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ABSTRACT: This paper presents a new layout parasitic extraction paradigm, symbolic extraction, for use in layout-aware 
analog synthesis methodologies. Unlike traditional post-layout extraction, symbolic extraction extracts layout parasitics 
in symbolic form from parameterized layouts. As a result, parasitic values can be calculated directly from given circuit 
and layout parameters. In layout-aware circuit synthesis process, tasks of time-consuming layout re-generation and re-
extraction can be replaced by this fast parasitics calculation step. In the paper, we discuss how to integrate symbolic 
extraction into the existing analog design flow and how symbolic extraction can be implemented. 
 

INTRODUCTION 
 
One critical problem in analog integrated circuit design 
is layout-induced parasitics. Layout parasitics can have 
significant effects on design performance, especially for 
high-frequency circuits. In an experiment for impact of 
parasitics [1], design performance can be shifted as high 
as 90% if parasitics are not considered. 
In order to take layout-induced effects into account in 
analog design process and automate the redesign loops, 
layout-in-the-loop synthesis methodologies [2, 3] have 
been proposed, as illustrated in Fig. 1(a). In these meth-
odologies, layout generation and parasitic extraction 
steps are required in that we need to know the perform-
ance degradation induced by the layout. The results of 
extracted net-lists are then used to guide synthesis tools 
for the next circuit sizing loop. Although layout genera-
tion and extraction steps are very important to the meth-
odologies, they are very time-consuming. 
 
 

 
 

(a) 

 
 

(b) 
Fig. 1. Analog design methodologies: (a) Layout-in-the-loop 

(Layout-inclusive) approach (b) Proposed approach 
 
 

Novel methodologies toward solving slow layout gen-
eration and extraction in layout-aware synthesis flow 
have been proposed. In [1, 4], the approach of using 
Module Characterization Table (or MCT, a type of look-
up tables) to estimate parasitic values has been proposed. 
However, one problem of this approach is that the size 
of an MCT can grow exponentially, especially when 
there are many variables for the input column. Another 
problem is that the routing is oversimplified. The use of 
routing boxes, that each of them consists of a horizontal 
and several vertical segments, is not the case in general, 
especially for high-performance analog circuits. Pro-
posed by the same research group at the University of 
Cincinnati, the pre-layout extraction approach uses a 
high-level language, MSL, to generate extracted net-lists 
from given circuit parameters without generating a con-
crete layout [5]. However, there are disadvantages for 
this methodology. One drawback is that it is not simple 
to define extraction sections in MSL. To specify rules 
and variables in an extraction section, designers first 
have to analyze the module generator and have to have a 
picture in mind in advance for what the final extracted 
net-list will look like. Then they have to manually define 
the connections of each active and passive element by 
using the language. After that, designers assign the asso-
ciated variables or values to those elements. The proce-
dures above are like coding parasitic extractors manu-
ally for each module. In addition, each module generator 
must have at least one version of its own extraction sec-
tions for the purpose of different levels of accuracy. For 
large modules, therefore, using the language to define 
the extraction sections would be a very tedious work. 
Our idea is similar to pre-layout extraction and the MCT 
approach because no detailed layout is generated in or-
der to attain extracted net-lists during layout-inclusive 
synthesis process. On the other hand, our approach has 
the following distinctions. (1) Extracted net-lists in our 
approach are in symbolic form. For instance, the resis-
tance value for a parasitic resistor is an equation. Exact 
values can be computed rapidly from the given parame-



ters. (2) The extracted net-lists depend on the values of 
circuit parameters and layout parameters, not just circuit 
parameters. That dramatically shortens the circuit syn-
thesis loops [6]. (3) Designers do not have to code the 
extracted circuits as using the MSL language. The net-
list structure is generated automatically. (4) The extrac-
tion process is carried out only once. In layout-aware 
synthesis process, parasitics are calculated rather than 
extracted. 
In our design flow, as shown in Fig. 1(b), designers have 
to design their layout generators for each module, as 
using CAIRO [7] or other module generation languages 
in the layout-in-the-loop flow. The language that we use 
in our design flow is GBLD [8]. After performing sym-
bolic extraction on the GBLD code, a net-list with pa-
rameterized parasitic values and/or conditional state-
ments is generated. We call the generated net-list sym-
bolic net-list. In layout-inclusive circuit synthesis loops, 
exact parasitic values can be calculated and the ex-
tracted net-list can be attained rapidly from the symbolic 
net-lists. In our approach, expensive layout generation 
and traditional parasitic extraction steps are not needed 
in the synthesis flow. 
The rest of this paper is organized as follows. In the next 
section, we introduce our parameterized layout format, 
GBLD, which can also be used as the language for de-
signing module generators. Then we describe how to 
perform symbolic extraction from parameterized layouts. 
Concluding remarks and future work are in the final 
section. 
 

TABLE 1. GBLD Symbols 

Symbols Actions/Meanings 
F Move forward one unit in the current 

direction and draw a line 
f Move forward one unit in the current 

direction (without drawing a line) 
+ Turn left 90 degrees 
– Turn right 90 degrees 
{  Start recording a string except “{ ” , 

“ } ” , and “ !”  on a magnetic tape 
}  Stop recording and place an end-of-

the-record symbol on the tape 
! Rewind the magnetic tape to the pre-

vious end-of-the-record symbol, gen-
erate and erase the recorded characters 
of the string between the two end-of-
the-record symbols, then move to the 
end of the recording 

F(n) Repeat the “F”  symbol exactly n times 
f(n) Repeat the “ f”  symbol exactly n times 

<nt,“ ly”> Generate the string “ ly(p)”  if there is a 
production rule defined as “<nt>�p”  
and <nt,“ ly”> can only appear on the 
right hand side of production rules. (ly 
stands for layer name or layer number. 
The symbol p stands for a polygon or 
polygons.) 

 

PARAMETERIZED LAYOUT FORMAT 
 
Grammar Based Layout Description (GBLD) is our pa-
rameterized layout format [8]. The format can be used to 
represent geometrical layouts as well as parameterized 
layouts. Most of the symbols defined in GBLD are bor-
rowed from L-systems [9] and context-free grammars. In 
Table 1, we re-list some of the GBLD symbols which 
are used in this paper for the reason of completeness. 
For other unlisted symbols and related examples, readers 
can refer to another of our published papers [8].  
GBLD can be considered as a limited version of proce-
dural module generators, but there exists benefits for the 
limited description power. One advantage is that we can 
extract symbolic net-lists easier from GBLD than from 
other languages which have more complicated syntax, 
such as loops and conditional branches. In addition, we 
can always define new symbols into GBLD so that the 
description power can be improved. Nevertheless, 
GBLD can be used to represent parameterized layouts 
for the following important aspects: device dimensions, 
relative positions, routing controls, and transformations 
for wires. 
 

Device Dimensions 
 
For procedural module generators used in analog design, 
the capability of generating layouts for different transis-
tor lengths and widths is necessary. This is because tran-
sistor lengths and widths (or the W/L ratios) are impor-
tant parameters that very much influence the circuit per-
formance. During circuit sizing process, tuning those 
parameters is one of the major tasks. GBLD is able to 
represent parameterized layouts of transistors by keep-
ing the channel lengths and widths as parameters. 
In Fig. 2, for example, there are two rectangular poly-
gons. One is on the n-diffusion layer, and the other is on 
the polysilicon layer. Note that the small black dot in the 
figure is the starting point and the default direction is 
upward. Fig. 3 shows the GBLD code for describing the 
parameterized layout in Fig. 2. The code is very concise 
since we use an imaginary magnetic tape to describe the 
repetitive portions. In the description code, the non-
terminal symbols <length> and <width> can be treated 
as parameters. If we assign actual values to the parame-
ters, such as <length>�2 and <width>�5, the detailed 
layout can be represented and generated. 
 

 
 
Fig. 2. NMOS transistor with parameterized channel length 

and channel width 

 



 

<NMOS> 
 

� 
 

<Ndiff, “3”> – f(6) – f(4) –  – <Poly, “2”> 
<Ndiff> � {  F(<width>) – F(6) F(<length>) F(6) – }  {  ! }  
<Poly> 
 

� {  F(4) F(<width>) F(4) – F(<length>) – }  {  ! }  

 

Fig. 3. The GBLD code for the MOS transistor with param-
eterized channel length and channel width 

 

Relative Positions 
 
For the layout-aware analog synthesis approach pro-
posed in [10], defining relative positions is an important 
task. By defining parameters to the relative positions of 
blocks, placement is simplified and the complexity of 
synthesis procedures is reduced. GBLD can be used to 
represent relative positions of analog layout blocks. As 
shown in Fig. 4, there are two layout blocks, A and B. 
The relative position of A and B can be defined via the 
positions of point p and q, as well as via any other point 
in block A and any other point in block B. The pseudo 
GBLD code for representing the relative position in the 
figure is: 
 

<Block A ends at point p with upward direction> – 
<x> + <y> <Block B starts at point q with upward 
direction> 

 
The parameters <x> and <y> in the code represent the 
horizontal and vertical distances between points p and q 
respectively, as we can see in the figure. 
 

 
 

Fig. 4. Relative position of two layout blocks 
 
Routing Controls 
 
In Fig. 5(a), there are two layout blocks A and B. The 
wire between A and B connects the two blocks. The 
vertical part in the middle of the wire is stretchable. The 
vertical part is <Param> units in length and can also go 
down or go straight as in (b) and (c) respectively. GBLD 
can describe these cases in the code below. 
 
<Wire> � F – F(4) {  <Turn> }  F(4) – F – F(4) {  ! }  F(4) 
<Turn> � <Up> | <Down> | <Straight> 
<Up> � + F(<Param>) – F 
<Down> � F – F(<Param>) + 
<Straight> � F 
 
We can also treat the two non-terminal symbols <Turn> 
and <Param> as parameters, where <Param> is a real 
number and <Turn> has only three choices, <Up>, 
<Down>, and <Straight>. By controlling the two pa-
rameters, the wire direction and the wire length can be 
altered. We can also control the placement of B relative 

to A as well. Equations of parasitic values for the wire 
can be derived by having <Turn> and <Param> as pa-
rameters. 
 

 
 

Fig. 5. Routing controlled by parameters 
 

Transformations for  Wires 
 
In this subsection, we show how a fixed-coordinate wire 
can become bendable and stretchable. A portion of a 
horizontal wire is shown in Fig. 6(a). The wire is 10 
units in length and 3 units in width. The corresponding 
GBLD code for the wire portion is “… F(10)1 – F(3) – 
F(10)2 …” . We use the subscript numbers to differentiate 
the two F(10)’s before and after F(3). By performing the 
transformations using the transformation rules shown in 
the figure, the final GBLD code is “… F(p) + F(a) – F(q) – 
F(3) – F(r) + F(a) – F(s) …” , where a, p, and r are parame-
ters that can be used to control the geometry. The value 
of s is the addition of the value p and 3 (mathematical 
addition). We use the statement F(s)�F(p)F(3) to imple-
ment this mathematical addition in GBLD. The relation-
ship between q and r can also be expressed in this way. 
The final layout after transformations is shown in Fig. 
6(b). 
 

 
Fig. 6. Transformations for wires 

 
SYMBOLIC EXTRACTION 
 
In this section, we discuss how to perform parasitic ex-
traction on parameterized layouts which are represented 
by GBLD. We call the process symbolic extraction. For 
the examples in this section, we model capacitive and 
resistive parasitics of interconnections. The following 
three types of parasitic capacitances are considered: (a) 
area (parallel-plate) capacitance to ground, (b) fringing 
capacitance (or fringe capacitance) to ground, and (c) 
inter-wire capacitance between parallel wires placed on 
the same layer. Values of these three types of capacitan-



ces are proportional to wire lengths, and are inversely 
proportional to separation distances. For parasitic resis-
tances, they are also proportional to wire lengths if we 
ignore the skin effect. After performing symbolic extrac-
tion, therefore, the final results for capacitive and resis-
tive parasitic values are simple mathematical equations, 
which mainly contain addition, subtraction, multiplica-
tion, and/or division. This makes computations of exact 
parasitic values very fast during layout-inclusive circuit 
synthesis. We divide symbolic extraction into two types. 
They are Simple Symbolic Extraction and Conditional 
Symbolic Extraction. Both of them are presented in the 
following subsections. 
 

Simple Symbolic Extraction 
 
Fig. 7 shows the layout of two open-ended wires, Wire 1 
and Wire 2. The wire widths are W1 and W2 respec-
tively. In the figure, both of the two wires are divided 
into segments and are parameterized. The heights of the 
wires are assumed to be the same. 
 

 
 

Fig. 7. Symbolic extraction on two parameterized wires 

 
After performing symbolic extraction, the extracted 
symbolic net-list is illustrated in Fig. 8. For simplicity, 
we use the T model to approximate distributed RC ef-
fects. That means the intrinsic parasitics of a wire seg-
ment can be modelled by two serial connected resistors 
and a capacitor which is connected to the two resistors 
for one end and to the ground for the other end. For in-
stance, the intrinsic parasitics of the wire segment a in 
Fig. 7 can be modelled by R1, R2, and C1, as shown in 
Fig. 8. The capacitor C4 stands for the coupling capaci-
tance between segment a and segment d. 
 

 
 
Fig. 8. The extracted net-list of the two parameterized wires 

 
We can start deriving equations for the capacitive and 
resistive parasitics. For the wire segment a, the area 
capacitance to ground can be derived as: 
 

Carea = K1L1W1 

where L1W1 is the area of the segment a for the side 
which is parallel to the ground. K1 is equal to ( � di / tdi), 
where � di and tdi represent the permittivity of the dielec-
tric layer, SiO2, and its thickness, individually. There-
fore, K1 is a constant. Note that Ki, for i∈N, stands for a 
constant value in the following equations. The fringe 
capacitance to ground of the wire segment a can be de-
rived as: 
 

Cfringe = 2*(L1K2) 
 

The intrinsic capacitance C1 is the sum of Carea and 
Cfringe , or 
 
  C1 = Carea + Cfringe 
 

Similarly, we can also derive the following equations for 
the parasitics of the line segment a. 
 

C4 = min(L1, L4)*K3 /D1 
R1 = R2 = (L1*K4 /W1)/2 

 
The coupling capacitance C4 depends on the minimum 
value of the length L1 and L4, and is reverse proportional 
to the separation distance D1. For the intrinsic resistance 
of the line segment a, it is divided into two resistors, R1 
and R2. Each of them has half of the lumped value. For 
other parasitics in the example, they can also be derived 
in the similar way. 
 

Conditional Symbolic Extraction 
 
In simple symbolic extraction that we discuss in the pre-
vious subsection, a parameterized layout must have a 
fixed layout topology. That means changing parameter 
values in the parameterized layout will not change the 
structure of the final extracted symbolic net-list. (Notice 
that the calculated parasitic values might be changed.) 
Conditional symbolic extraction, on the other hand, is 
different from simple symbolic extraction. In conditional 
extraction, the final extracted net-lists can have different 
RC structures which depend on the values of input pa-
rameters. For instance, in Fig. 9(a), Wire 1 and Wire 2 
are stretchable and the lengths of the two wires can be 
controlled by the parameters L1, L3, and L4. Similar to 
the example in the previous subsection, there exists a 
coupling capacitance between wire segments a and c. 
However, if the value of L1 is greater than L3, the layout 
topology will become the one shown in Fig. 9(b). An-
other coupling capacitance, which is between wire seg-
ments b and d, will exist. 
For the example in Fig. 9, the final extracted symbolic 
net-list must have conditional branches. That is very 
much similar to traditional programming languages. The 
pseudo symbolic net-list in SPICE-like format is: 
 

if ( L1 > L3 ) {  
 Ccond  node-in-seg-b  node-in-seg-d  CVAL 
}  

 
The capacitor Ccond is the coupling capacitor between 
wire segment b and d. It is generated only when the 



condition (L1 > L3) happens. CVAL is an equation which 
takes min(L2, L4) and D2 as parameters (CVAL = min(L2, 
L4)*  K5 /D2). 
 
 

 
(a) 

 
(b) 

 

Fig. 9. An example of Conditional Symbolic Extraction 

 
CONCLUSION &  FUTURE WORK 
 
This paper presents a new methodology that can replace 
repetitive time-consuming layout generation and extrac-
tion steps in layout-aware circuit synthesis process for 
analog block level design. Symbolic extraction, which 
plays an important role in the methodology, is to extract 
net-lists in symbolic form from parameterized layouts. 
Exact parasitic values can be computed very rapidly 
from symbolic net-lists. In our methodology, parameter-
ized layouts are represented by a layout description lan-
guage called GBLD. For very complex parameterized 
layouts, the extracted symbolic net-lists may look very 
similar to programming languages since conditional 
branches are required.  
On going work attempts to build an interactive param-
eterized layout design system which has symbolic ex-
traction and design-rule-built-in functionalities. Efforts 
will also be made to tune the design performance based 
on symbolic net-lists. 
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