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Abstract 
 

Most crop models simulate the crop canopy as an homogeneous medium. This approach 

enables modelling of mass and energy transfer through relatively simple equations, and is 

useful for understanding crop production. However, schematisation of an homogeneous 

medium cannot address the heterogeneous nature of canopies and interactions between 

plants or plant organs, and errors in calculation of light interception may occur. 

Moreover, conventional crop models do not describe plant organs before they are visible 

externally e.g young leaves of grasses. The conditions during early growth of individual 

organs are important determinants of final organ size, causing difficulties in incorporating 

effects of environmental stresses in such models. Limited accuracy in describing 

temporal source-sink relationships also contributes to difficulty in modelling dry matter 

distribution and paramaterisation of harvest indices.  

 

Functional-architectural modelling overcomes these limitations by (i) representing crops 

as populations of individual plants specified in three dimensions and (ii) by modelling 

whole plant growth and development from the behaviour of individual organs, based on 

sound models of organs such as leaves and internodes. Since individual plants consist of 

numerous organs, generic models of organ growth applicable across species are desirable. 

Consequently, we are studying the development of individual organs, and parameterising 

it in terms of environmental variables and plant characteristics.  

 

Models incorporating plant architecture are currently applied in education, using dynamic 

visual representation for teaching growth and development. In research, the 3D 

representation of plants addresses issues presented above and new applications including 

modelling of pesticide distribution, fungal spore dispersal through splashing and plant to 

plant heterogeneity. 

 

Key words functional architectural modelling, plant architecture, modelling, virtual 

plants 
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Introduction 
 

The mechanistic modelling of crop canopies aims to simulate plant growth and 

development as a function of microclimate (Whisler 1986, Weaver 1996). Such models 

consider the canopy functioning at the level of complexity that depends on the objectives 

for which the model was built. For example, sound prediction of whole crop canopy leaf 

area may be adequate for large scale estimation of crop productivity, but does not allow 

an accurate estimation of vertical distribution of light, photosynthesis or of spatial 

distribution of materials applied to the plant canopy. Such issues raise the question of 

canopy morphology, as well as canopy function as a medium to capture light, exchange 

gases, fix carbon and transpire water.  

 

Canopy morphology and its dynamic (i.e. the kinetics of vertical extension and horizontal 

expansion of plant parts and the occupation of space between plants) is a significantly 

under-researched area (Hanan and Room 1996), and not included in most crop models. 

The vertical dimension may range from a few centimetres to tens of metres in the case of 

trees, while the interplant space may be occupied by aerial structures of crop plants, 

companion crop plants or weeds. Also, plant architecture both responds to and determines 

the physical, chemical and biotic factors to which the plant is exposed (Wilson and 

Chakrabrty 1998). For example, architectural and hydraulic features of root systems 

influence water uptake (Doussan et al. 1999), and consequently resources (nutrients) by 

plant roots, which finally influences root elongation itself.  

 

Plant architectural models have mainly considered empirical laws to simulate 3D 

development of the structure (Bernston 1992, Prusinkiewicz 1998). That is, they did not 

consider the influence of plant functioning or environmental variables on the process of 

morphogenesis. Functional structural models of plant development (virtual plant models) 

aim to fill that gap, by including physiological processes of plant growth and 

development as well as the physical structure of plants. This modelling approach is a 

more recent activity, and can be applied to root systems as well as aerial plant parts 
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(Bernston, 1992, Hanan and Room 1996, Doussan et al. 1999, Pages 1999). This paper 

focuses on modelling of aerial plant structures on which most research has been 

concentrated. However important developments have been made in integrating structural 

and functional aspects of the root system (Pages 1999). Doussan et al. (1999) developed 

an ‘Hydraulic Tree Model’ of the root system and simulated water extraction patterns for 

plants with contrasting root systems – maize and peach tree, and Bidel et al. (2000) have 

developed a carbon transport and partitioning model for simulating the dynamics of the 

root system architecture. 

 

This paper examines commonly used approaches to ‘mechanistic’ modelling of 

morphogenesis and functioning of crop canopies, and outlines some of the limitations of 

these approaches. It then explores some of the central concepts in plant architectural 

modelling and the application of kinetics of plant canopy production, but not roots, and 

concludes by outlining some of the applications in which plant architectural modelling is 

relevant. It does not address the computing aspects used in architectural modelling – 

comprehensive bibliographies have been provided, for example by Prusinkiewicz (1998, 

1999), de Reffye and Houiller (1997) and Barczi et al. (1997). Briefly, L- system 

(Prusinkiewicz and Lindenmayer, 1991) appeared as the most widely used, apart for the 

simulation of tree architecture where the AMAP family of software have been used 

extensively in forestry and agronomy (de Reffye and Houiller 1997, de Reffye et al. 

1999). 

 

Existing Approaches 
 

The conventional approach has been to treat the canopy as an expanding homogeneous 

mass, and to not address the heterogeneous and non – random structural properties of the 

canopy (de Reffye and Houllier 1997), or model spatial interactions with other organisms 

e.g. weeds, insects, companion crops. Production of leaf area is usually based on a 

thermal or real time schedules that consider leaf initiation, appearance and expansion as 

key processes. They generally do not consider extension of leaves before they are visible 

externally, or rates of extension after they become visible. 
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The schedules are usually controlled by constants for intervals for initiation, appearance 

and expansion of leaves. However, at least some of these ‘constants’ are known to vary 

with environment and/or genotype, and they are thus only constant within a limited range 

of conditions. For example, the interval of thermal time between the appearance of 

successive leaf tips in maize is shorter at low than at high temperatures (Kiniry and 

Bonhomme 1991, Bonhomme et al., 1991, Kiniry et al. 1991, Birch et al. 1998a). 

However, the thermal interval for leaf initiation appears constant across environments, at 

least in maize (Birch and Vos 2000). 

 

Approaches to modelling the canopy include calculating individual leaf area, integrating 

to whole plant and canopy areas according to plant population density and introducing 

competition for light at a nominated LAI (CERES approach, Jones and Kiniry 1986). 

Canopy photosynthesis is calculated using constant radiation use efficiency, without 

adjustment for distribution of light through the canopy or changes in light spectral 

composition in the canopy. Further, such approaches rarely consider vertical growth and 

thus the height of the canopy, although empirical adjustments have been used (Kiniry et 

al. 1992, Kropff and van Laar 1993, Kropff et al. 1997). 

 

Nevertheless, some adjustments have been made to expand the range of application of 

these models. For example, Goudriaan and van Laar (1994), calculated photosynthesis for 

depth intervals in a canopy from simulated irradiance and assumed changes in maximum 

rate of photosynthesis according to depth in the canopy. This approach provides some 

capacity to calculate photosynthesis according to local conditions in the canopy, but it 

does not use a ‘differentiated’ canopy, nor account for differences in maximum 

photosynthesis according to variations in nitrogen concentration in leaves. However, the 

effectiveness of adjustments is limited as individual leaves occupy a microenvironment 

that is variable and leaves are distributed in a non-random manner. Moreover leaf 

properties adapt to their local environment, for instance Drouet and Bonhomme (1999) 

found that variations in nitrogen concentration occur accordingly with local variations in 
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irradiance conditions in a heterogeneous canopy, thus resulting in correlations between 

photosynthesis capacity and light availability.  

 

Adjustments to account for environmental effects on leaf appearance in maize (Birch et 

al. 1998a) or to change the basis for calculating leaf area and senescence in maize and 

sorghum have been made (Birch et al 1998b, Carberry et al 1993). Further, factors that 

modify photosynthesis according to water and nitrogen supply in the CERES models (e.g 

CERES – Maize, Jones and Kiniry 1986), and models derived from them (Carberry and 

Abrecht 1991, Wafula 1989, Keating et al 1991, Birch 1996) can be refined. However, 

lack of application to organ growth e.g. of leaves in grasses before they are visible, and 

thus any effect that early stress may have on final organ size remains. It may, though, be 

possible to account for the effect of stresses in early growth affecting later canopy 

characteristics by using time-delayed functions but introducing stress functions without 

describing the organs they actually apply to can be but empirical. The limitations in 

describing the effects of stresses early in crop/organ life may explain some of the 

difficulty in parameterisation of source-sink relationships through concepts such as 

specific leaf weight, specific leaf area, or harvest index (Birch et al. 1998, 1999, Tardieu 

et al. 1999).  

 

Most existing modelling approaches use a whole plant as the unit of modelling, and 

integrate to a full canopy through plant population and competition effects. While this 

simplification has proved acceptable for agro-ecological studies and yield prediction on 

an area basis, it does not accommodate plant-to-plant variation and thus is of limited 

applicability for modelling heterogeneous canopies, and especially multispecies canopies 

eg crop-weed interactions, companion and intercropping. It is worth noting that in 

conventional, high input agriculture, enough treatment (e.g. nutrients, water) is used to 

minimize plant to plant variability. However, emerging sustainable agriculture using 

reduced inputs will lead to more interest in spatial heterogeneity of soil, economic plants, 

weeds, plant-pest interaction and stress resulting from limited treatment. 
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The strength of such models is in advancing understanding of crop adaptation to the 

macro-environment, in assessing potential for crop production and in agricultural systems 

analysis. In these applications, processes that occur at the level of individual plants or 

organs are of secondary or no concern, provided sufficient compensations occur when 

integrating at the canopy level. These models are used in decision support systems such 

as WHEATMAN (Woodruff 1992, Cahill et al 1998), PERFECT (Littleboy et al. (1993), 

and in systems analysis packages such as APSIM (Mc Cown et al. 1996), SWAT (Arnold 

et al. 1996) EPIC (e. g. Cableguenne et al. 1993, 1995), and that proposed by Adiku 

(1998) for intercropping of maize and cowpeas. They have also been used for a wide 

variety of other applications including assessment of the impact of climate change or 

increased carbon dioxide concentration in the atmosphere (e.g. Stockle et al. 1992a,b, 

Easterling et al. 1992), and environmental pollution (e.g.Phillips et al. 1993). Further, 

they are used in education, for teaching plant physiology, crop agronomy and systems 

analysis (Birch and Rickert 1999). 

 

Plant Architecture Modelling 

 

Aims of plant architecture modelling 

 

Architectural modelling aims to solve the problems of canopy structure and morphology, 

thus resource use efficiency, by representing crops as populations of individual plants 

whose structure and development is described in 3 dimensions to varying degrees of 

realism. At their most detailed resolution, they integrate biophysical processes from organ 

to canopy level, and provide a framework to model growth of individual plants according 

conditions at specific locations in the canopy and plant to plant interactions.  

 

The aim of architectural (or morphologenetic) modelling is to produce models that 

accurately reflect botanical structure and development in both space and time. To do so 

the model must incorporate botanical ‘laws’ that explain and define plant growth and 

form (de Reffye et al. 1988, Kurth, 1994, Lewis 1997, Fournier and Andrieu 1998). 

When considering the canopy, there are two important and interacting components – the 
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plants that make up the canopy, and the microenvironment within it, since plants are 

made up of organs that may be located in quite different microenvironments. Thus, 

detailed knowledge of temperature and radiation (including light quality) profiles and 

humidity in the canopy is required, as each is likely to influence one or more processes of 

canopy production and function. 

 

Requirements for organ initiation and expansion 

 

The models need to describe the rate of production of organs (roots, leaves, internodes, 

leaf sheaths in grasses, lateral apices, flowers) and the processes that cause the plant to 

change from one form of growth (i.e. meristematic activity or cell expansion/extension) 

to another. It is taking plant modelling to a much greater level of detail than the crop 

models mentioned earlier. However, the detail represents the essentially repetitive 

modular structure of plants (Jaeger and de Reffye 1992), and specific characteristics of 

individual species. Thus, data are needed on the initiation of leaves, branches (dicots, 

trees) and tillers (grasses) and on the orientation, elongation, expansion and senescence of 

leaves (and sheathes in grasses), internodes and branches to build a three dimensional 

model of a plant canopy. An example showing the temporal detail of data necessary for 

describing the dynamics of internode extension is shown in Figure 1. These data have 

been analysed to describe four stages of internode extension. These are: Stage I, during 

which elongation is exponential; Stage II – which is short and during which extension 

rate increases rapidly; Stage III – extension rate is essentially constant and internode 

length increases linearly; and Stage IV, during which extension rate decreases as the 

internode approaches its final length (Fournier and Andrieu 2000).  

 

INSERT FIGURE 1 

 

Further, the factors or events that cause change from one form of growth to another (e.g. 

leaf to sheath to internode in grasses), initiate new organs and/or change organ behaviour 

need to be resolved. This requires an adequate representation of numerous factors and 

processes that influence canopy architecture and morphology - these include 



 9

physiological processes that lead to the production and growth of individual organs, 

termination of growth of individual organs, geometry of individual plants, effects of 

interplant competition on individual plant geometry and photomorphogenesis, and 

environmental factors that modify plant canopy structure. For example, they must 

explicitly describe the start, rate and termination of growth of the different organs and 

modules that comprise the plant. Thus, it is necessary to study in detail the production of 

individual organs from very early in their morphogenesis (as near as possible to 

initiation) to organ maturity, their response to micro-environmental factors, and inherent 

growth and development processes. Also, the pattern of development needs to be taken 

into account. For example, the fruiting branches of cotton follow sympodial development 

rather than the more common apical development on the main stem and vegetative 

branches. To model this phenomenon, it is necessary to specify that each apical bud in a 

fruiting branch develops into a terminal flower and that continuation of the branch results 

from development of the axillary bud at each successive node. This results in the 

characteristic zig-zag shape of fruiting branches (Figure 2). 

 

INSERT FIGURE 2 

 

These factors emphasise the need for having good models of the growth of individual 

organs such as leaves, internodes and leaf sheaths. Also, there are usually numerous 

organs that are actively growing at any time, models of organ growth will need to be 

sufficiently generic for application, if possible, across species. This issue is particularly 

important with, for example, non-determinate crops and trees that are likely to have 

numerous branches as well as leaves, and grasses that have tillers, stolons and rhizomes. 

 

Canopy and microenvironment variation 

 

Plant architectural modelling represents the canopy in both temporal and spatial domains, 

and thus include changes that occur constantly as a result of variations in environmental 

conditions during their growth (Room et al. 1996, Hanan and Room 1996, Room et al. 

2000). Depending on planting pattern there may be substantial horizontal variability in 



 10

microclimate, as in row crops (Drouet and Bonhomme 1999). Moreover  plants change 

the microenvironment within the canopy, particularly in the vertical dimension and with 

time. Plants also adapt to their environment during growth. Thus, it is necessary to 

consider the regulation of organ development by environmental variables. This has 

traditionally been by use of temperature, expressed as thermal time, but several other 

environmental variables also regulate plant behaviour. Among these are light intensity 

and spectral composition (Myneni 1991), light quality (red-far red ratio) and availability 

of water and nutrients. 

 

Because plant architecture modelling requires modelling of individual organs, and from 

that ‘growing’ the virtual plant, the calculation of thermal time needs to be re-examined. 

The temperature actually experienced by organs rather than atmospheric (or soil) 

temperature will be required for assessing thermal duration of intervals in plant or organ 

ontogeny, thermal thresholds for events in plant development and thermal effects on 

growth and cell expansion. For example, in maize, a base temperature at the organ level 

of 9.8oC has been established (Durand et al. 1982, Ben Haj Salah and Tardieu 1996), 

whereas 6-8oC have been widely used in crop modelling. This emphasises the need to 

consider specific temperature conditions affecting specific organs, as average 

atmospheric temperature is unlikely to be accurate. For grasses, in which the growing 

point (apex) remains below ground for some time (e.g. in maize, until about 10 leaves are 

visible, Stone et al. 1999), soil temperature is likely to be more appropriate that air 

temperature, at least until after the apex emerges from the soil. After that, organ 

temperature will depend more on air temperature, but may differ from it because of 

canopy characteristics, thermal characteristics of plants and thermal conditions near the 

soil surface. As apex temperature or temperature of other organs is rarely measured 

directly, predicting them from environmental and plant variables may be possible. For 

example, Cellier et al (1993) and Guilioni et al. (2000) present detailed models of the 

apex temperature in maize, but such models are not as yet available for a wide range of 

species. 
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Considerable research effort has been directed towards understanding the 

microenvironment of the canopy of both single and mixed species canopies,  the latter 

requiring understanding of both spatial structure and reaction of one plant to another 

(Kurth 1994). Examples include simulation of distribution and/or transfer of 

photosynthetically active radiation in a poplar stand (Myneni 1991), forest (Kurth 1994), 

maize (Espana et al. 1998, Drouet and Bonhomme 1999), soybean (Meyer et al. 1984), 

and faba bean (Diaz-Ambrona et al. 1998). Also, Chelle and Andrieu (1999) presented 

radiative models for architectural models of plant canopies, and explored their application 

to crop modelling, with particular reference to maize.  

 

Given the diversity of information required to be integrated in functional architectural 

modelling, it is, of necessity, a multidisciplinary activity involving among others, 

environmental physicists, plant physiologists, agronomists, mathematicians and computer 

scientists to ensure the realism and applicability of architectural models (e.g. Barthelemy 

and Caraglio 1991 Jaeger and de Reffye 1992, Kurth 1995) 

 

Some achievements in architectural modelling 

 

Plant architectural modelling is most developed for tree/forest applications (e.g example 

Host et al. 1990, Barthelemy and Caraglio 1991, Prusinkiewicz et al. 1994, Kaitaniemi 

and Honkanen 1996, Kurth 1994, 1995, de Reffye and Houllier 1997, Perttunen et al. 

1998) but is being applied, at least at the analytical level, to herbaceous and low stature 

plants (e.g.peas – Gould et al 1992, kiwi fruit – Smith et al. 1992, cotton – Room et al. 

1995, 1996, pasture legumes – Wilson et al. 1999, Gautier et al. 2000, faba bean - Diaz-

Ambrona et al 1998, maize - Espana et al. 1998, Fournier and Andrieu 1998, 1999, sweet 

corn – Room et al. 2000) and agroforestry (Oldeman 1992). Oldeman (1992) argues that 

architectural modelling of agroforestry is the most complex, because of the potential 

number of species and rotations possible, and the concurrent presence of short and long 

term plants (e.g. annual crops and trees).  
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An example of a functional architectural model is ADEL-Maize (Fournier and Andrieu 

1999), that has been successfully used to model interplant competition in maize (Fournier 

and Andrieu 1999) (Figures 3 a,b,c). Figure 3a shows the realism of the simulation, and 

Figures 3b and 3c respectively the simulated reduction in leaf area of individual leaves 

and the variability in individual plant dry weight that occur as plant population density 

increases. Also, significant progress has been made in developing a functional 

architectural model of sweet corn including application of pesticides (Figure 4 (later) 

Room et. al. 2000), and some aspects of grain sorghum (Kaitaniemi et al. 1999).  

 

INSERT FIGURES 3a, b, c 

 

Applications of Architectural Modelling 
 

Though architectural modelling is relatively new concept, a diversity of applications has 

been identified (Room et al. 1996). In summary they relate to theoretical, research, 

educational and practical aspects of crop production that are affected by canopy geometry 

as well as crop physiology. This paper will not attempt to address all of the possible 

applications, but rather expand on a some examples. 

 

1. Virtual plants as research tool  

(a) generating hypotheses 

 

Virtual plants are useful for generating hypotheses and thus focussing research onto the 

most important relationships. This is a generic attribute of all kinds of models (e.g. 

Penning de Vries and Rabbinge 1995, Bouman et al., 1996, Hanan and Room 1996). In 

the case of architectural models, it applies at a particular level of spatial resolution – that 

of organs within a canopy. Many more scenarios of for example, plant to plant variability, 

fate and impact of inputs such as pesticides applied within the canopy, can be examined 

at much reduced cost by modelling than is possible in real field, laboratory or controlled 

environment experiments. Plant recovery from the effects of grazing animals can also be 

examined. Research can be undertaken with 3-dimensional computer models that 
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otherwise is expensive or destructive, or even impossible (for example some aspects of 

tree or forest research) because of the very long life cycle of trees (Kurth 1994). The 

effects of pruning on the canopy and canopy recovery in forests or orchards and 

vineyards is an obvious example where architectural modelling would be helpful (Le 

Disez et al. 1997). 

 

(b) Modeling light microclimate and canopy reflectance 

 

Architectural models provide an accurate description of the canopy structure  through the  

geometric description of each plant organs using polygons.  This geometric information 

enables accurate simulations of radiative transfer using either commonly used models 

based on the turbid medium  (TM) (Myeneni and Ross, 1991) or using more recent 

models called surface-based models. The TM models consider the vegetation as a 

continuous medium, where the foliage is statistically described by  parameters, such as 

the leaf area density and the leaf angle distribution. These parameters may be calculated 

from the 3D structure generated by an architectural model. Surface-based models 

calculate directly the radiative exchange between the surfaces produced by an 

architectural model (Chelle and Andrieu, 1999).  

 

As the surface-based models use an exact description of the canopy structure, they are 

interesting to study the physics of the light-vegetation interactions (Chelle et al. 1997, 

Espana et al,1998). Results from such studies may be used to improve modeling using the 

TM approach (Kuusk et al, 1997, Shabanov et al, 2000). Also, they are helpful in 

studying ecophysiological processes. For example in photomorphogenesis, a good 

description of the light signal is needed so the plant response can be described. For 

remote sensing applications, the better understanding of the effect of the canopy structure 

on reflectance allowed assessment of the meaning, thus interpretation, of data gathered by 

satellites (Lewis, 1999, Espana et al, 1998).  

 

The use of explicit canopy structures to simulate light enables estimation of light 

distribution. However new questions arise – for example (i) how detailed the geometric 
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description of organs needs to be, and (ii) the level of error arising from using static 

structures to simulate the behavior of a real canopy, where plant organs move mainly due 

to the wind or solar tracking. As an example, Espana et al (1999) showed that a crude 

description of the maize leaf  by a small set of planar polygons is sufficient for light 

simulation.  

 

2. Virtual plants as an educational tool 

 

As education is becoming progressively more resource limited (Birch and Rickert 1999), 

more efficient means of teaching plant physiology, ecology and agronomy are required. 

Some progress has been made in this area through using decision support and crop 

simulation models, but these are not ‘purpose built’ for educational purposes. Students 

need exposure to sufficient examples to develop understanding of the underlying 

processes, and so ‘construct’ knowledge for themselves (Bouchard et al. 1995). This is 

most readily achieved by making the models interactive, and thus more interesting. 

Architectural models offer specific advantages as the model presents objects - plants, 

leaves, internodes. These are much more readily accessible than LAI, leaf angle and 

distribution. Visualisation by use of computer graphics makes learning more enjoyable, 

as well as assisting interpretation of results. Plant architectural modelling software is 

becoming very interactive, and thus it is easy to test the effect of changing parameters – 

an essential part of the learning process. Importantly, this software is now able to be run 

on lap-top computers, so learning is not constrained to formal sessions and fixed 

locations. 

 

3. Plant production  

 

Plant production is a complex activity involving many routine tactical decisions. These 

decisions are almost invariably made in an environment of considerable uncertainty, and 

thus methods for predicting the outcomes of alternative options are desirable. We now 

propose some areas where functional architectural modelling may be used to make such 

predictions. 
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(a) Population density, planting time and cultivar selection.  

 

These three aspects of plant production interact to produce the canopy. From an 

architectural modelling perspective, population density is obviously important, but the 

optimum density depends in part on planting time and cultivar selected. The appropriate 

combination is needed to allow completion of the crop life cycle while conditions, 

especially temperature, are favourable, and to produce a canopy that optimises light 

interception. However, additional considerations are optimising water use and the control 

of competition from weeds. These issues often interact and give rise to many potential 

solutions to be assessed. Canopies function as a light intercepting volume and as a 

diffusion route for water. The functions are often difficult to reconcile – a large leaf area 

is desirable for light interception and to suppress competition from weeds, but a large leaf 

area can lead to exhaustion of limited water supplies. Architectural models could explore 

many more plant population densities, planting times and cultivar selections than is 

possible by field trials for a wider range of environments. They could be combined with 

long term rainfall data to examine risks of failure or risks of stress at specific time in 

plant development associated with particular options. This application is similar to that 

proposed by Muchow et al (1991) for crop models, but applies at a different level of 

resolution, and can conceivably assess local variation. However, success in this 

application will depend on accuracy of modelling the canopy, and this ultimately depends 

on accuracy in modelling leaf number, the temporal production of leaf area and its 

senescence. Further, for water limited environments, equally accurate models of water 

supply and extraction will be needed, implying the need for functional architectural 

models of root systems. 

 

(b) Pest management  

 

Functional architectural models have been identified as a tool for use in research and 

extension in pest management (Room et al. 1997, 2000). A key question in management 

of insects and diseases is the surface concentration of pesticides on leaves. The rate of 
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application per hectare is of little consequence, since much of the pesticide is delivered to 

non-target locations e.g. soil, off site, plant parts not affected by the target pest, is wasted 

and becomes an environmental contaminant (Pimentel et al. 1980). Further, as leaves 

bearing pesticide expand, the surface concentration declines, rapidly reaching sub-lethal 

levels. Also, new leaves that will have received no pesticide are quickly generated and 

are at risk of immediate attack by pest organisms. There is a dual problem here – attack 

of new leaves, and receipt of sub- lethal doses by pests that attack leaves expanding at the 

time of pesticide application. This latter situation must often result in selection for 

resistance, in which the most susceptible individuals in the pest population are killed, 

leaving the less susceptible to complete their life cycle, increasing the population-level of 

resistance in the next generation. It is here that architectural modelling, and the kinetics 

of canopy production in particular could be very useful for predicting surface 

concentrations of pesticide to assist planning of pesticide applications. This should reduce 

reliance on repeated population assessment and provide the opportunity for proactive 

rather than reactive decisions. 

 

A second important aspect of pesticide application is canopy penetration, to control 

insects and diseases located within the canopy. Importantly, modification of the 

microclimate by the canopy influences disease outbreak and insect behaviour (Wilson et 

al. 1999). Specific examples include diseases that attack the lower part of the canopy 

where relative humidity is higher, insects that attack the silks and ears of maize and sweet 

corn, and insects and diseases that attack fruit located within the crown of a tree or the 

canopy of crops e.g. bolls of cotton. This aspect is currently being studied with sweet 

corn in Australia, with promising results being achieved (Figure 4).  

 

INSERT FIGURE 4 

 

(c) Nitrogen management. Nitrogen is a major input to the production of field and 

horticultural crops and pastures, and a potential environmental contaminant when used 

inefficiently by plants. For example, radiation use efficiency and thus plant growth is 

related to area nitrogen concentration (g/cm2) in leaves of maize (Muchow and Davis 
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1988, Vos et al. 2000), which inn turn is influenced by the local light environment 

(Drouet and Bonhomme 1999). Thus the dynamics of leaf area production become 

important to prediction of concentration of nitrogen in leaves. Limited nitrogen supply 

does not greatly affect leaf appearance rate or reduce leaf area until nitrogen supply is 

severely limiting but does reduce photosynthetic rate (Vos et al 2000). This behaviour 

could be incorporated in architectural crop models, to predict when nitrogen supply limits 

plant growth. Clearly, robust procedures to model soil nitrogen transformations and 

uptake are necessary involving architectural modelling of the root system (e.g. Doussan 

et al. 1999, Pages 1999). 

 

(d) Fungal spore dispersal in a canopy 

 

Fungal infections depend on the arrival of spores in the canopy, and subsequent 

redistribution within the canopy, and knowledge of canopy geometry will assist in 

predicting the severity of disease outbreaks. Further, it would assist in assessing the 

microclimate in the canopy, since it is microclimate that determines the survival of 

spores, and their germination and infection of plants. The presence of free water or the 

extent of raindrop or irrigation droplet splash, needed to disperse some spores could also 

be predicted from canopy geometry (St Jean et al. 2000). 

 

Conclusion 
 

This paper has provided an outline of the concepts of functional architectural modelling 

of the dynamics of plant canopies. It is clear that large quantities of data are required for 

successful architectural modelling, and incorporation of functionality, as distinct from the 

purely descriptive, in the models. To meet these needs, more extensive data that is more 

precise than usually collected is needed. Consequently, the development and evolution of 

architectural models depends on substantial additional data becoming available on the 

dynamics of production of individual organs of plants and canopy expansion. Inherent in 

this requirement is the need to provide data on plant interaction in single or multi-species 

stands. It is also evident that architectural modelling is a multidisciplinary activity, 
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involving at least environmental physicists, plant physiologists, agronomists, 

mathematicians and computer scientists that can be applied to all forms of plant 

production. Uses to which architectural models mirror those of widely used crop models, 

but at a greater level of resolution than possible with models that are designed to operate 

at population and canopy rather than individual plant level. Architectural models will be 

used to investigate aspects of plant production and management that involve detail of the 

vertical and horizontal characteristics and variability of the canopy. They will also be 

used for investigations and assessments of issues such as insect and disease status and 

management in a canopy. 
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Figure 1. Thermal time course of internode lengths (cm) for internodes 9 to 15 of maize, 

cultivar Dea grown at Grignon, France (base temperature = 9.8oC) (Source: Fournier and 

Andrieu 2000). 
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Figure 2. Virtual cotton fruiting branch showing sympodial development and a flower 

bud, an open flower, and a developing boll. 
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Figure 3a. Results of simulation studies with ADEL –Maize (a). pictorial representation 

of a simulated maize canopy using ADEL maize 
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Figure 3b Simulated leaf area (lines) for maize at 5,15 and 25 plants m2 (symbols) 
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Figure 3c Simulation of differing accumulation of plant dry matter by individual plants in 

a heterogeneous canopy. 
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Figure 4. Virtual sweet corn canopy: views along furrows (left) and across rows (right) 

during a simulated pass of spray droppers having 2 nozzles each side. Spray is not shown 

beyond the midline of the nearest row of plants. 

 

 


