

SYMBOLIC EXTRACTION FOR ESTIMATING ANALOG
LAYOUT PARASITICS IN LAYOUT-AWARE SYNTHESIS

I . TSENG

�� ��
, A. POSTULA

�� ��
, AND L. JÓ

�
WIAK �� ��

 �� ��
THE UNIVERSITY OF QUEENSLAND, AUSTRALIA

�� �� EINDHOVEN UNIVERSITY OF TECHNOLOGY, THE NETHERLANDS

KEYWORDS: Symbolic Extraction, Analog Design Methodology,
Layout Parasitic Extraction, Physical Design, Parameter ized Layout

ABSTRACT: This paper presents a new layout parasitic extraction paradigm, symbolic extraction, for use in layout-aware
analog synthesis methodologies. Unlike traditional post-layout extraction, symbolic extraction extracts layout parasitics
in symbolic form from parameterized layouts. As a result, parasitic values can be calculated directly from given circuit
and layout parameters. In layout-aware circuit synthesis process, tasks of time-consuming layout re-generation and re-
extraction can be replaced by this fast parasitics calculation step. In the paper, we discuss how to integrate symbolic
extraction into the existing analog design flow and how symbolic extraction can be implemented.

INTRODUCTION

One critical problem in analog integrated circuit design
is layout-induced parasitics. Layout parasitics can have
significant effects on design performance, especially for
high-frequency circuits. In an experiment for impact of
parasitics [1], design performance can be shifted as high
as 90% if parasitics are not considered.
In order to take layout-induced effects into account in
analog design process and automate the redesign loops,
layout-in-the-loop synthesis methodologies [2, 3] have
been proposed, as illustrated in Fig. 1(a). In these meth-
odologies, layout generation and parasitic extraction
steps are required in that we need to know the perform-
ance degradation induced by the layout. The results of
extracted net-lists are then used to guide synthesis tools
for the next circuit sizing loop. Although layout genera-
tion and extraction steps are very important to the meth-
odologies, they are very time-consuming.

(a)

(b)
Fig. 1. Analog design methodologies: (a) Layout-in-the-loop

(Layout-inclusive) approach (b) Proposed approach

Novel methodologies toward solving slow layout gen-
eration and extraction in layout-aware synthesis flow
have been proposed. In [1, 4], the approach of using
Module Characterization Table (or MCT, a type of look-
up tables) to estimate parasitic values has been proposed.
However, one problem of this approach is that the size
of an MCT can grow exponentially, especially when
there are many variables for the input column. Another
problem is that the routing is oversimplified. The use of
routing boxes, that each of them consists of a horizontal
and several vertical segments, is not the case in general,
especially for high-performance analog circuits. Pro-
posed by the same research group at the University of
Cincinnati, the pre-layout extraction approach uses a
high-level language, MSL, to generate extracted net-lists
from given circuit parameters without generating a con-
crete layout [5]. However, there are disadvantages for
this methodology. One drawback is that it is not simple
to define extraction sections in MSL. To specify rules
and variables in an extraction section, designers first
have to analyze the module generator and have to have a
picture in mind in advance for what the final extracted
net-list will look like. Then they have to manually define
the connections of each active and passive element by
using the language. After that, designers assign the asso-
ciated variables or values to those elements. The proce-
dures above are like coding parasitic extractors manu-
ally for each module. In addition, each module generator
must have at least one version of its own extraction sec-
tions for the purpose of different levels of accuracy. For
large modules, therefore, using the language to define
the extraction sections would be a very tedious work.
Our idea is similar to pre-layout extraction and the MCT
approach because no detailed layout is generated in or-
der to attain extracted net-lists during layout-inclusive
synthesis process. On the other hand, our approach has
the following distinctions. (1) Extracted net-lists in our
approach are in symbolic form. For instance, the resis-
tance value for a parasitic resistor is an equation. Exact
values can be computed rapidly from the given parame-

ters. (2) The extracted net-lists depend on the values of
circuit parameters and layout parameters, not just circuit
parameters. That dramatically shortens the circuit syn-
thesis loops [6]. (3) Designers do not have to code the
extracted circuits as using the MSL language. The net-
list structure is generated automatically. (4) The extrac-
tion process is carried out only once. In layout-aware
synthesis process, parasitics are calculated rather than
extracted.
In our design flow, as shown in Fig. 1(b), designers have
to design their layout generators for each module, as
using CAIRO [7] or other module generation languages
in the layout-in-the-loop flow. The language that we use
in our design flow is GBLD [8]. After performing sym-
bolic extraction on the GBLD code, a net-list with pa-
rameterized parasitic values and/or conditional state-
ments is generated. We call the generated net-list sym-
bolic net-list. In layout-inclusive circuit synthesis loops,
exact parasitic values can be calculated and the ex-
tracted net-list can be attained rapidly from the symbolic
net-lists. In our approach, expensive layout generation
and traditional parasitic extraction steps are not needed
in the synthesis flow.
The rest of this paper is organized as follows. In the next
section, we introduce our parameterized layout format,
GBLD, which can also be used as the language for de-
signing module generators. Then we describe how to
perform symbolic extraction from parameterized layouts.
Concluding remarks and future work are in the final
section.

TABLE 1. GBLD Symbols

Symbols Actions/Meanings
F Move forward one unit in the current

direction and draw a line
f Move forward one unit in the current

direction (without drawing a line)
+ Turn left 90 degrees
– Turn right 90 degrees
{ Start recording a string except “{ ” ,

“ } ” , and “ !” on a magnetic tape
} Stop recording and place an end-of-

the-record symbol on the tape
! Rewind the magnetic tape to the pre-

vious end-of-the-record symbol, gen-
erate and erase the recorded characters
of the string between the two end-of-
the-record symbols, then move to the
end of the recording

F(n) Repeat the “F” symbol exactly n times
f(n) Repeat the “ f” symbol exactly n times

<nt,“ ly”> Generate the string “ ly(p)” if there is a
production rule defined as “<nt>�p”
and <nt,“ ly”> can only appear on the
right hand side of production rules. (ly
stands for layer name or layer number.
The symbol p stands for a polygon or
polygons.)

PARAMETERIZED LAYOUT FORMAT

Grammar Based Layout Description (GBLD) is our pa-
rameterized layout format [8]. The format can be used to
represent geometrical layouts as well as parameterized
layouts. Most of the symbols defined in GBLD are bor-
rowed from L-systems [9] and context-free grammars. In
Table 1, we re-list some of the GBLD symbols which
are used in this paper for the reason of completeness.
For other unlisted symbols and related examples, readers
can refer to another of our published papers [8].
GBLD can be considered as a limited version of proce-
dural module generators, but there exists benefits for the
limited description power. One advantage is that we can
extract symbolic net-lists easier from GBLD than from
other languages which have more complicated syntax,
such as loops and conditional branches. In addition, we
can always define new symbols into GBLD so that the
description power can be improved. Nevertheless,
GBLD can be used to represent parameterized layouts
for the following important aspects: device dimensions,
relative positions, routing controls, and transformations
for wires.

Device Dimensions

For procedural module generators used in analog design,
the capability of generating layouts for different transis-
tor lengths and widths is necessary. This is because tran-
sistor lengths and widths (or the W/L ratios) are impor-
tant parameters that very much influence the circuit per-
formance. During circuit sizing process, tuning those
parameters is one of the major tasks. GBLD is able to
represent parameterized layouts of transistors by keep-
ing the channel lengths and widths as parameters.
In Fig. 2, for example, there are two rectangular poly-
gons. One is on the n-diffusion layer, and the other is on
the polysilicon layer. Note that the small black dot in the
figure is the starting point and the default direction is
upward. Fig. 3 shows the GBLD code for describing the
parameterized layout in Fig. 2. The code is very concise
since we use an imaginary magnetic tape to describe the
repetitive portions. In the description code, the non-
terminal symbols <length> and <width> can be treated
as parameters. If we assign actual values to the parame-
ters, such as <length>�2 and <width>�5, the detailed
layout can be represented and generated.

Fig. 2. NMOS transistor with parameterized channel length

and channel width

<NMOS>

�

<Ndiff, “3”> – f(6) – f(4) – – <Poly, “2”>
<Ndiff> � { F(<width>) – F(6) F(<length>) F(6) – } { ! }
<Poly>

� { F(4) F(<width>) F(4) – F(<length>) – } { ! }

Fig. 3. The GBLD code for the MOS transistor with param-
eterized channel length and channel width

Relative Positions

For the layout-aware analog synthesis approach pro-
posed in [10], defining relative positions is an important
task. By defining parameters to the relative positions of
blocks, placement is simplified and the complexity of
synthesis procedures is reduced. GBLD can be used to
represent relative positions of analog layout blocks. As
shown in Fig. 4, there are two layout blocks, A and B.
The relative position of A and B can be defined via the
positions of point p and q, as well as via any other point
in block A and any other point in block B. The pseudo
GBLD code for representing the relative position in the
figure is:

<Block A ends at point p with upward direction> –
<x> + <y> <Block B starts at point q with upward
direction>

The parameters <x> and <y> in the code represent the
horizontal and vertical distances between points p and q
respectively, as we can see in the figure.

Fig. 4. Relative position of two layout blocks

Routing Controls

In Fig. 5(a), there are two layout blocks A and B. The
wire between A and B connects the two blocks. The
vertical part in the middle of the wire is stretchable. The
vertical part is <Param> units in length and can also go
down or go straight as in (b) and (c) respectively. GBLD
can describe these cases in the code below.

<Wire> � F – F(4) { <Turn> } F(4) – F – F(4) { ! } F(4)
<Turn> � <Up> | <Down> | <Straight>
<Up> � + F(<Param>) – F
<Down> � F – F(<Param>) +
<Straight> � F

We can also treat the two non-terminal symbols <Turn>
and <Param> as parameters, where <Param> is a real
number and <Turn> has only three choices, <Up>,
<Down>, and <Straight>. By controlling the two pa-
rameters, the wire direction and the wire length can be
altered. We can also control the placement of B relative

to A as well. Equations of parasitic values for the wire
can be derived by having <Turn> and <Param> as pa-
rameters.

Fig. 5. Routing controlled by parameters

Transformations for Wires

In this subsection, we show how a fixed-coordinate wire
can become bendable and stretchable. A portion of a
horizontal wire is shown in Fig. 6(a). The wire is 10
units in length and 3 units in width. The corresponding
GBLD code for the wire portion is “… F(10)1 – F(3) –
F(10)2 …” . We use the subscript numbers to differentiate
the two F(10)’s before and after F(3). By performing the
transformations using the transformation rules shown in
the figure, the final GBLD code is “… F(p) + F(a) – F(q) –
F(3) – F(r) + F(a) – F(s) …” , where a, p, and r are parame-
ters that can be used to control the geometry. The value
of s is the addition of the value p and 3 (mathematical
addition). We use the statement F(s)�F(p)F(3) to imple-
ment this mathematical addition in GBLD. The relation-
ship between q and r can also be expressed in this way.
The final layout after transformations is shown in Fig.
6(b).

Fig. 6. Transformations for wires

SYMBOLIC EXTRACTION

In this section, we discuss how to perform parasitic ex-
traction on parameterized layouts which are represented
by GBLD. We call the process symbolic extraction. For
the examples in this section, we model capacitive and
resistive parasitics of interconnections. The following
three types of parasitic capacitances are considered: (a)
area (parallel-plate) capacitance to ground, (b) fringing
capacitance (or fringe capacitance) to ground, and (c)
inter-wire capacitance between parallel wires placed on
the same layer. Values of these three types of capacitan-

ces are proportional to wire lengths, and are inversely
proportional to separation distances. For parasitic resis-
tances, they are also proportional to wire lengths if we
ignore the skin effect. After performing symbolic extrac-
tion, therefore, the final results for capacitive and resis-
tive parasitic values are simple mathematical equations,
which mainly contain addition, subtraction, multiplica-
tion, and/or division. This makes computations of exact
parasitic values very fast during layout-inclusive circuit
synthesis. We divide symbolic extraction into two types.
They are Simple Symbolic Extraction and Conditional
Symbolic Extraction. Both of them are presented in the
following subsections.

Simple Symbolic Extraction

Fig. 7 shows the layout of two open-ended wires, Wire 1
and Wire 2. The wire widths are W1 and W2 respec-
tively. In the figure, both of the two wires are divided
into segments and are parameterized. The heights of the
wires are assumed to be the same.

Fig. 7. Symbolic extraction on two parameterized wires

After performing symbolic extraction, the extracted
symbolic net-list is illustrated in Fig. 8. For simplicity,
we use the T model to approximate distributed RC ef-
fects. That means the intrinsic parasitics of a wire seg-
ment can be modelled by two serial connected resistors
and a capacitor which is connected to the two resistors
for one end and to the ground for the other end. For in-
stance, the intrinsic parasitics of the wire segment a in
Fig. 7 can be modelled by R1, R2, and C1, as shown in
Fig. 8. The capacitor C4 stands for the coupling capaci-
tance between segment a and segment d.

Fig. 8. The extracted net-list of the two parameterized wires

We can start deriving equations for the capacitive and
resistive parasitics. For the wire segment a, the area
capacitance to ground can be derived as:

Carea = K1L1W1

where L1W1 is the area of the segment a for the side
which is parallel to the ground. K1 is equal to (� di / tdi),
where � di and tdi represent the permittivity of the dielec-
tric layer, SiO2, and its thickness, individually. There-
fore, K1 is a constant. Note that Ki, for i∈N, stands for a
constant value in the following equations. The fringe
capacitance to ground of the wire segment a can be de-
rived as:

Cfringe = 2*(L1K2)

The intrinsic capacitance C1 is the sum of Carea and
Cfringe , or

 C1 = Carea + Cfringe

Similarly, we can also derive the following equations for
the parasitics of the line segment a.

C4 = min(L1, L4)*K3 /D1
R1 = R2 = (L1*K4 /W1)/2

The coupling capacitance C4 depends on the minimum
value of the length L1 and L4, and is reverse proportional
to the separation distance D1. For the intrinsic resistance
of the line segment a, it is divided into two resistors, R1
and R2. Each of them has half of the lumped value. For
other parasitics in the example, they can also be derived
in the similar way.

Conditional Symbolic Extraction

In simple symbolic extraction that we discuss in the pre-
vious subsection, a parameterized layout must have a
fixed layout topology. That means changing parameter
values in the parameterized layout will not change the
structure of the final extracted symbolic net-list. (Notice
that the calculated parasitic values might be changed.)
Conditional symbolic extraction, on the other hand, is
different from simple symbolic extraction. In conditional
extraction, the final extracted net-lists can have different
RC structures which depend on the values of input pa-
rameters. For instance, in Fig. 9(a), Wire 1 and Wire 2
are stretchable and the lengths of the two wires can be
controlled by the parameters L1, L3, and L4. Similar to
the example in the previous subsection, there exists a
coupling capacitance between wire segments a and c.
However, if the value of L1 is greater than L3, the layout
topology will become the one shown in Fig. 9(b). An-
other coupling capacitance, which is between wire seg-
ments b and d, will exist.
For the example in Fig. 9, the final extracted symbolic
net-list must have conditional branches. That is very
much similar to traditional programming languages. The
pseudo symbolic net-list in SPICE-like format is:

if (L1 > L3) {
 Ccond node-in-seg-b node-in-seg-d CVAL
}

The capacitor Ccond is the coupling capacitor between
wire segment b and d. It is generated only when the

condition (L1 > L3) happens. CVAL is an equation which
takes min(L2, L4) and D2 as parameters (CVAL = min(L2,
L4)* K5 /D2).

(a)

(b)

Fig. 9. An example of Conditional Symbolic Extraction

CONCLUSION & FUTURE WORK

This paper presents a new methodology that can replace
repetitive time-consuming layout generation and extrac-
tion steps in layout-aware circuit synthesis process for
analog block level design. Symbolic extraction, which
plays an important role in the methodology, is to extract
net-lists in symbolic form from parameterized layouts.
Exact parasitic values can be computed very rapidly
from symbolic net-lists. In our methodology, parameter-
ized layouts are represented by a layout description lan-
guage called GBLD. For very complex parameterized
layouts, the extracted symbolic net-lists may look very
similar to programming languages since conditional
branches are required.
On going work attempts to build an interactive param-
eterized layout design system which has symbolic ex-
traction and design-rule-built-in functionalities. Efforts
will also be made to tune the design performance based
on symbolic net-lists.

THE AUTHORS

I-Lun Tseng and Dr. Adam Postula are with the School
of Information Technology & Electrical Engineering,
The University of Queensland, St Lucia, Queensland
4072, Australia.
E-mail: { iltseng, adam} @itee.uq.edu.au

Dr. Lech Jó wiak is with the Department of Information
and Communication Systems at the Faculty of Electrical
Engineering, Eindhoven University of Technology, The
Netherlands.
E-mail: L.Jozwiak@tue.nl

REFERENCES

[1] A. Agarwal, H. Sampath, V. Yelamanchili, and R.

Vemuri, "Fast and Accurate Parasitic Capacitance
Models for Layout-Aware Synthesis of Analog
Circuits," Proc. Design Automation Conference,
San Diego, CA, USA, 2004, pp. 145-150.

[2] M. Dessouky, M.-M. Louerat, and J. Porte, "Lay-
out-oriented synthesis of high performance analog
circuits," Proc. IEEE Design, Automation and Test
in Europe (DATE), Paris, France, 2000, pp. 53-57.

[3] P. Vancorenland, G. V. d. Plas, M. Steyaert, G.
Gielen, and W. Sansen, "A layout-aware synthesis
methodology for RF circuits," Proc. International
Conference on Computer Aided Design (ICCAD),
San Jose, California, 2001, pp. 358-362.

[4] A. Agarwal, H. Sampath, V. Yelamanchili, and R.
Vemuri, "Accurate Estimation of Parasitic Capaci-
tances in Analog Circuits," Proc. IEEE Design,
Automation and Test in Europe Conference and
Exhibition (DATE), Paris, France, 2004, pp. 1364-
1365.

[5] R. F. Badaoui, H. Sampath, A. Agarwal, and R.
Vemuri, "A High Level Language for Pre-Layout
Extraction in Parasite-Aware Analog Circuit Syn-
thesis," Proc. Great Lakes Symposium on VLSI
(GLSVLSI), Boston, Massachusetts, USA, 2004,
pp. 271-276.

[6] I.-L. Tseng and A. Postula, "A Layout-Aware Cir-
cuit Sizing Model Using Parametric Analysis,"
Proc. The 12th Workshop on Synthesis And Sys-
tem Integration of Mixed Information technologies
(SASIMI), Kanazawa, Japan, 2004, pp. 235-240.

[7] M. A. Dessouky, A. Greiner, and M. M. Louerat,
"CAIRO: A hierarchical layout language for ana-
log circuits," Proc. Mixed Design of Integrated
Circuits and Systems (MIXDES), Krakow, Poland,
1999, pp. 105-110.

[8] I.-L. Tseng and A. Postula, "GBLD: A Formal
Model for Layout Description and Generation,"
Proc. Forum on specification & Design Languages
(FDL), Lille, France, 2004, pp. 660-670.

[9] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan,
The algorithmic beauty of plants. New York; Ber-
lin: Springer-Verlag, 1990.

[10] H. Tang and A. Doboli, "Employing layout-
templates for synthesis of analog systems," Proc.
IEEE 45th Midwest Symposium on Circuits and
Systems (MWSCAS), 2002, pp. II-505-II-508.

