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Abstract

This paper describes a logic of progress for concurrent programs. The logic is based on that of
UNITY, molded to fit a sequential programming model. Integration of the two is achieved by using
auxiliary variables in a systematic way that incorporates program counters into the program text.
The rules for progress in UNITY are then modified to suit this new system. This modification is
however subtle enough to allow the theory of Owicki and Gries to be used without change.

1 Introduction

While verifying concurrent programs has been the topic of much research, deriving them has not. Even
less work has been put into deriving concurrent programs in a way that gives equal consideration to both
progress and safety requirements (as opposed to derivation that is based only on safety requirements).
This paper contributes to this goal by defining a new logic of safety and progress. The paper does not
address methodological questions of how to incorporate the logic into a design method for concurrent
program derivation, and this is left as a subject for further work. The paper confines itself to defining
the new logic, presenting an example of its use, and describing how the logic compares to other work in
this area.

The point of departure for this paper is the theory of Owicki and Gries [OG76, Dij82, FvG99], a theory of
partial correctness only, which means that it can only be used to reason about safety requirements. Two
reasons recommend this point of departure. The first is that this theory is attractively simple. Proofs are
carried out in a programming language (using the assertional style of Hoare) rather than in some other
programming model such as a Petri net, IO automaton, or process algebra. We see this as an important
advantage for program design, where the practicality of model-based reasoning turns, in some large part,
on the transparency, ease and reliability of the translation of the model into code.

The second reason for using the theory is that it has already been used as an effective method of concurrent
program derivation [FvG99], albeit derivation that is based only on safety requirements. The attitude
of Feijen and van Gasteren is instructive in this regard, as it represents a deliberate decision to eschew
the expressiveness of temporal logic in favour of the simplicity of Owicki and Gries. The benefit of doing
so is a collection of design heuristics that are attractively simple to use and that, as already remarked,
have been shown to be effective. The cost of the decision is that reasoning about progress requirements
becomes both informal and post hoc. It is a welcome outcome that so much can be achieved in this way,
yet it remains true that satisfaction of progress requirements using this approach is in an important sense
left to chance. The pragmatic attitude of Feijen and van Gasteren, together with the limitation of the
theory of Owicki and Gries, sets the methodological agenda for this paper. That is, the paper describes
how to extend the theory of Owicki and Gries with a logic of progress that so far as possible, retains
the simplicity of the original theory while at the same time provides a logic in which to formalise and
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prove progress requirements. This work then is a prolegomenon to our larger goal, which is a method of
program derivation that assigns equal consideration to both progress and safety requirements.

The step from standard predicate logic to temporal predicate logic represents an order of magnitude
increase in complexity, which is why Feijen and van Gasteren refused to take it. In their words, “powerful
formalisms for dealing with progress are available. However, the thing that has discouraged us from using
them in practice is that they bring about so much formal complexity. ... We have decided to investigate
how far we can get in designing multiprograms without doing formal justice to progress” ([FvG99] p79).
Other authors, while taking the step, fully recognise its significance. For instance, Lamport writes “TLA
differs from other temporal logics because it is based on the principle that temporal logic is a necessary
evil that should be avoided as much as possible. Temporal formulas tend to be harder to understand than
formulas of ordinary first-order logic, and temporal logic reasoning is more complicated than ordinary
mathematical reasoning” ([Lam94], p917). Caution in the face of this added complexity has recommended
to us the approach taken in UNITY [CM88], where assertion ‘P leads to Q ’ formalises an important class
of progress requirements called ‘eventuality’ requirements, and where eventuality assertions are defined
without using temporal logic. The progress logic of UNITY is ideal for three reasons: the rules fully
capture the temporal notion of leads-to [GP89], they thereby support reasoning about progress without
resort to operational reasoning, and the rules are simple to use (relative to comparable program logics such
as [Sch97, Lam94]). At the same time, we resile from the UNITY programming model because it lacks
all notion of a control state, which makes (what should be simple) conventional sequential programming
much harder. Fundamental operators such as “;” cannot easily be represented [SdR94].

So we have chosen to add the complexity of the logic of UNITY to the theory of Owicki and Gries over
the complexity of full temporal predicate logic, or, to be more precise, to add a logic of progress that,
while clearly inspired by UNITY logic, is tailored to fit the fundamentally different programming model
of multiple sequential programs. In adapting the UNITY logic to fit a sequential programming model,
a decision on how to represent the control state of a sequential program was first to be made. [OG76]
offers a partial representation of control through the use of auxiliary variables, while [Sch97, Lam87] opt
for a fuller representation through the use of control predicates. Our approach is a novel use of auxiliary
variables to represent program counters, which provides a complete representation of the control points
in a sequential program. This means that the formal complications that are introduced by the use of
control predicates in the generalised Hoare logic of [Sch97, Lam87] are avoided in our logic, and we are
able to retain the predicate transformer semantics of Dijkstra. The main contribution of this paper is
to combine the strengths of these two different theories, Owicki-Gries and UNITY, in order to create
something new.

The paper is structured as follows. Section 2 describes the theory of Owicki and Gries and provides
background to Section 3 which gives the formal basis for the extended logic described in Section 4. An
application of the new logic to a program design task is also given in Section 4 and finally Section 5
makes a conclusion.

2 The theory of Owicki and Gries

This section describes the theory of Owicki and Gries [OG76, Dij82, FvG99]. Section 2.1 describes
the underlying programming language and its operational model. Section 2.2 describes the predicate
transformer wlp that underlies the logical model of programs and concludes with the core theory of
Owicki and Gries.

2.1 The programming language and its operational model

The programming notation is the language of guarded commands [Dij76].

Definition (Statement) For statements S ,S1,S2, . . .Sn , booleans B1,B2, . . . ,Bn , variables x1 . . . xm and
expressions E1 . . .Em , a statement is defined inductively as follows.
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1. skip is a statement.

2. A (multiple) assignment x := E is a statement where,

x := E =̂ x1:= E1 ‖ x2:= E2 ‖ . . . ‖ xm := Em

and xi 6= xj for i 6= j .

3. S1; S2 is a statement.

4. 〈S 〉 is a statement.

5. The following are statements, where each Bi → Si is called a guarded command with guard Bi and
command Si .

(a) if B1 → S1 8 B2 → S2 8 . . . 8 Bn → Sn fi

(b) do B1 → S1 8 B2 → S2 8 . . . 8 Bn → Sn od

2

The statements IF and DO are defined as representatives of the general notion of an if or do statement.

IF =̂ if B1 → S1 8 B2 → S2 fi

DO =̂ do B → S od

A sequential program, also called a component, is just a statement. A concurrent program, also called a
multiprogram, is a collection of components, together with a precondition that defines its initial states.
In this paper, we will refer to a concurrent program as a program and to a sequential program as a
component. The values of the variables in a program define its current data state. A variable of a
component may be local to that component, meaning it is not read or written by any other component,
or private, meaning it is not written by any other component, or shared , meaning it is written by some
other component.

A component is executed by executing its atomic actions. An atomic action is an execution step that
results in a single update of the control state of the whole program, i.e., when an atomic action is executed,
the control state of the component in which the action occurs changes once, and the control state of all
other components remains the same. Note that an atomic action is guaranteed to terminate when it
is executed. We adopt a programming model in which an atomic action corresponds to an assignment
statement, to a skip statement, to a guard evaluation step in an if or do statement, or to a coarse-
grained atomic statement. The latter is defined by applying the ‘atomicity operator’ 〈S 〉 to an arbitrary
statement S , where the operator eliminates any control points in S so that 〈S 〉 is executed atomically as
just described. Note that execution of 〈S 〉 is only enabled (not blocked) if execution of S is guaranteed
to terminate. While this creates an impossible difficulty for the implementor, since a machine can not, in
general, decide whether a statement will terminate, the use of coarse-grained atomic statements in our
language allows us to nicely capture otherwise informal concepts (see [GD05]). [AO91] solve this problem
syntactically, by disallowing S to contain a loop or a synchronisation statement, whereas our approach
is to make it the responsibility of the programmer to ensure that a coarse-grained atomic statement is
guaranteed to terminate.

Condition synchronisation in the model is achieved using the if statement. Execution of the guard
evaluation action of an if statement is blocked when the guard evaluation action is not enabled, which
is when all of the guards are evaluated false. A guard evaluation action of an if statement is therefore
a conditional atomic action because it may not always be enabled. A guard evaluation action of a do

statement is an unconditional atomic action because it is always enabled, as are skip and assignment
actions. The programming model prescribes that on termination of an atomic action, an atomic action
that follows it, if there is one, is eventually executed if it is continually enabled. This means that in the
concurrent execution of a number of components, the execution of the next (continually enabled) atomic
action of no component is delayed indefinitely.
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2.2 Hoare triples, the wlp and the core theory of Owicki and Gries

If P and Q are any two predicates, and S is a statement, a Hoare-triple, {P} S {Q} is true iff each
terminating execution of S that starts in an initial state satisfying P is guaranteed to end in a final state
satisfying Q . P is called the precondition of S and Q the postcondition. A predicate that appears in a
Hoare-triple is also called an assertion and programs that have such assertions are referred to as being
annotated . The annotation of a program also defines the program’s initial state with a precondition,
which is referred to as Pre.

Definition (Weakest Liberal Precondition) The weakest liberal precondition (wlp) [Dij76] predicate trans-
former is defined inductively as follows, where P [x := E ] denotes the textual substitution of each Ei for
free occurrences of xi in P .

1. wlp.skip.P ≡ P

2. wlp.(x := E ).P ≡ P [x := E ]

3. wlp.〈S 〉.P ≡ wlp.S .P

4. wlp.(S1; S2).P ≡ wlp.S1.(wlp.S2.P)

5. wlp.IF .P ≡ (B1 ⇒ wlp.S1.P) ∧ (B2 ⇒ wlp.S2.P)

6. wlp in the case of statement DO need no longer be first order definable [Gum99], as we do not know
if or when the loop terminates. The wlp of a DO loop is defined in terms of a countable sequence
of conditionals of the form D =̂ if B → S 8 ¬B → skip fi.

wlp.DO .P ≡

∞∨

n=1

wlp.Dn .P

where Dn is the n-fold iteration of statement D .
2

The fundamental relation between Hoare-triples and wlp is that, for any statement S and predicates P
and Q1,

{P} S {Q} ≡ P ⇒ wlp.S .Q

In a program design setting it is usually most convenient to present proofs using the predicate transformer
wlp. However, this is not always the case due to the awkwardness of the definition of wlp for statement
DO , where it is more convenient to make use of the following theorem

{P} DO {Q} ⇐ ((P ∧ B ⇒ wlp.S .P) ∧ (P ∧ ¬B ⇒ Q))

Any predicate P that satisfies this relation is referred to as a loop invariant, and proving correctness of
an annotated DO statement amounts to finding a P that satisfies this relation.

We are now in a position to state the core theory of Owicki and Gries, which defines the conditions under
which a program annotation is correct.

Rule (Local Correctness) An assertion P in a component is locally correct (LC) when,

1. if P is textually preceded by program precondition Pre, then Pre ⇒ P

2. if P is textually preceded by {Q} S , then {Q} S {P} holds, i.e., Q ⇒ wlp.S .P .
�

1It is common to relate Hoare-triples to the total correctness predicate transformer wp, however, this is ill-suited to a

programming paradigm in which termination is not always desired.
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Rule (Global Correctness) An assertion P in a component is globally correct (GC) if for each {Q} S from
a different component, {P ∧ Q} S {P} holds, i.e., P ∧ Q ⇒ wlp.S .P

�

An assertion is correct if it is both locally and globally correct. An annotation is correct if all assertions
are correct.

Rule (Postcondition) A predicate P is a valid postcondition of a program if the conjunction of the correct
postconditions of the components implies P .

�

It is useful at this point to introduce a simple example of how the theory can be used to prove a safety
requirement which will serve to make the foregoing discussion concrete. Consider this program of two
components A and B

Program (1)
Pre: x = 0

Component A:
x := x + 1

Component B :
x := x + 2

Safety: Program (1) has terminated ⇒ x = 3

Proof that Program (1) satisfies Safety.

A and B are annotated locally correct (LC) and note that both satisfy part (1) of the LC rule

Program (1)
Pre: x = 0

Component A:
{x = 0}

x := x + 1
{x = 1}

Component B :
{x = 0}

x := x + 2
{x = 2}

Global correctness (GC) of the annotation is now arranged by weakening all four assertions, noting that
this maintains LC

Program (1)
Pre: x = 0

Component A:
{P : x = 0 ∨ x = 2}

x := x + 1
{Q : x = 1 ∨ x = 3}

Component B :
{x = 0 ∨ x = 1}

x := x + 2
{x = 2 ∨ x = 3}

The GC of the assertions P and Q in A are calculated

wlp.(x := x + 2).P
≡ {Substituting the value of P}
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wlp.(x := x + 2).(x = 0 ∨ x = 2)
⇐ {By definition of wlp}

x = 0
≡ {By logic}

(x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1)

and

wlp.(x := x + 2).Q
≡ {Substituting the value of Q}

wlp.(x := x + 2).(x = 1 ∨ x = 3)
⇐ {By definition of wlp}

x = 1
≡ {By logic}

(x = 1 ∨ x = 3) ∧ (x = 0 ∨ x = 1)

Finally, the conjunction of the two final assertions of A and B establishes the desired safety requirement

(x = 1 ∨ x = 3) ∧ (x = 2 ∨ x = 3) ≡ x = 3 �

The simplicity of the core theory is reflected in its limited power. The lack of a means to reason about a
program’s control state means that safety requirements that are clearly met may not be provable, such
as in the following program.

Program (2)
Pre: x = 0

Component A:
x := x + 1

Component B:
x := x + 1

Safety: Program (2) has terminated ⇒ x = 2

It is an interesting exercise to convince yourself that this safety requirement is not provable in the core
theory. The solution in [OG76] is to add auxiliary information into a program which could be used in
its correctness proof. We start by defining an auxiliary assignment, which is an assignment to a fresh
variable called an auxiliary variable and is different from all program variables. The assignment may
only appear as part of an atomic action, hence, does not introduce any new control points. We require
that actions remain well-formed when all auxiliary assignments are removed. Furthermore, as addition of
auxiliary information should not affect control and data states of the original program, auxiliary variables
may not appear in any guard and assigned to a non-auxiliary variable.

Returning to the example of Program (2), we augment the program with auxiliary assignments to fresh
variables pc.A and pc.B to give us the following program.

Program (3)
Pre: x = pc.A = pc.B = 0

Component A:
x := x + 1 ‖ pc.A:= 1

Component B:
x := x + 1 ‖ pc.B := 1

Safety: Program (3) has terminated ⇒ x = 2
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Proof that Program (3) satisfies Safety.

This is now much as for Program (1). The two components can be annotated for LC

Program (3)
Pre: x = pc.A = pc.B = 0

Component A:
{x = 0}{pc.A = 0}

x := x + 1 ‖ pc.A:= 1
{x = 1}{pc.A = 1}

Component B:
{x = 0}{pc.B = 0}

x := x + 1 ‖ pc.B := 1
{x = 1}{pc.B = 1}

GC is arranged by a combination of strengthening and weakening these assertions

Program (3)
Pre: x = pc.A = pc.B = 0

Component A:
P : {(x = 0 ∧ pc.B = 0) ∨ (x = 1 ∧ pc.B = 1)}

{pc.A = 0}

x := x + 1 ‖ pc.A:= 1

Q : {(x = 1 ∧ pc.B = 0) ∨ (x = 2 ∧ pc.B = 1)}
{pc.A = 1}

Component B:
{(x = 0 ∧ pc.A = 0) ∨ (x = 1 ∧ pc.A = 1)}
{pc.B = 0}

x := x + 1 ‖ pc.B := 1

{(x = 1 ∧ pc.A = 0) ∨ (x = 2 ∧ pc.A = 1)}
{pc.B = 1}

As before, the GC of P and Q in A are calculated

wlp.(x := x + 1 ‖ pc.B := 1).(((x = 0 ∧ pc.B = 0) ∨ (x = 1 ∧ pc.B = 1)) ∧ pc.A = 0)
≡ {By definition of wlp}

x = 0 ∧ pc.A = 0
⇐ {By logic}

((x = 0 ∧ pc.B = 0) ∨ (x = 1 ∧ pc.B = 1)) ∧ pc.A = 0 ∧ pc.B = 0

and

wlp.(x := x + 1 ‖ pc.B := 1).(((x = 1 ∧ pc.B = 0) ∨ (x = 2 ∧ pc.B = 1)) ∧ pc.A = 1)
≡ {By definition of wlp}

x = 1 ∧ pc.A = 1
⇐ {By logic}

((x = 1 ∧ pc.B = 0) ∨ (x = 2 ∧ pc.B = 1)) ∧ pc.A = 1 ∧ pc.B = 0

Finally, the conjunction of the two final assertions of A and B establishes the desired safety requirement.

((x = 1 ∧ pc.B = 0) ∨ (x = 2 ∧ pc.B = 1)) ∧ pc.B = 1 ⇒ x = 2 �

Noting that Program (3) is just Program (2) with auxiliary assignments to pc.A and pc.B superimposed
on it, we are entitled to conclude that Program (2) satisfies the same safety requirement, because the two
programs are equivalent in having the same data and control states.
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3 The extended theory of Owicki and Gries

It is fairly clear, so far as reasoning about progress is concerned, that the theory of Owicki and Gries
is deficient because it lacks a systematic means to describe a program’s control state. Any extension
to the theory must therefore provide for this, and the extension to be described in this section has two
parts. First, control points in a component are named by naming the atomic action to be executed at
the corresponding point. This is done by labelling all of the atomic actions in the component. Second,
an auxiliary variable is introduced into each component in a way that models its ‘program counter’, i.e.,
the value of this variable indicates the active control point in the component, which is just the label of
the atomic action that corresponds to that control point.

Sections 3.1 and 3.2 introduces the twin notions of a labelled program and a program counter while Section
3.3 reviews the reasons why program counters were chosen over control predicates as the formalisation
of program control states.

3.1 Labelled statements

The first step toward describing an active control point in a statement requires being able to refer to the
next atomic action to be executed. We do this by assigning a unique label to each atomic action that
occurs in the statement. The label of a statement’s initial atomic action will be called the initial label of
that statement. In addition, a label will be assigned to the end of the statement which will be called the
final label of the statement. A final label of a statement will always label the initial atomic action of a
statement that follows it. However, if there is no following statement, then the final label does not refer
to any atomic action, but simply marks the end of the statement.

Definition (Labelled Statement)

1. A labelled skip statement has the form i : skip j : where i is the initial label and j is the final label.

2. A labelled assignment statement has the form i : x := E j : where i is the initial label and j is the
final label.

3. A labelled sequential statement has the form i :S1; j :S2 k : where i is the initial label of statement
S1, j is the final label of S1, j is the initial label of statement S2 and k is the final label of S2.

4. A labelled coarse-grained atomic statement 〈S 〉 has the form i : 〈S 〉 j : where i is the initial label
and j is the final label, and statement S is not labelled.

5. A labelled statement IF has the form

i : if B0 → j :S0 8 B1 → k :S1 fi l :

where i is the initial label of IF and l is the final label of IF , i is the label of the initial atomic
action of IF , which is the guard evaluation action, and j and k are the final labels of the guard
evaluation action. j is the initial label of statement S0, k is the initial label of statement S1 and l
is the final label of both S0 and S1.

6. A labelled statement DO has the form

i :do B → j :S od k :

where i is the initial label of DO and k is the final label of DO , i is the label of the initial atomic
action of DO , which is the guard evaluation action, and j and k are final labels of the guard
evaluation action. j is the initial label of statement S and i is the final label of S .

7. If i and j are the initial labels for two different actions of any statement, then i 6= j
2

In what follows A.i will be used to denote ‘the atomic action in component A labelled i ’ whenever i is
not the final label of component A.
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3.2 Modelling program counters

There are essentially two ways of using this additional information that labelled statements provide. One
way is to introduce into the logic new control predicates to express propositions such as, for instance,
that ‘control in component A is at the atomic action labelled i ’. This kind of approach is taken in
([Sch97], pp96-108, pp136-140) and in ([Lam87]), but the cost is that the familiar axioms of Hoare logic,
as presented in Section 2.2, must be given up in favour of generalised axioms that take account of the fact
that, say, {P} skip {P} is no longer true for all P (for example, when P asserts that ‘control is at the skip
action’). A further cost is that new axioms must be introduced to capture the intended interpretation of
the new control predicates. The desire to make only conservative extension to the theory of Owicki and
Gries, prompted by the desire to retain old, familiar and trusted ways (the wlp), has led us to resist this
approach in favour of the use of auxiliary variables to reason about the control state.

Consequently, we formalise a program’s control state in the following way. An auxiliary variable is
introduced into each component in a way that models its ‘program counter’, i.e., the value of this variable
indicates the active control point in the component, which is just the label of the next atomic action to
be executed, or the end of the component if no such action exists. Given a component A, this variable
pc.A will be called the program counter of A, and its essence is to record the control state of A, but in
so doing to change neither the program’s control state nor its data state. Given this essence, program
counter pc.A must be updated at every atomic action in A in a way that assigns pc.A a final label of that
action. This is done by superimposing an auxiliary assignment to pc.A onto every atomic action in A in
the following way.

Definition (Program Counter) Given a program with precondition Pre and labelled component A, vari-
able pc.A is the program counter of A when

1. pc.A is a local variable of A.

2. If i is the initial label of A then Pre ⇒ pc.A = i

3. A labelled skip statement has the form i : 〈skip; pc.A:= j 〉 j : .

4. A labelled assignment statement has the form i : x := E ‖ pc.A:= j j : .

5. A labelled coarse-grained atomic statement has the form i : 〈S ; pc.A:= j 〉 j : .

6. A labelled statement IF has the form

i : if 〈B1 → pc.A:= j 〉 j :S1 8 〈B2 → pc.A:= k〉 k :S2 fi l :

7. A labelled statement DO has the form

i :do 〈B → pc.A:= j 〉 j :S 8 〈¬B → pc.A:= k〉 od k :

Given that guard evaluation is an atomic action (as it changes the program control state whenever a
guard is evaluated true), and given that a program counter must be updated at every atomic action in a
component, we are required to extend the grammar of statements IF and DO in order to make explicit
the state change that can accompany a guard evaluation. To this end we modify the syntax of guarded
command B → j :S to 〈B → pc.A:= j 〉 j :S so that the transfer of program control from the guard
evaluation to the initial action of S when guard B evaluates true is made explicit. Note how atomicity
brackets 〈 〉 are used to indicate that the update of the program counter is part of the guard evaluation.
However, we acknowledge that this grammar is awkward, because it is semantically misleading whenever
a statement consists of several alternatives. For example, in statement

i : if 〈B1 → pc.A:= j 〉 j :S1 8 〈B2 → pc.A:= k〉 k :S2 fi l :

the two pairs of atomicity brackets suggest two atomic guard evaluations, which is not the case, rather
there is one atomic guard evaluation labelled by i , which has three outcomes, the first where guard B1 is
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evaluated to true and control passes to the initial action of S1 labelled by j , the second where guard B2

is evaluated to true and control passes to the initial action of S2 labelled by k , and the third where both
guards B1 and B2 are evaluated to false and control remains at the guard evaluation action labelled by
i .

The case of statement DO

i :do B → j :S od k :

is further complicated by the fact that the loop is not a blocking statement, which is to say that when
guard B is evaluated false control does not remain at the guard evaluation labelled by i , but rather
it passes to the control point labelled by k . This transfer of control requires an explicit update to the
program counter, which we have accommodated by changing the grammar of the DO statement in a way
that makes this outcome of the guard evaluation explicit

i :do B → j :S 8 ¬B → od k :

The DO statement now admits a guarded command ¬B → with an empty command, which, if selected,
has the total effect on the program state of passing control to the control point labelled by k . The
operational semantics of this syntactically modified DO statement is unchanged, with the sole purpose
of the modification being to introduce a peg on which to hang the assignment pc.A:= k .

Finally, note that we are free to interpret predicate pc.A = i to mean that ‘control in A is at A.i ’ because
pc.A = i is a correct precondition of A.i and because labels are unique. LC follows from the definition
of pc.A, and GC follows from the same, on account of pc.A being a local variable of A.

3.3 Program counters vs. control predicates

Recalling that the reason for choosing program counters over control predicates has been driven by a
desire to make only conservative changes to the theory of Owicki and Gries, we can view this choice as
one of a superficial (i.e., syntactic) change to guarded commands in order to make explicit the way that
a guard evaluation can change the control state, over a significant (i.e., semantic) change to the program
logic. The chief practical gains are that we are able to retain the semantics of wlp as the logical basis of
the programming model and that the absence of primitive control predicates means that we do not need
to introduce additional logical rules to define them. The core theory of Owicki and Gries as described
in Section 2.2 therefore remains the same under the changes described in Sections 3.1 and 3.2, and the
definition of the wlp predicate transformer is extended to a labelled statement with program counter pc
as follows

1. wlp.(i : 〈skip; pc:= j 〉 j : ).P ≡ wlp.(pc:= j ).P

2. wlp.(i : (x := E ‖ pc:= j ) j : ).P ≡ P [x := E ‖ pc:= j ]

3. wlp.(i : 〈S ; pc:= j 〉 j : ).P ≡ wlp.(S ; pc:= j ).P

4. wlp.(i :S1; j : S2 k : ).P ≡ wlp.(i :S1 j : ).(wlp.(j :S2 k : ).P)

5. wlp.(i : if 〈B1 → pc:= j 〉 j :S1 8 〈B2 → pc:= k〉 k :S2 fi l : ).P
≡
(B1 ⇒ wlp.(pc:= j ).(wlp.S1 .P)) ∧ (B2 ⇒ wlp.(pc:= k).(wlp.S2.P))

6. {P} i :do 〈B → pc:= j 〉 j :S 8 〈¬B → pc:= k〉 od k : {Q}
⇐
(P ∧ B ⇒ wlp.(pc:= j ).(wlp.S .P)) ∧ (P ∧ ¬B ⇒ wlp.(pc:= k).Q)

It is noteworthy that typical axioms [Lam87, AS89] that are required to define the meaning of a control
predicate now become easy derived rules of the program counters model.
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1. Each component has at most one active control point. This is trivial on account of (∀ i , j : j 6=
i : pc.A = i ⇒ pc.A 6= j ) and the uniqueness of labels.

2. Each component has at least one active control point. This holds on account of the invariance of
(∃ i :: pc.A = i).

3. Execution of an atomic statement in component B 6= A does not change the active control point in
component A. This is trivial on account of A’s program counter being a local variable of A.

Against the advantages of using program counters, the chief drawback is the syntactic complexity that the
program counter assignments add to the program under consideration. However, this added complexity
is nicely avoided in practice by making the assignments implicit in the program. In effect, this amounts
to redefining the wlp for a labelled statement with implicit program counter pc as follows

1. wlp.(i : skip j : ).P ≡ wlp.(pc:= j ).P

2. wlp.(i : x := E j : ).P ≡ P [x := E ‖ pc:= j ]

3. wlp.(i : 〈S 〉 j : ).P ≡ wlp.(S ; pc:= j ).P

4. wlp.(i :S1; j : S2 k : ).P ≡ wlp.(i :S1 j : ).(wlp.(j :S2 k : ).P)

5. wlp.(i : if B1 → j :S1 8 B2 → k :S2 fi l : ).P
≡
(B1 ⇒ wlp.(pc:= j ).(wlp.S1 .P)) ∧ (B2 ⇒ wlp.(pc:= k).(wlp.S2.P))

6. {P} i :do B → j :S od k : {Q}
⇐
(P ∧ B ⇒ wlp.(pc:= j ).(wlp.S .P)) ∧ (P ∧ ¬B ⇒ wlp.(pc:= k).Q)

and this is what we do.

4 A logic of progress for the extended theory

As we now have the means to reason about the control state of a program, we are now in a position
to extend the theory to support reasoning about progress requirements. The rules for progress in the
extended theory are described in Section 4.1. Section 4.2 describes an application of the new logic
to a program design task, which compares favourably to the treatment in ([FvG99], pp2 07-212) and
Section 4.3 describes a second application of the logic, this time to the proof of correctness of a program
transformation.

4.1 Rules of progress

As already remarked in Section 1, the logic to be presented is almost just that of UNITY ([CM88],
pp47-74), where the notion of progress is formalised using the relation leads-to (denoted  ), where, for
any predicates P and Q , P  Q holds if it is always the case that in a program state in which P holds,
execution of the program is such that a program state will eventually be reached in which Q holds. In
temporal logic terms, P  Q ≡ 2(P ⇒ 3Q). In order to axiomatize this relation, we begin by defining
the notion of unless (un).

Definition If P and Q are any two predicates, P un Q holds if

{P ∧ ¬Q ∧ U } S {P ∨ Q}

holds for all atomic statements {U } S , where U denotes the precondition of S in the annotated program.
2
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Relation unless says that a program state in which P holds and Q does not, is perpetuated until a
state is reached in which Q holds. But note that this does not guarantee that Q will ever hold, for (an
extreme) example, true un Q holds for all Q , including false. To formalise progress properties we also
need a notion of what it means for a statement to establish a predicate given that it is not yet true.
In ([CM88], pp50-52) this is formalised by the relation ensures , which forms the basis of the definition
of leads-to. In our setting, and purely for presentational reasons, we have chosen not to define ensures ,
but rather to define the basic part of leads-to directly in terms of the several forms of atomic action in
the programming language. More substantially, the basic part of our definition of leads-to, which is the
point at which the relation is bound to the program under consideration, is the only point at which the
two definitions of leads-to differ, the inductive part of our definition being identical to that in ([CM88],
p52). However, this difference in the basic definition of leads-to is an essential difference, on account of
the fundamentally different programming model that is used here and in UNITY.

We remind ourselves that for the basic part of the definition of leads-to, the atomic actions are skip, as-
signment, guard evaluation and coarse-grained atomic statements of the form 〈S 〉 for arbitrary statement
S . A judgment P  Q arrived at using this rule ensures that if a program state is reached in which P
holds, execution of the program is such that P will continue to hold until a program state is reached in
which Q holds, and, further, a state in which Q holds will be reached. We will call this the ‘immediate
progress’ rule because it allows us to actually exhibit an atomic action that is guaranteed to bring Q
about.

Rule (Immediate Progress Rule) P  Q holds whenever there is a labelled statement with initial label
i in a component with program counter pc and

1. P un Q

2. P ∧ ¬Q ⇒ pc = i

3. (a) The statement is an assignment or skip statement i :S j : and,

P ∧ ¬Q ⇒ wlp.(i :S j : ).Q

(b) The statement is an IF statement i : if B0 → j :S0 8 B1 → k :S1 fi l : and,

i. P ∧ ¬Q ⇒ B0 ∨ B1

ii. (P ∧ ¬Q ∧ B0 ⇒ wlp.(pc:= j ).Q)) ∧
(P ∧ ¬Q ∧ B1 ⇒ wlp.(pc:= k).Q)

(c) The statement is a DO statement i :do B → j :S od k : and,

(P ∧ ¬Q ∧ B ⇒ wlp.(pc:= j ).Q) ∧
(P ∧ ¬Q ∧ ¬B ⇒ wlp.(pc:= k).Q)

(d) The statement is a coarse-grained atomic statement i : 〈S 〉 j :

P ∧ ¬Q ⇒ wp.S .(wlp.(pc:= j ).Q)
�

To make sense of this rule we provide these interpretative notes. P  Q is here justified on the basis of
being able to actually exhibit a continually enabled atomic action at an active control point that makes
Q true when it is executed. To see how the rule formalises this, we first note that P ∧ ¬Q is assumed.
Clause 1 of the rule establishes that P remains true as long as ¬Q is true. Clause 2 establishes that
control is at an atomic action labelled i in a component. Clause 3 establishes that this action is enabled
when P ∧ ¬Q is true, and that its execution makes Q true. It follows from clause 1 that the action is
continually enabled as long as ¬Q is true. It then follows from the programming model that the action
is eventually executed. Clause 3 is separated into four cases to cover the three kinds of atomic action.
In case (3a), an assignment action is always enabled and it is enough to ensure that its execution makes
Q true. In case (3b), a guard evaluation action in an if statement is not always enabled and so clause
(3bi) ensures that it is enabled when P ∧ ¬Q is true. Clause (3bii) further ensures that its execution
makes Q true. In case (3c), a guard evaluation action in a do statement is always enabled and it is again
enough to ensure that its execution makes Q true. In case (3d), as it is possible for a coarse-grained

12



atomic action to be disabled, we use of the predicate transformer wp to ensure that the action is enabled
when P ∧ ¬Q is true. Further, execution of S must make Q [pc:= j ] true.

The inductive part of the definition of leads-to is given by

Rule (Inductive Progress Rules)

(Transitivity) P  R ⇐ P  Q ∧ Q  R

(Disjunction) For any set W , (∃ i : i ∈ W : Pi) Q ⇐ (∀ i : i ∈ W : Pi  Q)
�

The rule of transitivity requires no explanation. The rule of disjunction, in its finite application of, say,
two progress assertions, amounts to the inference that if P0  Q and P1  Q then P0 ∨ P1  Q .
[CM88] also present a thorough treatment of a collection of derived rules for the relation, all of which
remain true in our setting, and which are listed below. The proofs of these derived rules are presented in
Appendix A.

Rule (Derived Progress Rules)

1. P  Q ⇐ (P ⇒ Q) (Implication Theorem)

2. ¬P ⇐ (P  false) (Impossibility Theorem)

3. ((∃m :m ∈ W : P .m) (∃m :m ∈ W : Q .m))
⇐ (∀m :m ∈ W : P .m  Q .m) (Disjunction Theorem)

4. (P  Q ∨ R) ⇐ (P  Q ∨ B) ∧ (B  R) (Cancellation Theorem)

5. (P ∧ R  (Q ∧ R) ∨ B) ⇐ (P  Q) ∧ (R un B) (PSP (Progress-Safety-Progress) Theorem)

6. Let M be a total function from program states to set W . Let (W , <) be well-founded. Variable
m in the following premiss ranges over W and predicates P and Q do not contain free
occurrences of variable m. Then,

(∀m :: P ∧ M = m  (P ∧ M < m) ∨ Q) ⇒ (P  Q)

(Induction Theorem)

7. Let P .i and Q .i be predicates where i ranges over a finite set. Then,
(∀ i :: (P .i  Q .i ∨ B) ∧ (Q .i un B)) ⇒ ((∀ i :: P .i) (∀ i :: Q .i) ∨ B)

(Completion Theorem)
�

The remainder of this section gives two examples of how the new logic can be used. The first presents
an application of the logic to a program design task, which compares favourably to the treatment in
([FvG99], pp207-212), and the second presents a proof of correctness of a program transformation called
the “guard conjunction lemma”, which is taken from the same source ([FvG99], pp118-120).

4.2 The initialisation protocol

The first example is taken from [FvG99] where it appears as both an exercise in verification (p84) and as
an exercise in design (p207). Here we present an alternative design that starts with the following program

The Initialisation Protocol
Pre: true

Component X:
Init .X ;
y:= false;
〈if y → skip fi〉;
S .X

Component Y:
Init .Y ;
x := false;
〈if x → skip fi〉;
S .Y
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Progress : There is no individual deadlock

The safety requirement of the initialisation protocol is omitted from the specification on account of this
program already satisfying it, the requirement being that X cannot begin execution of code S .X until
Y has completed execution of code Init .Y , and vice versa. This requirement is maintained provided
that only assignment y:= true in Y is allowed, and this only after Init .Y , which is nicely ensured by
restricting attention to the protocol code

The Initialisation Protocol – simplified and labelled
Pre: pc.X = pc.Y = 1

Component X:
1: y:= false;
2: 〈if y → skip fi〉
3:

Component Y:
1: x := false;
2: 〈if x → skip fi〉
3:

Progress : pc.X = 2 pc.X = 3
Topology: Only y:= true is allowed in Y

A canonical pattern for ensuring progress at a guarded skip is to prove that ‘waiting at the guard leads
to the guard becoming true’ and ‘waiting at the guard when the guard is true leads to being after the
guard’. Thus, Progress is proved by hypothesising (1).

pc.X = 2
 {By hypothesis (1)}

pc.X = 2 ∧ y
 {IF progress rule with X .2, y is GC in X }

pc.X = 3

A canonical pattern for ensuring that ‘waiting at a guard leads to the guard becoming true’ is to show
the the rest of the program leads to the guard becoming true. In this case the rest of the program is just
component Y , so, (1) is proved at the cost of (2)

pc.X = 2 pc.X = 2 ∧ y
⇐ {Derived rule}

(∀ i :: pc.X = 2 ∧ ¬y ∧ pc.Y = i  pc.X = 2 ∧ y) (2)

(2) is proved by case analysis for pc.Y ∈ {1, 2, 3}

pc.X = 2 ∧ ¬y ∧ pc.Y = 1 pc.X = 2 ∧ y (3)
pc.X = 2 ∧ ¬y ∧ pc.Y = 2 pc.X = 2 ∧ y (4)
pc.X = 2 ∧ ¬y ∧ pc.Y = 3 pc.X = 2 ∧ y (5)

For (3), on account of Y .1 not hampering progress, on account of being an assignment, and being
orthogonal to pc.X = 2 ∧ ¬y, we opt for deferring the obligation to make y true, by delegating the task
to Y .2. (3) is therefore proved

pc.X = 2 ∧ ¬y ∧ pc.Y = 1
 {Assignment progress rule with Y .1}

pc.X = 2 ∧ ¬y ∧ pc.Y = 2
 {By (4)}

pc.X = 2 ∧ y
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For (4), since Y .2 is a guarded skip, deadlock is avoided by requiring invariance of

pc.X = 2 ∧ ¬y ∧ pc.Y = 2 ∧ ¬x ⇒ false (I )
≡ {By logic}

pc.Y = 2 ⇒ pc.X 6= 2 ∨ y ∨ x

Since pc.X is local to X and because of the topological constraint on Y , there is no choice but to introduce
assignment (y:= true) at Y .2

The Initialisation Protocol – refinement 1
Pre: pc.X = pc.Y = 1

Component X:
1: y:= false;
4: x := true;
2: 〈if y → skip fi〉
3:

Component Y:
1: x := false;
4: y:= true;

{pc.X 6= 2 ∨ y ∨ x}
2: 〈if x → skip fi〉
3:

(4) is now proved as follows

pc.X = 2 ∧ ¬y ∧ pc.Y = 2
 {By (I )}

pc.X = 2 ∧ ¬y ∧ pc.Y = 2 ∧ x
 {IF progress rule with Y .2}

pc.X = 2 ∧ ¬y ∧ pc.Y = 3
 {By (5)}

pc.X = 2 ∧ y

For (5), we opt for the assignment progress rule and a second assignment (y:= true) at Y .3

The Initialisation Protocol – refinement 2
Pre: pc.X = pc.Y = 1

Component X:
1: y:= false;
4: x := true;
2: 〈if y → skip fi〉;
3: x := true
5:

Component Y:
1: x := false;
4: y:= true;
2: 〈if x → skip fi〉;
3: y:= true
5:

But note that this derivation is typical in its interplay between proof and program development, and
the new code at Y .4 and Y .3 has extended the case analysis for (2) to cases pc.Y ∈ {1, 2, 3, 4, 5}. Case
pc.Y = 4 is again by the assignment progress rule, but case pc.Y = 5 is a different matter. Evidently,
the assignment progress rule is not an option here for reason of infinite regress, so we look to arrange
invariance of J

false
≡ {J : pc.Y = 5 ⇒ y}

pc.X = 2 ∧ ¬y ∧ pc.Y = 5
 {Implication theorem}

pc.X = 2 ∧ y
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The Initialisation Protocol – annotated for progress
Pre: pc.X = pc.Y = 1

Component X:
1: y:= false;
4: x := true;
2: 〈if y → skip fi〉;
3: x := true
5:

Component Y:
1: x := false;
4: y:= true;
2: 〈if x → skip fi〉;
3: y:= true

{y}
5:

For GC of assertion y at Y .5 we look to strengthen J with pc.X 6= 1

pc.Y = 5 ⇒ y ∧ pc.X 6= 1 (J )

which induces the following correct annotation of Y

The Initialisation Protocol – correctly annotated
Pre: pc.X = pc.Y = 1

Component X:
1: y:= false;
4: x := true;
2: 〈if y → skip fi〉;
3: x := true
5:

Component Y:
1: x := false;

{x ⇒ pc.X 6= 1}
4: y:= true;
2: 〈if x → skip fi〉;

{pc.X 6= 1}
3: y:= true

{y}{pc.X 6= 1}
5:

GC of pc.X 6= 1 is for free because every action in X makes it true on account of X .1 being the initial
action of X . This concludes the derivation.

The example is a nice one for two reasons. First, because the problem itself is quite delicate, as can be
seen by reworking the design from the point at which it was decided to establish (3) by the transitivity
rule rather than by the assignment progress rule. The alternative path leads all the way to

Pre: pc.X = pc.Y = 1

Component X:
6: x := true;
1: y:= false;
4: x := true;
2: 〈if y → skip fi〉;
3: x := true
5:

Component Y:
6: y:= true;
1: x := false;
4: y:= true;
2: 〈if x → skip fi〉;
3: y:= true

{y}{? pc.X 6= 1}
5:

but now the derivation falls down on account of the (lack of) GC of pc.X 6= 1 at Y .5.

Second, while the derivation is marked by a complete absence of operational thinking, yet it was com-
pletely driven by progress concerns. This is just what we want to see in a problem like this where progress
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is of the essence. In this regard, it is instructive to compare it to the derivation in [FvG99] and to note
there the authors closing remark that “we have to admit that, no matter how crisp the final solution
turned out to be, its derivation seems to be driven by hope and a kind of opportunism.”(p212). In
our view, this is not true in the present case, rather we see this derivation as a small step toward our
larger goal of developing a method of program derivation in which progress requirements are given equal
consideration with safety requirements.

4.3 The guard conjunction lemma

The guard conjunction lemma ([FvG99], pp118-120) describes a correct program transformation by jus-
tifying the replacement of a guarded skip with a (coarse-grained) conjunctive guard B ∧ C by a pair of
(fine-grained) guarded skips with guards B and C , when B is GC in the component in which the guarded
skip occurs. The lemma states that the transformation preserves the safety and progress properties of the
original program, and it is noteworthy that the proof of the latter part is outside of the scope of the basic
theory of Owicki and Gries (as presented in Section 2.2). Thus, we are told by Feijen and van Gasteren
that the basic theory “is not suited for proving [progress]. Fortunately, Dr. J. Hooman proved it for us.
He did so by considering the sets of all possible computations that can be evoked by the original and
by the new system, respectively, and then showing that the two systems have the same properties as far
as deadlock and individual progress are concerned. The proof is not for free and we are grateful to him
for having designed it for us.” ([FvG99], p118). The purpose of this section is to show how the guard
conjunction lemma can be proved in the extended theory of Owicki and Gries (as presented in Section
4). The lemma states

Guard Conjunction Lemma For a globally correct B , guarded command

i : 〈 if B ∧ C → S fi 〉 j :

may be replaced by

i : 〈 if B → skip fi 〉; k : 〈 if C → S fi 〉 j :

without

(i) impairing the correctness of the annotation

(ii) introducing total deadlock

(iii) endangering individual progress

For the sake of completeness, we begin by reproducing the proof of (i).

Proof of (i)

〈 if B ∧ C → S fi 〉
v {adding a skip is harmless}

〈 if true → skip fi 〉; 〈 if B ∧ C → S fi 〉
v {strengthening the guard}

〈 if B → skip fi 〉; 〈 if B ∧ C → S fi 〉
v {correctly annotating}

〈 if B → skip fi 〉; {B} 〈 if B ∧ C → S fi 〉
v {logic}

〈 if B → skip fi 〉; {B} 〈 if C → S fi 〉 �

Part (ii) follows from (iii) when we interpret (iii) to mean that a program that contains the refined code
has the same progress properties as the original program. In order to formalise (iii), we conceptualise two
programs, one is the original program that consists of component A and all other components, the other
is this program, but with A replaced by A′, which is obtained from A by replacing the coarse-grained
guarded skip by the pair of fine-grained guarded skips. We next show that
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Proof pc.A = i  pc.A = j ⇒ pc.A′ = i  pc.A′ = j

First, observe that since the two codes {B} 〈 if B ∧ C → S fi 〉 and 〈 if C → S fi 〉 are equivalent, it is
enough to prove that codes

i : 〈 if B ∧ C → S fi 〉 j :

and

i : 〈 if B → skip fi 〉; k : 〈 if B ∧ C → S fi 〉 j :

have the same progress properties. Start by assuming that A can pass its guarded skip

pc.A = i
 {assume}

pc.A = i ∧ B ∧ C
 {assume}

pc.A = j

then A′ is guaranteed to reach A′.k because

pc.A′ = i
 {pc.A = i  pc.A = i ∧ B ∧ C}

pc.A′ = i ∧ B
 {IF progress rule, B is GC in A′}

pc.A′ = k

Further pc.A′ = i  pc.A′ = k does not change the state of the rest of the program, because a guard
evaluation action can only change the control state of the component in which the action occurs, which
is A′. Hence,

CS : When pc.A = i and pc.A′ = k the rest of the program containing A is in the same state as the rest
of the program containing A′.

and so

pc.A′ = k
 {CS , pc.A = i  pc.A = i ∧ B ∧ C}

pc.A′ = k ∧ B ∧ C
 {CS , pc.A = i ∧ B ∧ C  pc.A = j}

pc.A′ = j �

This concludes the proof that A′ is no less progressive than A.

Proof pc.A′ = i  pc.A′ = j ⇒ pc.A = i  pc.A = j

The above proof show how A′ (with pc.A′ = k) can get ahead of A (with pc.A = i) when ¬C is
true, but, of course, the action at A.k must wait for the rest of the program to make C true. Since
pc.A′ = k ∧ C ⇒ pcA′ = k ∧ B ∧ C by the annotation of A′, and by CS , the A.i guard is enabled
whenever the A′.k guard is, which concludes the proof that A′ is no more progressive than A. �
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5 Conclusion

In the context of sequential programs, Hoare [Hoa69] showed how a sequential program could be verified
without reference to its operational semantics. Then, in the context of concurrent programs, Owicki and
Gries [OG76] showed how safety properties could be verified by adding interference freedom conditions
to Hoare’s logic, but leaving the underlying logic unchanged. Although this modification was small, the
Owicki-Gries theory improved on the previously existing global invariant method of [Ash75] because it
avoided a state explosion problem [dRea01] by decomposing a global invariant into a program annotation
[Lam87]. In this paper we have developed this theory further and incorporated a theory of progress into
the formalism.

Several event based models exist, such as [CM88, BS89, LT89, Sha93, Lam94], but, as Lamport suggests,
proofs in these models can easily be translated from one model to another, and the difference lies in the
ease with which a given program can be formalised in a given model. If a target implementation is based
on a concurrent sequential program model, then we see no reason why this implementation should be
modelled in an event based one. We therefore see one advantage of our approach over these others in the
way that it can support a more direct translation of a program design into code.

The extended theory of Owicki and Gries includes a logic of progress, but it is up to us how to make
use of it. Our ultimate aim is to integrate this logic into a method of program design (derivation) in
the same kind of style as [FvG99]. Early work in this direction is promising, and a more comprehensive
example can be found in [GD05], which presents a derivation of Dekker’s program for two process mutual
exclusion. In a program verification, we do not have the freedom to change a program when a proof
does not work out. We are left with the dilemma of not knowing whether the program or the proof is at
fault. In this respect, deriving a program that satisfies a specification is certainly superior. [FvG99] have
already shown how commonly occurring design patterns can be identified in both programs and their
proofs, and how these patterns can be used to shorten proofs. We believe that patterns such as these
will emerge with the extended theory as well. It is a case of realising when they do and noting them
accordingly.

We note that although leads-to is a widely accepted construct for reasoning about progress, it is not
without deficiencies. For instance, while leads-to can always be used to express the proposition that P
will eventually be true, by itself it can not express the proposition that P will be true in the next program
state. [Sha93] hints at the possibility of using auxiliary variables to express the notion of next state.
Whether greater expressivity of temporal logic can be achieved in the Owicki-Gries theory by combining
auxiliary variables and leads-to is a topic of further research.
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Appendix A: Derived rules of the logic of progress

The logic of UNITY in [CM88, Mis01] is based on an inductive definition of a relation leads-to. Given
this definition, a number of derived properties are proved. The purpose of this appendix is to confirm
that these are also derived rules of our progress logic too. The Inductive Progress Rules in our definition
of leads-to (in Section 4) are identical to those in [CM88], only the Immediate Progress Rule is different,
to take account of the different programming models. Therefore, in what follows the proof of a derived
rule will assume that a use of leads-to always results from a use of the Basic Progress Rule.

Implication Theorem

(P ⇒ Q) ⇒ (P  Q)

Proof First note that, for any R, (P ⇒ Q) ⇒ (P ∧ ¬Q) ⇒ R. It follows that the three premisses of
the Immediate Progress Rule are true on account of this equation, because

1. P un Q
≡ {By definition, for any atomic statement {U } S}

P ∧ ¬Q ∧ U ⇒ wlp.S .(P ∨ Q)

2. P ∧ ¬Q ⇒ pc = i

3. Any atomic statement can be chosen on account of P ∧ ¬Q ≡ false. �

Impossibility Theorem

(P  false) ⇒ ¬P

Proof First note that, for any S , wlp.S .false ≡ false. We look at the three forms of atomic statement
that occur in premiss (3) of the Immediate Progress Rule.

1. If (P  false) because of a skip or assignment statement S then

P ⇒ wlp.S .false
≡ {By wlp and logic}

¬P

2. If (P  false) because of an IF statement of the form if B1 → S1 8 B2 → S2 fi then

(P ∧ B1 ⇒ false) ∧ (P ∧ B2 ⇒ false)
≡ {By logic}

(¬P ∨ ¬B1) ∧ (¬P ∨ ¬B2)
≡ {By logic}

¬P ∨ (¬B1 ∧ ¬B2)
⇒ {By premiss (3bi), P ⇒ B1 ∨ B2}

¬P

3. If (P  false) because of a DO statement of the form do B → S od then

(P ∧ B ⇒ false) ∧ (P ∧ ¬B ⇒ false)
≡ {By logic}

(¬P ∨ ¬B) ∧ (¬P ∨ B)
≡ {By logic}

¬P ∨ (¬B ∧ B)
≡ {By logic}

¬P
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4. If (P  false) because of i : 〈S 〉 j : the result follows as wp.S .false ≡ false for any S . �

Disjunction Theorem

(∀m :m ∈ W : P .m  Q .m) ⇒ ((∃m :m ∈ W : P .m) (∃m :m ∈ W : Q .m))

Proof As in [CM88] �

Cancellation Theorem

(P  Q ∨ B) ∧ (B  R) ⇒ (P  Q ∨ R)

Proof As in [CM88] �

PSP Theorem

(P  Q) ∧ (R un B) ⇒ (P ∧ R  (Q ∧ R) ∨ B)

Proof We assume the antecedent and show that, for the consequent, the three premisses of the Imme-
diate Progress Rule are true. The proof uses two equations

(1) R ∧ ¬Q ∧ ¬B ≡ R ∧ ¬((Q ∧ R) ∨ B)

(2) Q ∧ (R ∨ B) ⇒ (Q ∧ R) ∨ B

1. (P  Q) ∧ (R un B)
⇒ {By Immediate Progress Rule}

(P un Q) ∧ (R un B)
≡ {By definition of un, for any atomic statement {U } S}

(P ∧ ¬Q ∧ U ⇒ wlp.S .(P ∨ Q)) ∧ (R ∧ ¬B ∧ U ⇒ wlp.S .(R ∨ B))
≡ {By logic}

P ∧ ¬Q ∧ R ∧ ¬B ∧ U ⇒ wlp.S .((P ∨ Q) ∧ (R ∨ B))
≡ {By logic}

P ∧ ¬Q ∧ R ∧ ¬B ∧ U ⇒ wlp.S .((P ∧ R) ∨ (Q ∧ R) ∨ (P ∧ B) ∨ (Q ∧ B))
⇒ {(P ∧ B) ∨ (Q ∧ B) ⇒ B}

P ∧ ¬Q ∧ R ∧ ¬B ∧ U ⇒ wlp.S .((P ∧ R) ∨ (Q ∧ R) ∨ B)
≡ {By logic}

P ∧ R ∧ ¬((Q ∧ R) ∨ B) ∧ U ⇒ wlp.S .((P ∧ R) ∨ (Q ∧ R) ∨ B)
≡ {By definition of un}

P ∧ R un (Q ∧ R) ∨ B

2. P  Q
⇒ {By Immediate Progress Rule}

P ∧ ¬Q ⇒ pc = i
⇒ {By logic}

P ∧ R ∧ ¬((Q ∧ R) ∨ B) ⇒ pc = i

3. (a) If (P  Q) because of a skip or assignment statement i :S j : then
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(P  Q) ∧ (R un B)
⇒ {By definition of un and  }

(P ∧ ¬Q ⇒ wlp.(i :S j : ).Q) ∧ (R ∧ ¬B ⇒ wlp.(i :S j : ).(R ∨ B))
⇒ {By logic}

P ∧ ¬Q ∧ R ∧ ¬B ⇒ wlp.(i :S j : ).(Q ∧ (R ∨ B))
⇒ {By logic}

P ∧ R ∧ ¬((Q ∧ R) ∨ B) ⇒ wlp.(i :S j : ).((Q ∧ R) ∨ B)

(b) If (P  Q) because of an IF statement of the form i : if B1 → j :S1 8 B2 → k :S2 fi l : then, for
premiss (3bi)

P  Q
⇒ {By definition}

P ∧ ¬Q ⇒ B1 ∨ B2

⇒ {By logic}
P ∧ R ∧ ¬((Q ∧ R) ∨ B) ⇒ B1 ∨ B2

and for premiss (3bii)

(P  Q) ∧ (R un B)
⇒ {By definition}

(R ∧ ¬B ∧ B1 ⇒ (R ∨ B)[pc:= j ]) ∧ (R ∧ ¬B ∧ B2 ⇒ (R ∨ B)[pc:= k ]) ∧
(P ∧ ¬Q ∧ B1 ⇒ Q [pc:= j ]) ∧ (P ∧ ¬Q ∧ B2 ⇒ Q [pc:= k ])

⇒ {By logic}
(P ∧ ¬Q ∧ R ∧ ¬B ∧ B1 ⇒ (Q ∧ (R ∨ B))[pc:= j ]) ∧
(P ∧ ¬Q ∧ R ∧ ¬B ∧ B2 ⇒ (Q ∧ (R ∨ B))[pc:= k ])

⇒ {By logic}
(P ∧ R ∧ ¬((Q ∧ R) ∨ B) ∧ B1 ⇒ ((Q ∧ R) ∨ B)[pc:= j ]) ∧
(P ∧ R ∧ ¬((Q ∧ R) ∨ B) ∧ B2 ⇒ ((Q ∧ R) ∨ B)[pc:= k ])

(c) The case where (P  Q) because of a DO statement is similar to case (b).

(d) The case where (P  Q) because of a i : 〈S 〉 j : is similar to case (a). �

Induction Theorem Let M be a total function from program states to set W . Let (W , <) be well-
founded. Variable m in the following premiss ranges over W and predicates P and Q do not contain free
occurrences of variable m.

(∀m :: P ∧ M = m  (P ∧ M < m) ∨ Q) ⇒ (P  Q)

Proof As in [CM88] �

Completion Theorem Let P .i and Q .i be predicates where i ranges over a finite set.

(∀ i :: (P .i  Q .i ∨ B) ∧ (Q .i un B)) ⇒ ((∀ i :: P .i) (∀ i :: Q .i) ∨ B)

Proof As in [CM88] �
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