS>
<!ELEMENT Permission (Not?,Rel,(Ind|Var)*)>
<!ATTLIST Permission subject IDREFS beneficiary IDREFS>

Figure 1. DR-CONTRACT Basic DTD

obligations. In the spirit of [10, 12] we introduce the non-
classical connective ⊗, whose interpretation is such that
OA⊗OB is read as “OB is the reparation of the violation
of OA”. The connective ⊗ permits to combine primary and
CTD obligations into unique regulations. The operator⊗ is
such that ¬¬A ≡ A for any formula A and enjoys the prop-
erties of associativity, duplication and contraction. For the
purposes of this paper, it is sufficient to define the following
rule for introducing ⊗:2

Γ ⇒ Os,bA⊗
(⊗n

i=1 Os,bBi
)
⊗Os,bC ∆,¬B1, . . . ,¬Bn ⇒ Xs,bD

Γ,∆ ⇒ Os,bA⊗
(⊗n

i=1 Os,bBi
)
⊗Xs,bD

where X denotes an obligation or a permission. In this last
case, we will impose that D is an atom. Since the minor
premise states that Xs,bD is a reparation for Os,bBn, i.e.,
the last literal in the sequence

⊗n
i=1 Os,bBi, we can attach

Xs,bD to such sequence. In other words, this rule permits
to combine into a unique regulation the two premises.

Suppose the theory includes

r : Invoice ⇒ Os,bPay Within7Days
r′ : ¬Pay Within7Days ⇒ Os,bPay WithInterest.

From these rules we obtain

r′′ : Invoice⇒Os,bPay Within7Days⊗Os,bPay WithInterest.

As soon as we applied (⊗I) as much as possible, we have
to drop all redundant rules. This can be done by means of
the notion of subsumption:

2The ⊗ is allowed only in the head of defeasible rules. See [8] for a
full motivation of this design choice.

Definition 1 Let r1 = Γ ⇒ A⊗ B⊗C and r2 = ∆ ⇒ D
be two rules, where A =

⊗m
i=1 Ai, B =

⊗n
i=1 Bi and C =⊗p

i=1 Ci. Then r1 subsumes r2 iff

1. Γ = ∆ and D = A; or

2. Γ∪{¬A1, . . . ,¬Am}= ∆ and D = B; or

3. Γ∪{¬B1, . . . ,¬Bn}= ∆ and D = A⊗
⊗k≤p

i=0 Ci.

The idea behind this definition is that the normative content
of r2 is fully included in r1. Thus r2 does not add anything
new to the system and it can be safely discarded. In the ex-
ample above, we can drop rule r, whose normative content
is included in r′′.

To accommodate the new connective (⊗) in DDLV
we have to revise the inference mechanism of Defeasible
Logic. The first thing we have to note is that now a defea-
sible rule can be used to derive different conclusions. For
example given the rule

r : A ⇒ Os,bB⊗Os,bC

we can use it to derive Os,bB if we have A, but if we know A
and ¬B then the same rule supports the conclusion Os,bC.
For the full technical details for this see [8].

3. Contracts in RuleML

In order to integrate the the DR-CONTRACT engine
with Semantic Web technology we decided to use RuleML
[21] as an open and vendor neutral XML/RDF syntax for
contracts. We tried to re-use as many features of standard



RuleML syntax as possible. However, since some notions
essential for the representation of contracts are not present
in standard RuleML we have created our DR-CONTRACT
DTD (Figure 1).3 The main limitations of RuleML is that
it does not support modalities and it is unable to deal with
violations.

The DR-CONTRACT RuleML DTD takes two different
types of literals: unmodalised predicates and modalised lit-
erals. Thus to appropriately represent the deontic notions
of obligation and permission we introduce two new ele-
ments <Obligation> and <Permission>, which are
intended to replace <Atom> in the conclusion of normative
rules. In addition deontic elements can be used in the body
of derivation rules. Hence we have to extend the definition
of <And> and <Head>. In this way it is possible to dis-
tinguish from brute fact and normative facts. As we have
already argued this is essential if one wants to use RuleML
to represent business contracts.

The elements <Var> and <Ind> are, respectively,
placeholders for individual variables to be instantiated by
ground values when the rules are applied and individual
constants. Individual constants can be just simple names or
URIs referring to the appropriate individuals. <Rel> is the
element that contains the name of the predicate. <Not> is
intended to represent classical negation. Thus its meaning
is that the atom it negates is not the case (or the proposi-
tion represented by the atom is false and consequently the
proposition the element represents is true). RuleML con-
tains two types of negation, classical negation and negation
as failure [24, 7]. However, negation as failure can be sim-
ulated by other means in Defeasible Logic [4], so we do not
include it in our syntax.

RuleML provides facilities for many types of rule. How-
ever, we believe that the distinction has a pragmatic flavour
more than a conceptual one. In this paper we are interested
in the logical and computational aspects of the rules, thus
we decided to focus only on derivations rules <Imp>.

Derivation Rules allow the derivation of information
from existing rules [24]. They are able to capture con-
cepts not stored explicitly in the existing information. For
example, a customer is labelled as a “Premium” customer
when he buys $10000 worth of goods. As such, the rule
here states that the customer must have spent $10000 on
goods, thus deriving the information here that the cus-
tomer is a “Premium” customer. A derivation rule as an at-
tribute strength whose value ranges over strict and
defeasible and it denotes the type of rule to be associ-
ated to it when computed in defeasible logic.

A derivation rule has two immediate sub-elements, Con-
dition (<Body>) and Conclusion (<Head>); the latter be-

3Although the current version of RuleML (Version 0.89) is based on
XML Schema, here due to space limitation and for ease of presentation,
we will give the XML grammar using simplified DTD definitions.

ing either an atomic predicate formula or a sequence of
obligations, and the former a conjunction of formulas [25],
meaning that derivation rules consist of one more condi-
tions and a conclusion.

The ability to deal with violations and the obligations
arising in response to them is one of the key features in
the representation of business contracts. To this end the
conclusion of a derivation rule corresponding to a nor-
mative rules is a <Behaviour> element, defined as a
sequence of <Obligation> and <Permission> ele-
ments with the constraints that the sequence contains at
most one <Permission> element, and this element is
the last of the sequence. This construction is meant to sim-
ulate the behaviour of ⊗.

We give an example of a rule based on the following
contract clause

6.1 The payment terms shall be in full upon re-
ceipt of invoice. Interest shall be charged at 5 %
on accounts not paid within 7 days of the invoice
date.

<Imp label="6.1"
strenght="defeasible">

<Body>
<And>

<Atom><Rel>Invoice</Rel>
<Var>InvoiceDate</Var>
<Var>Amount</Var>

</Atom>
</And>

</Body>
<Head>

<Behaviour>
<Obligation subject="Purchaser"

beneficiary="Supplier">
<Rel>PayInFullWithin7Days</Rel>
<Var>InvoiceDate</Var>
<Var>Amount</Var>

</Obligation>
<Obligation subject="Purchaser"

beneficiary="Supplier">
<Rel>PayWithInterest</Rel>
<Var>Amount * 1.07</Var>

</Obligation>
</Behaviour>

</Head>
</Imp>

As we have alluded to in the previous section RuleML
provides a semantically neutral syntax for rules and differ-
ent types of rules can be reduced to other types and rules
in RuleML can be mapped to native rules in other formal-
ism. For the relationships between RuleML and Defeasi-
ble Logic we will translate derivation rules (<Imp>s) into
rules in Defeasible Logic specifications. In this perspective
a derivation rule

<Imp label="r" strength="defeasible">
<Body>...</Body>



<!ELEMENT And (Atom|Obligation|Permission|Violation)*>
<!ELEMENT Violation EMPTY>
<!ATTLIST Violation rule IDREF>
<!ELEMENT Behaviour ((Obligation+,Reparation)|(Obligation*,Permission?))>
<!ELEMENT Reparation EMPTY>
<!ATTLIST Reparation penalty IDREF>
<!ELEMENT Penalty ((Obligation+,Reparation)|(Obligation*,Permission?))>

Figure 2. DR-CONTRACT Extended DTD

<Head>
<Behaviour>

<Obligation>A1</Obligation>
...
<Deontic>An</Deontic>

</Behaviour>
</Head>

</Imp>

is transformed into a defeasible rule

r : body⇒ OA1⊗·· ·⊗XAn

where X is the translation of the <Deontic> (meta) ele-
ment.

The deontic tags in the DR-CONTRACT extended
DTD, Figure 2 –<Reparation>, <Penalty> and
<Violation>–, do not increase the expressive power of
the language but are included as convenient shortcuts.

It is possible to express a violation explicitly by say-
ing that a particular rule is triggered in response to a vio-
lation (i.e., when an obligation is not fulfilled) –just look
at the formulation of Clause 5.3. Thus it can be conve-
nient to have facilities to represent violations directly. In
general a violation can be one of the conditions that trigger
the application of a rule. Accordingly a <Violation>
element can be included in the body of a rule. A vi-
olation cannot subsist without a rule that is violated by
it. Hence the attribute rule is a reference to the rule
that has been violated. Many contract languages [16, 20]
contain similar constructions. The activation of such con-
structions/processes requires the generation of a violation
event/literal. On the contrary our approach does not re-
quire it. All we have to do is to check for a sequence of
literals joined with the ⊗ operator where the initial part of
the sequence is not satisfied.

In some cases one might have recurrent general penal-
ties and it may be convenient to state them once and refer
back to them when they are called. To deal with this case
we introduce two additional elements <Reparation>
and <Penalty>. A <Reparation> element is just an
empty element with a reference to a <Penalty> element
that can occur only after an obligation in a <Behaviour>
element, where a <Penalty> element is a premiseless

rule with a normative head that is triggered only when its
corresponding violations are raised.

See [8] for the translation of rules containing
<Violation>, <Reparation> and <Penalty>.

4. DR-CONTRACT System Architecture

The system architecture of DR-CONTRACT is inspired
by the system architecture of the family of DR-DEVICE
applications [22, 6, 5] and consists of four main modules
(see Figure 3):

1. A Rule Parser to transform a DR-CONTRACT com-
pliant document (a contract) into a theory to be passed
to the next module. The parser is based on the XML
processor and it is rather similar in nature to the Logi-
cLoader module of the DR-Device family applications
[22, 6, 5].

2. A DDLV normaliser. The normaliser takes as input a
DDLV theory (obtained from the previous step) and
iteratively merges rules in the theory according to the
inference rule 2 and then removes rules subsumed by
a more general rule according to Definition 1. It re-
peats the cycle till it reaches the fixed-point of such
a construction (which is guaranteed to exist and to be
unique [12]). Once a theory has been normalised the
normal form is saved to a repository (for faster loading
in successive calls), and the normalised theory ND-
DLV is passed to the DDLV engine. In addition the
normaliser applies a transformation that removes su-
periority relation by compiling it into new rules (the
technique used here is similar to that of [2]).

3. The RDF loader downloads/queries the input docu-
ments, including their schemata, and it translates the
RDF descriptions into fact objects according to the
RDF-NDDLV translation schema based on the DR-
CONTRACT DTD.

4. The NDDLV inference engine consists of two compo-
nents.



Figure 3. DR-CONTRACT System Architecture

• The Rule Loader compiles the rules in a NDDLV
theory in objects. We distinguish two types of
objects: Rules and Literals or atoms. Each rule
object has associated to it a list of (pointers to)
modal literals (corresponding to head of the rule)
and a set of (pointers to) modal literals imple-
mented as an hash table. Each atom object has
associated to it four hash tables: the first with
pointers to the rules where the atom occurs pos-
itively in the head, the second with pointers to
the rules where the atom occurs negatively in the
head, the third with pointers to the rules where
the atom occurs positively in the body and the
last with pointers where the atom occurs nega-
tively in the body.

• The Inference Engine is based on an extension of
the Delores algorithm/implementation proposed
in [19] as a computational model of Basic De-
feasible Logic. In turn:

– It asserts each fact (as an atom) as a conclu-
sion and removes the atom from the rules
where the atom occurs positively in the
body, and it “deactivates” the rules where
the atom occurs negatively in the body. The
complement of the literal is removed from

the head of rules where it does not occur
as first element. The atom is then removed
from the list of atoms.

– It scans the list of rules for rules where the
body is empty. It takes the first element
of the head and searches for rule where the
negation of the atom is the first element. If
there are no such rules then, the atom is
appended to the list of facts, and removed
from the head of the rule.

– It repeats the first step.

– The algorithm terminates when one of the
two steps fails. On termination the algo-
rithm outputs the set of conclusions.4

5. Finally the conclusions are exported either to the user
or to an monitoring contract facility such as BCL
[20, 18], as an RDF/XML document through an RDF
extractor.

4Notice that the algorithm runs in linear time since each atom/literal in
a theory is processed exactly one and every time we have scan of the set
or rule, thus the complexity of the above algorithm is O(|L| ∗ |R|), where
L is the set of distinct modal literals and R is the set of rules.



5. Conclusion and Related Works

In this paper we have presented a system architecture
for a Semantic Web based system for reasoning about con-
tracts. The architecture is inspired by the system architec-
ture of the DR-DEVICE family of applications. The main
differences between our approach and the DR-DEVICE is
in the use of an extended variant of Defeasible Logic. The
extensions are in the use of modal operator and a non clas-
sical operator for violations. The same difference applies
for the SweetDeal approach by Grosof [15, 16]. We have
also argued that the extension with modal (deontic) oper-
ators is not only conceptually sound but also fruitful for
properly capturing the semantics of contracts. In the same
way the implementation of the inference engine is an ex-
tension of the algorithm used by Delores [19] to cope with
deontic operators and the ⊗ operator.

Currently we have implemented prototypes of the infer-
ence engine in Python and Java, and experimental results
show that the Python implementation is able to deal with
some of the benchmark theories of [19] with theories in
some case with over 50000 rules.
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