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ABSTRACT
We propose a computationally oriented non-monotonic multi-modal
logic arising from the combination of temporalised agency and tem-
poralised normative positions. We argue about the defeasible na-
ture of these notions and then we show how to represent and reason
with them in the setting of Defeasible Logic.

1. MOTIVATION AND LAYOUT
An increasing number of works on agents assume that in artifi-

cial societies normative concepts may play a decisive role, allow-
ing for the flexible co-ordination of autonomous agents [5, 20, 15].
In particular, it seems crucial to model organisations of agents in
terms of policy-based normative systems; accordingly an organi-
sation should be characterised by specifying the normative posi-
tions relevant to design its structure. These positions include du-
ties, permissions, but also powers, as for instance powers of cre-
ating further normative positions on the head of other agents. In
this paper we will develop a formal machinery to account for sev-
eral fundamental concepts that are required to model policy-based
normative systems. These concepts will be embedded in a non-
monotonic and computationally-oriented framework based on De-
feasible Logic (DL).

From the conceptual standpoint, it is well known that the basic
deontic qualifications (obligatory, forbidden, permitted and faculta-
tive) are not sufficient to capture all fundamental normative notions,
such as the concepts of rights and power. For this reason, we will
first provide an account in DL of the notion of other-directed oblig-
ation [14] to express, e.g., the first Hohfeldian set of fundamental
concepts: duty, right, noright, and privilege. Second, we shall focus
on different kinds of normative conditionals. This will enable us to
characterise also the idea of normative power and articulate many
potestative concepts such as the second Hohfeldian set of concepts:
power, liability (or, subjection, to avoid confusion with the notion
of liability, as used in tort law), disability, and immunity.

∗This work was partially supported by Australia Research Council
under Discovery Project No. DP0558854 on “A Formal Approach
to Resource Allocation in Web Service Oriented Composition in
Open Marketplaces”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAIL ’05, June 6-11, 2005, Bologna, Italy.
Copyright 2005 ACM 1-59593-081-7/05/0006 ...$5.00.

In general, we shall see how the analysis of normative condi-
tionality and normative positions has to include temporal aspects in
order to capture a number of nuances in the perspective of framing
a fine-grained classification of such concepts. In fact, normative
determinations take place along the axis of time: Normative pre-
conditions hold or happen in certain temporally characterised oc-
casions, and consequently their effects too hold or happen within
temporal bounds. In providing an analysis of normative condition-
ality, we cannot refrain from introducing some temporal notions,
though avoiding as much as possible the complexities of temporal
logics. In this regard, we will basically distinguish between “per-
sistent” normative positions, which follow the so-called law of tem-
poral inertia or temporal persistence, and those that are temporally
co-occurent with regard to some events or states of affairs.

2. THE LEGAL FRAMEWORK
This section provides a systematic account of the basic legal con-

cepts discussed in the paper. Rather than providing general defin-
itions, we prefer to illustrate all notions by way of examples. We
will follow the approach and notation developed in [23]. The no-
tation adopted there is based on the use of modal operators and on
formalisms taken from the Event Calculus. We prefer in this sec-
tion to use this notation as it looks more intuitive, though it can be
hardly embedded, as it is, within DL.

These are the contexts whose logical behaviour will be carac-
terised in the section.

2.1 Actions
With regard to actions, we distinguish two characterisations, a

behavioural and productive characterisation. The first is concerned
with specifying the behaviour performed by the agent, the second,
the result the agent achieves.

DoesTom[smoke]
(Tom is smoking)

BringsAlex[the air is polluted]
(Alex brings it about that the air is polluted)

The productive action can also consist in making so that a condi-
tional holds true.

2.2 Obligation and Permission
By applying to actions the usual deontic operators, we obtain

obligations. Obligations can concern both behavioural and produc-
tive actions:

Obl Doesj[lecture]
(it is obligatory that j lectures)
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Obl Bringsj[k’s personal data are cancelled]
(it is obligatory that j brings it about that k’s personal data are can-
celled)

With regard to the obligations whose content is the negation of an
action, we speak of prohibition.

Obl NON Doesj[smoke]
(it is obligatory that j does not smoke, or also, it is forbidden that j
smokes)

In order to express the basic deontic modalities, besides obliga-
tions we also need permissions, which also concern both kinds of
actions. Here are a couple of examples:

Perm Doesj[park in the University courtyard]
(it is permitted that j parks in the University courtyard)

Perm Bringsj[k’s personal data are accessible to the police authority]
(it is permitted that j brings it about that k’s personal data are ac-
cessible to the police authority)

We shall later develop a logical analysis of permissions. By now,
let us just state some properties which appear to be important to us.
First of all a permission must be incompatible with a prohibition.
Secondly, the holding of a permission does not mean simply that
there is no prohibition (we want a strong notion of a permission).

The simplest way to meet this requirement consists in viewing
the permission of an action as the negation of its prohibition. This
is the idea that was followed in [23].

Here we take a slightly different approach: We model permissive
propositions as defeaters of the corresponding obligations. Accord-
ingly, to state that proposition A is permitted is equivalent to say
the normative proposition Obl ¬A is not derived. This allows us
to exploit the treatment of defeaters in defeasible logic to model
permissions. As we shall see, this idea leads us to an unpleasant
implication, so long as we remain within defeasible logic: We can
never infer that something is permitted, since defeaters block in-
ferences, but do not establish any conclusion. To remedy this fact,
we identify the derivation of the permission of A with the situation
where a defeater of Obl ¬A exists, whose antecedent can be estab-
lished and which is superior to the all rules it attempts to defeat (all
rules for Obl A, whose antecedent can be established).

2.3 Directed Normative Propositions
An essential component of legal concepts, though this has been

denied by some legal philosophers, and more notably by Hans
Kelsen (see [23]), is their teleological dimension: normative propo-
sitions. Normative propositions are made legally binding (and are
recognised as such) since their adoption and practice advance cer-
tain goals. These goals may consist in either:

• a collective one (collective health)

• and individual one (the health of any individual)

The idea of legal teleology, when the goal of a certain proposition
consists in the benefit of a particular individual leads us to the idea
of a directed normative proposition, that is a normative proposition
which is aimed at (which has the goal of) satisfying he intererest of
a particular person. A specification of this idea is provided by the
notion of an other-directed obligation, as in the following examples.

OblMaryDoesTom[pay e 1,000 to Mary]
(it is obligatory, toward Mary, that Tom pays e 1,000 to Mary)

OblTomNON DoesMary [communicate to others Tom’s trade secrets]
(it is obligatory, toward Tom, that Mary does not communicate to
others Tom’s trade secrets)

In general, by an other-directed obligation like

OblkDoesjA

we mean that is obligatory, toward k, that j does A, namely it is
obligatory, that j does A, in order to advance the interest of k.

The idea of an other-directed obligation is complemented by the
idea of an other-directed permission: this corresponds to the nega-
tion of an other-directed obligation, or rather to the statement that
such an obligation is not be applied. For instance, the proposition

PermTomDoesMary[raise a building up to 15 meters high]
(it is permitted, toward Tom, that Mary raises a building up to 15
meters high)

expresses the idea that Mary is allowed to raise the building, as
far as Tom’s interest are concerns (this is intended to defeat the
obligation, towards Tom, that Mary does not rise the building).

An other directed permission towards k that j does A does not
entail that k is prohibited from preventing j from doing A: it only
consists in rejecting that k is forbidden, for the benefit of k, from
doing A . Thus k, notwithstanding the permission can still attempt
to prevent A in all legal ways (for instance, Tom can threaten Mary
the he shall leave his house and sell his land to a constructor that
will build a 20 storeys skyscraper, if she raises her building).

2.4 Obligational Rights
On the basis of the notion of directed obligation, we can con-

struct the notion of an obligational right, which is the other face of
a directed obligation. For instance

OblRightTomDoesMary[pay e 1,000 to John]
(Tom has the obligational right that Mary pays e 1,000 to John)

means that:

OblTom(DoesMary[pay e 1,000 to John]
(it is obligatory, toward Tom, that Mary pays e 1,000 to John)

Thus we obtain the idea of a right as consisting in the protection of
an interest (through the obligation upon somebody else), an idea
which was defended in particular by Bentham and Jhering (see
[23]; for a discussion of directed obligations and rights, see, e.g.,
[14]).

We can also introduce the notion of permissive right, which is a
directed permission aimed at satisfying the interest of the permitted
person. Note that the holder of a permissive right, in the sense of
its beneficiary, is the author of the permitted action, rather than the
person toward which this permission exists: In a permissive right
PermRightkDoesjA, j is the beneficiary of the right, while k, the
addressee of the permission, bears the burden of it (in the sense
that k’s interest is not protected by means of a prohibition that j
does A). For instance, to express that Mary has the permissive right
toward Tom to raise a building up to 15 meters, we write:

PermRightTomDoesMary[raise a building up to 15 meters]

Similarly, to express that Ali, a Muslim worker, has the permissive
right to abstain from work on Fridays, against his employer Mary,
we write:

PermRightMary(NON DoesAli[work on Friday])

Note that the distinction between being one’s permission to do A
and another’s prohibition to prevent A also applies to permissive
rights: PermRightkDoesjA does not entail that k is prohibited from
preventing A.



2.5 Hohfeldian Notions
Further combinations of these notions lead us to the ideas of per-

missive rights and absolute rights, for which we refer to [23], and
to the Hohfeldian notions of a privilege and a noright, which we
can simply define as follows.

The Hohfeldian notion of a privilege can be expressed through
our notion of other-directed permission: To say that j has a priv-
ilege toward k with regard to A means that j is permitted, toward
k, to omit A. Equivalently, we may use the notion of noright to
express that one does not have the obligational right that another
does a certain action, that is, to denote the situation when the latter
is permitted toward the first to omit that action. The ideas we have
just defined lead us to first square of Hohfeldian concepts, which
we call the Hohfeldian obligational set, where:

OblRightkDoesjA equivalent OblkDoesjA

incompatible incompatible

NoRightkDoesjA equivalent PrivilegekDoesjA

2.6 Normative Conditionals
Besides obligations and permissions, the main structure of legal

knowledge is provided by normative conditionals. Normative con-
ditionals establish a connection according to which and antecedent
normatively determines a consequent, which we represent as:

IF A THENn B

where the superscript n indicates the specifically normative nature
of the connection. Here is an example, which uses the notions we
introduced above.

FORANY (x)
IF [x is below 18 years]
THENn Forb Doesx[buy alcoholic drinks]

(for any x, if x is below 18 years, then it is forbidden that x buys
alcoholic drinks)

We distinguish different types of normative conditional, according
to the nature of their consequent:

Deontic initiation
IF [Tom does not deliver the merchandise in time]
THENn [Tom becomes obliged to pay a penalty of e 1,000]

Deontic termination
IF [Mary renounces to the payment of the penalty]
THENn [Tom ceases to be obliged to pay it]

Deontic emergence
IF [Tom is inside a mosque]
THENn [Tom is forbidden to wear shoes]

Qualificatory initiation
IF [Tom is born in Italy]
THENn [Tom becomes an Italian citizen]

Qualificatory initiation
IF [Tom acquires another citizenship]
THENn [Tom ceases to be an Italian citizen]

Qualificatory state-emergence
IF [an object is permanently attached to the soil]
THENn [the object is an immovable good]

Qualificatory event-emergence
IF [Tom drives while being drunk]
THENn [Tom commits a criminal offence]

Conditionals may, on the one hand, be concerned with the a deontic
or a non deontic property (state of affairs) or, on the other hand,
they may be concerned with an event determining the initiation of
the property (which continues after the event has taken place), with
a property determining the emergence of another property (which
only exists so long as the determining property exists), or with an
event determining the emergence of another event. Here are an
example of non deontic supervenience and initiation.

FORANY (x, t)
IF [x is a piece of land, water source, a tree,

a building, or is anyway permanently attached
to the land] holds at time t

THENn [x is an immovable good]
holds at time t

FORANY (x, t)
IF [x makes an offer to the public, containing all terms of

the contract it concerns] happens at time t
THENn [x makes a contractual offer]

happens at time t

2.7 Notions of Power
The idea of a normative conditional leads us to the notion of a

power. In a first sense we say that a person has a power (an action
power) when, according to a normative conditional, an action of
that person determines a normative effect. Thus we view the two
expressions below as equivalent:

FORANY (x,y)
WHEN [animal y does not belong to anybody]
THENn IF Doesx [capture y]

THENn ([x is the owner of y] initiates)

FORANY (x,y)
WHEN [animal y does not belong to anybody]
THENn ActionPowerx [x is the owner of y] initiates

VIA
[capturing y]

(for any person x and animal y, if y does not belong to anybody, then
x has the action-power of initiating x’s ownership of the animal, by
capturing y)

In a more specific sense, we may speak of a power only under a
teleological perspective, that is when the normative connection be-
tween an antecedent action and a consequent normative effect has
the function of enabling and promoting the achievement of the ef-
fect through the action. This excludes from this restricted notion of
a power the case when an action determines a penalty against its au-
thor (we do not want to say that a person has the power of achieving
the subjection to punishment by committing a crime). When such a
normative connection also has the further purpose of promoting the
interest of the author of the action, we speak of a potestative-right.
Thus, we have the following distinction:



• An enabling-power is an action-power intended to enable the
normative result of the action

• A potestative-right is an enabling power intended to further
the interests of the power holder

This is the notion of a right to which those authors which have
defended a power-based theory of rights, like

FORANY (x,y)
WHEN [animal y does not belong to anybody]
THENn PotestativeRightx

[x is the owner of y] initiates
VIA [capturing y]

(for any person x and animal y, if y does not belong to anybody,
then x has the potestative-right of initiating x’s ownership of the
animal, by capturing y)

When an agent j has the power of creating a normative position
Pos concerning another person k, we can say that k is subject to
this power, and when there is no such power we can say that j has
a disability to create that position and that k has an immunity with
regard to it. This leads us to the Hohfeldian potestative set.

EnablingPower jPosk equivalent Subjection j
kPos

incompatible incompatible

Disabilityk
jPos equivalent Immunity j

kPos

2.8 Proclamation and Proclamative Power
A special instance of the idea of a potestative right concerns the

case when one person has normative ability to create a normative
position (in general, to realise a normative proposition) by stating
this intention. The act of stating one’s intention to produce a certain
normative result is what we call proclamation, and a proclamation
is effective (produces its intended result) when there is a rule like
the following:

IF Proclxϕ THENn Bringsx ϕ

(for any person x, and proposition ϕ , if x proclaims ϕ , then ϕ is
realised)

When such a rule exists, we say that the author of the proclamation
has a corresponding proclamative power. For instance, if a rule like
the following holds:

IF ProclTom[Tom’s contract with Mary is terminated]
THENn BringsTom[Tom’s contract with Mary is terminated]

we can say that Tom has the declarative power of realising the ter-
mination of his contract:

ProclPowTom[Tom’s contract with Mary is terminated]

According to our classification above, proclamation rules can be
seen as rules concerned with an the emergence of an event. Accord-
ing to the content of a proclamation, namely, its intended result, we
can have further distinctions:

1. Proclj([Obl DoesjA] initiates): j proclaims that her own
obligation to do A initiates (promise).

2. Proclj([Obl DoeskA] initiates): j proclaims that k’s obliga-
tion to do A initiates. (command)

3. Proclj([Obl DoesjA] terminates): j proclaims that her own
obligation to do A terminates (withdrawal of a promise).

4. Proclj([Obl DoeskA] terminates): j proclaims that k’s oblig-
ation to do A terminates (withdrawal of a command).

When a proclamation is effective (according to a proclamation rule),
its intended effect follows, according to logical inference. Here is
an example. Given:

P1: ProclJohn
[Brothers Karamazov belongs to Mary]

initiates concerns making a small gift
P2: ProclJohn

[Brothers Karamazov belongs to Mary]
initiates

R: FORANY (ϕ,x)
WHEN [Proclxϕ concerns making a small gift]
THENn IF Proclxϕ THENn Bringsxϕ

we can conclude that:

[BrothersKaramazov belongs to Mary] initiates

On the basis of the idea of a proclamation, we can develop fur-
ther interesting legal concepts, such as the concept of the notion of
representation. On the other hand, we can also build the idea of a
source of law.

3. THE LOGICAL FRAMEWORK

3.1 Introduction
Our approach is motivated by the inherent computational com-

plexity of multimodal logics (see, e.g., [12]). In addition, very of-
ten the notion of modality adopted for multiagent systems is by its
own nature non-monotonic and so does not lend itself to necessita-
tion [10]. In general, the addition of (normal) modal operators to
the classical propositional base leads to the increase of complex-
ity of the logic. This is mainly due to: (1) the rules to introduce
modalities, such as the necessitation rule, (2) the axioms govern-
ing the behaviour of modalities and their mutual interaction. These
problems are even more crucial in multiagent systems where the
combination of a number of modalities is usually required and the
need of efficient reasoning mechanisms is compelling (see, e.g.,
[7]).

This paper thus proposes a general solution to the mentioned
problems by exploiting the nice computational features of DL and
by setting specific rules for introducing modal operators: Rules are
primarily meant to introduce modalities in terms of provability of
literals. This solution keeps the system manageable. A literal will
be modalised with, say, X if it is deduced via rules specifically
devised to express concept X . Given the conceptual framework
previously described, this methodology is applied to the following
building blocks, which are needed to correctly represent the nor-
mative aspects of policy-based systems of agents1.

1Notice that in DL we will not deal explicitly with quantifiers.
We may have that rules with free variables are interpreted as rule
schemas, that is, as the set of all ground instances; in such cases we
assume that the Herbrand universe is finite.



3.1.1 Actions
The formalism aims to capture the idea of modal agency [6] but

also to reason on explicit actions. Modal logics of agency are very
general since actions are simply taken to be relationships between
agents and states of affairs. In this regard, we will focus on he idea
of personal and direct action to realise a state of affairs, formalised
by the modal operator Brings: BringsiA means that the agent i
brings it about that A. Different axiomatisations have been provided
for it but almost all include BringsiA→ A, ¬Bringsi>, (BringsiA∧
BringsiB) → Bringsi(A∧B), and are closed under logical equiv-
alence. If these are some general properties for Brings, a spe-
cific axiom advanced in [22] for this operator is BringsiBringsjA→
¬BringsiA. It corresponds to the idea that the bring-about operator
expresses actions performed directly and personally: It is counter-
intuitive that the same agent brings it about that A and brings it
about that somebody else achieves A. Accordingly, we will devise
a set of rules to encode the action transitions occurring, under cer-
tain circumstances, as the results of actions. The applicability of
these rules will allow for the introduction of the operator Brings. In
addition, since we want to be also able to reason about explicit ac-
tions, we will extend the language of DL by adding a set of action
symbols. These symbols will occur only in the antecedent of action
rules, and this precisely because such rules are meant to derive the
states of affairs resulting from the performance of actions.

3.1.2 Normative Conditionals
It is possible to distinguish different kinds of normative condi-

tional. As was argued, all of them indeed can be conceptually
reduced to a single normative conditional “IF A THENn B”: what
differentiates each kind of link is the type of antecedent and/or
consequent that occur in the conditional link. Thus a normative
conditional is meant to simply obtain any kind of normative conse-
quence. However, to make things clear, we will distinguish, in the
syntax of DL, different kinds of rules, and we simply establish in
the proof conditions for literals the appropriate criteria to account
for this reduction. We will identify the following types of norma-
tive rules:

Rules for persistent obligations. These rules, if applicable, per-
mit to infer literals to be modalised by obligations that per-
sist unless some other, subsequent, and incompatible states
of affairs, actions, or obligations terminate them. For exam-
ple, the obligation towards an agent of paying the damages
she caused in a car crash will hold until the agent has not paid
such damages.

Rules for co-occurrent obligations. These rules allow for the in-
ference of obligations which hold on the condition and only
while the antecedents of these rules hold. For example, the
obligation not speak loud in the church will hold only when
the agent is in the church.

Rules for the count-as link. The count-as relation is meant to ex-
press the idea of institutional power [24]. For example, if i
signs a document on behalf of her boss j, such a document
is as it were signed by j only if i has been empowered to
do this: i’s signature counts as j’s signature. In principle,
this kind of ability should be distinguished from the practical
capacity to obtain a certain state of affairs. The exercise of
a power may not be successful: its being successful, within
the institutional context, depends on whether that institution
makes it effective. In [13, 7], for example, different formali-
sations of this notion have been developed. We will not com-
mit ourselves in choosing one of the these approaches. Both

approaches characterise the count-as link by also introduc-
ing the a modality Ds, which is meant, though according to
different intepretations, to qualify the facts and propositions
that hold within a given institution s. As we shall see, here
it not required to use Ds, which would be necessary in our
framework only in the case in which we should deal with
facts and propositions that hold within different institutions.
From the conceptual point of view, we will view the count-as
link as a generic normative conditional whose consequences
are not necessarily deontic. Deontic rules will be then a con-
sidered as generic normative rules which specifically allow
for the deduction of deontic literals. In DL, we will syntacti-
cally distinguish the two types of rules, but we will impose,
according to this view, that the provability of deontic conse-
quences is a sub-type of the provability via count-as rules.

3.1.3 Time
Since we will operate in a temporalised setting, we will not

only impose that obligations be temporalised, but also that any lit-
eral may be labelled by time instants. For the sake of simplicity,
here will assume the time to be linear and discrete. Notice that
Event Calculus’ temporal notions and predicates “ initiates” and
“terminates” will be rendered in DL by reframing the idea of DL
superiority relation between different types of temporalised rules.

3.1.4 Proclamations
The last logic component we will use is the modal operator

Procl, which will capture the idea of proclamation [7]. It expresses
any speech act (proclaiming) that is intended to modify the insti-
tutional world. The action of proclamation is not necessarily suc-
cessful: ProcliA is just an attempt of i to achieve A. Whether it is
successful or not, will depend on whether an institution, for exam-
ple, will make it effective by means of appropriate count-as rules.

3.2 The System
DL [18, 1] is a simple, efficient but flexible non-monotonic

formalism that can deal with many different intuitions of non-
monotonic reasoning [2], and efficient and powerful implementa-
tions have been proposed [17, 4]. In the last few years DL has been
applied in many fields; in addition DL encompasses other existing
formalisms proposed in the AI & Law field such as Prakken and
Sartor’s [21] and Loui and Simari’s [25] (see, [9]), and recent work
shows that DL is suitable for extensions with modal and deontic
operators [10] and violations which in turn allows DL to be used
to represent and reason with business contracts [11, 8]. Here we
propose a non-monotonic logic of institutional agency based on the
framework for DL developed in [1].

As usual with non-monotonic reasoning, we have to specify 1)
how to represent a knowledge base and 2) the inference mecha-
nism used to reason with the knowledge base. The language of
Normative Defeasible Logic consists of a finite set of agents A ,
a (numerable) set of atomic propositions Prop = {p,q, . . .}, a set
of action symbols Act = {αi,βi, . . .}i∈A , a discrete totally ordered
set of instants of time T = {t1, t2, . . .}, the modal operator Obl
of obligation, and the parametrised modal operators Obli, Bringsi,
and Procli (where i ∈ A ), and the negation sign ¬. We define the
permission operator Permi as the non-derivation via defeaters of
Obli¬.

We supplement the usual definition of literal (an atomic proposi-
tion or the negation of it), with the following clauses

1. an action symbol is a literal and so is the negation of an action
symbol;



2. if l is a literal then Proclil is a literal;

3. if l is a literal then Bringsil, and ¬Bringsil, are literals if l is
different from Bringsim, ¬Bringsim, for some literal m; and

4. if l is a literal then, Oblil is a literal, if l is different from
Oblim, for some literal m.

We will call literals obtained from clause i) above action literals.
Literals obeying conditions ii)–iv) are called modal literals. Given
a literal l with ∼ l we denote the complement of l, that is, if l is a
positive literal p then ∼ l = ¬p, and if l = ¬p then ∼ l = p. Finally
we introduce the notion of temporal literals. A temporal literal is a
pair l : t where l is a literal and t is an instant of time. Intuitively
the meaning of a temporal literal l : t is that l holds at time t.

Knowledge in defeasible logic can be represented in two ways:
facts and rules.

Facts are indisputable statements, represented either in form of
states of affairs (literal and modal literal) and actions that have been
performed. For example, “John is a minor”. In the logic, this might
be expressed as Minor(John).

A rule, on the other hand, describes the relationship between
a set of literals (premises) and a literal (conclusion), and we can
specify how strong the relationship is and the mode the rule con-
nects the antecedent and the conclusion. As usual rules allow us to
derive new conclusions given a set of premises. Since rules have a
mode, the conclusions will be modal literals. As far as the strength
of rules is concerned we distinguish between strict rules, defea-
sible rules and defeaters; for the mode we have: count-as rules,
describing the basic inference mechanism internal to an institution;
deontic rules or rules for conditional obligations, determining the
conditions under which an obligation holds; and rules for agency,
or results-in rules, i.e., rules that encode the transitions from state
to state occurring as the result of actions performed by the agents
within the organisation. As we will see, the idea of conditional
obligations and results-in rules is to introduce modalised conclu-
sions. Accordingly if we have a results-in rule for p for an agent i,
then this means that the rule allows for the derivation of Bringsi p,
and if we have an applicable conditional obligation for an agent
i whose conclusion is p, then the rule can be used to support the
derivation of Obli p.

Formally a rule r consists of its antecedent (or body) A(r) (A(r)
may be omitted if it is the empty set) which is a finite set of tem-
poral literals, an arrow (→ for strict rules, ⇒ for defeasible rules,
and ; for defeaters), and its consequent (or head) C(r) which is a
temporal literal. Given a set R of rules, we denote the set of strict
rules in R by Rs, the set of strict and defeasible rules in R by Rsd ,
the set of defeasible rules in R by Rd , and the set of defeaters in R
by Rdft. R[q : t] denotes the set of rules in R with consequent q : t.
We will use Rc for the set of count-as rules, ROi

to denote the set of
rules for obligation for agent i, and Ri for the set of results-in rules
for agent i. Given the intended use and meaning of the rules, and
the constraints we imposed on the definition of literals, we have to
impose some constraints on the literals that can appear in the head
of a rule. Thus

1. literals modalised by Obli or Permi are not permitted in the
head of count-as rules,

2. if r ∈ ROi
, then modal literals whose main operator is Obli

and Permi are not permitted in the head of r,

3. if r ∈ Ri, then modal literals whose main operator is Bringsi
are not permitted in the head of r and so are action symbols
parametrised with agent i.

As we have seen in the previous sections we have two different
types of normative conditionals: conditionals that initiate an action
or a state of affairs which persists until an interrupting event oc-
curs, and conditionals where the conclusion is co-occurrent with
the premises. To represent this distinction we introduce a further
distinction of rules, orthogonal to the previous one, where rules are
partitioned in persistent and transient rules. A persistent rule is a
rule whose conclusion holds at all instants of time after the conclu-
sion has been derived, unless interrupting events occur; transient
rules, on the other hand, establish the conclusion only for a specific
instant of time.

We use the following notation to differentiate the various types
of rules: Let ↪→ stand for any of →, ⇒ and ;; then with ↪→t

Oi we
represents a transient obligation rule, ↪→p

Oi a persistent obligation
rule, ↪→t

i a transient results-in rule, ↪→p
i a persistent results-in rule,

↪→t
c a transient basic rule, and ↪→p

c a persistent basic rule. The set
of transient rules is denoted by Rt and the set of persistent rules by
Rp.

Strict rules are rules in the classical sense: whenever the
premises are indisputable (e.g., facts) then so is the conclusion. An
example of a strict rule is “every minor is a person”. Written for-
mally:

minor(X) : t →t
c person(X) : t.

Defeasible rules are rules that can be defeated by contrary evi-
dence. An example of such a rule is “every person has the capacity
to perform legal acts to the extent that the law does not provide
otherwise”; written formally:

person(X) : t ⇒p
c hasLegalCapacity(X) : t.

The idea is that if we know that someone is a person, then we may
conclude that he/she has legal capacity, unless there is other evi-
dence suggesting that he/she has not.

Defeaters are rules that cannot be used to draw any conclusions.
Their only use is to prevent some conclusions. In other words, they
are used to defeat some defeasible rules by producing evidence to
the contrary. For example the defeater

WeakEvidence : t ;p
c ¬guilty : t

states that if pieces of evidence are assessed as weak, then they can
prevent the derivation of a “guilty” verdict; on the other hand they
cannot be used to support a “not guilty” conclusion.

The superiority relation among rules is used to define priorities
among rules, that is, where one rule may override the conclusion of
another rule. For example, given the defeasible rules

r : person(X) : t ⇒p
c hasLegalCapacity(X) : t

r′ : minor(X) : t ⇒p
c ¬hasLegalCapacity(X) : t

which contradict one another, no conclusive decision can be made
about whether a minor has legal capacity. But if we introduce a
superiority relation � with r′ � r, then we can indeed conclude
that the minor does not have legal capacity. It turns out that we only
need to define the superiority relation over rules with contradictory
conclusions. Also notice that a cycle in the superiority relation
is counter-intuitive from the knowledge representation perspective.
In the above example, it makes no sense to have both r � r′ and
r′ � r. Consequently, the defeasible logic we discuss requires an
acyclic superiority relation.

A defeasible theory D is a structure (F,R,�) where F is a finite
set of facts, R a finite set of rules (comprising strict rules, defeasible
rules and defeater), and � a superiority relation over R.

Let X range over the modes of rules. A conclusion of D is a
tagged literal and can have one of the following four forms:



+∆X q : t meaning that q is definitely provable, at time t, in D (i.e.,
using only facts and strict rules of mode X).

−∆X q : t meaning that we have proved that q is not definitely prov-
able, at time t, in D.

+∂X q : t meaning that q is defeasibly provable, at time t, in D.

−∂X q : t meaning that we have proved that q is not defeasibly
provable, at time t, in D.

For example, +∂ t
Oi q : t0 means that we a defeasible proof for Obliq

at t0, or, in other words, that Obliq holds at time t0. However, these
tags do not take care whether a conclusion q : t has been obtain via
transient rules (that is, q holds only at time t) or via persistent rules,
in such a case for every t ′ such that t < t ′, the property q persists at
time t ′, unless we have other evidence on the contrary, i.e., a piece
of evidence that terminates the property q. To reflect these issues
we will introduce auxiliary proof tags that indicate whether a con-
clusion is persistent or transient. The proof tags are labelled with
the mode used to derive the rule, according to the proof conditions
given below.

Provability is based on the concept of a derivation (or proof) in
D. A derivation is a finite sequence P = (P(1), . . . ,P(n)) of tagged
literals satisfying the proof conditions (which correspond to infer-
ence rules for each of the kinds of conclusion). P(1..n) denotes the
initial part of the sequence P of length n

Before introducing the proof conditions for the proof tags rele-
vant to this paper we provide some auxiliary notions.

Given a temporal literal q and a proof P = (P(1), . . . ,P(n)) in D
we will say that q is ∆-provable in P, or simply ∆-provable, if there
is a line P(m) of the derivation such that either:

1. if q = l : t, then either:

• P(m) = +∆l : t, or

• P(m) = +∆il : t, or

• Bringsil : t is ∆-provable in P(1..m−1).

2. if q = Bringsil : t, then either:

• P(m) = +∆il : t, or

• P(m) = +∆ jBringsil : t, i 6= j, or

• BringsjBringsil : t is ∆-provable in P(1..m−1), i 6= j.

3. if q = ¬Bringsil : t, then either:

• P(m) =−∆il : t, or

• P(m) = +∆ j¬Bringsil : t, i 6= j, or

• Bringsj¬Bringsil : t is ∆-provable in P(1..m−1), i 6= j.

4. if q = Oblil : t, then either:

• P(m) = +∆Oi l : t, or

• P(m) = +∆ jOblil : t, or

• Bringsil : t is ∆-provable in P(1..m−1).

5. if q = Permil : t, then either:

• P(m) = +∆Oi l : t, or

• P(m) = +∆ jPermil : t, or

• BringsjOblil : t is ∆-provable in P(1..m−1), or

• BringsjPermil : t is ∆-provable in P(1..m−1).

The definition of ∂ -provable has the same first four clauses where
∆ is replaced with ∂ ; however, the last clause, the clause for Permi,
has the following additional condition

P(m) = +πOi l : t

As we will see π is a special proof tag designed explicitly to handle
this case.

In a similar way we can define a literal to be ∆- and ∂ -rejected
by taking, respectively, the definition of ∆-provable and ∂ -provable
and changing all positive proof tags into negative proof tags, adding
a negation in front of the literal when the literal is prefixed by a
modal operator Bringsj, and replacing all the ors by ands. Thus,
for example, we can say that a literal Bringsil is ∂ -rejected if, in
a derivation, we have a line −∂il, and the literal ¬Bringsi¬l is ∂ -
rejected if we have +∂i¬l and so on.

Let X be a modal operator and # is either ∆ or ∂ . A literal l is
#X -provable if the modal literal Xl is #-provable; l is #X -rejected if
the literal Xl is #-rejected.

Let X range over the set {c,Oi, i}. Given a strict rule r we will
say that the rule is ∆X -applicable iff

1. r ∈ RX and ∀ak : tk ∈ A(r), ak : tk is ∆-provable; or

2. if X 6= c and r ∈ Rc
s , i.e., r is a count-as rule, then ∀ak : tk,

ak : tk is ∆X -provable.

The conditions for a rule r to be ∂X -applicable are the same as those
for ∆X -applicable, but where we replace ∆ with ∂ .

Let X range over the set {c,Oi, i}. Given a strict rule r we will
say that the rule is ∆X -discarded iff

1. r ∈ RX and ∃ak : tk ∈ A(r), ak : tk is ∆-rejected; or

2. if X 6= c and r ∈ Rc
s , i.e., r is a count-as rule, then ∃ak : tk,

ak : tk is ∆X -rejected.

The conditions for a rule r to be ∂X -discarded are the same as those
for ∆X -discarded, but where we replace ∆ with ∂ .

We are now ready to define the proof theory of defeasible logic,
that is, the inference conditions to derive tagged literals from a
given theory D.

We begin with the proof conditions to determine whether a literal
is a definite transient conclusion of a theory D.

+∆t
X : If P(n+1) = +∆t

X q : t, then
1) q : t ∈ F , or
2) ∃r ∈ Rt

s[q : t]: r is ∆X -applicable.

The above condition is the normal condition for definite (positive)
proofs in defeasible logic, that is, monotonic derivations using for-
ward chaining, or modus ponens. The only thing to notice is the
case of +∆t

X were X is a modal operator. In this case a strict count-
as rule can be understood as a modal rule, either as a deontic rule
or a results-in rule, if all the literals in the body of the rule are
modalised with the appropriate operator. For example, given the
count-as rule

A,B→t
c C

we can derive +∆OiC if both ObliA and ObliB are ∆-provable.
However, if the rule were

A,ObliB→t
c C

then +∆OiC would not provable. The rule would not ∆Oi -applicable
since, in the body of the rule, we have ObliB, and this requires that
ObliObliB instead of ObliB is ∆Oi -provable.



−∆t
X : If P(n+1) =−∆t

X q : t, then
1) q : t /∈ F , and
2) ∀r ∈ Rt

s[q : t]: r is ∆X -discarded.

To prove that a definite (transient) conclusion is not possible we
have to show that all attempts to give a definite proof of the conclu-
sion fail.

We can now move to persistent definite conclusions.

+∆
p
X : If P(n+1) = +∆

p
X q : t, then

1) q ∈ F ; or
2) ∃r ∈ Rp

s [q : t]: r is ∆X -applicable; or
3) ∃t ′ ∈T : t ′ < t and +∆

p
X q : t ′ ∈ P(1..n).

The first two clauses are the same as the corresponding clauses in
the definition of definite transient conclusion and what the condi-
tion adds is the persistence condition (3). The persistence condition
allows us to reiterate literals definitely proved at previous times, or,
using the terminology of Section 2, that a persistent property q ini-
tiated at a time before the current time. For example, given the the
theory

(F = {DropGlassTom : t0},
R = {DropGlassTom : t →Tom BrokenGlass : t},
�= /0)

we can derive +∆
p
i BrokenGlass : t0, and +∆

p
i BrokenGlass : t1, t0 <

t1. Thus, if Tom drops a glass breaking it at time t0, then the glass
remains broken afterwards; thus it is broken at time t1.

−∆p: If P(n+1) =−∆
p
X q : t, then

1) q /∈ F ; and
2) ∀r ∈ Rp

s [q : t]: r is ∆X -discarded; and
3) ∀t ′ ∈T : t ′ < t and −∆

p
X q : t ′ ∈ P(1..n).

In addition to the conditions we have for the transient case, here we
have to check that for all instants of time before now the persistent
property has not been proved.

According to the above conditions to prove that q is a definite
conclusion of D at time t we have to consider whether q is a definite
transient conclusion of D at time t or if it is a definite persistent
conclusion at t. Thus

+∆X : If P(n+1) = +∆X q : t then
1) +∆t

X q : t ∈ P(1..n) or
2) +∆

p
X q : t ∈ P(1..n).

A definite conclusion is not provable at time t if it is not possible to
prove it persistently nor transiently.

−∆X : If P(n+1) =−∆X q : t then
1) −∆t

X q : t ∈ P(1..n) and
2) −∆

p
X q : t ∈ P(1..n).

Defeasible derivations have an argumentation like structure di-
vided in three phases. In the first phase we put forward a supported
reason (rule) for the conclusion we want to prove. Then in the sec-
ond phase we consider all possible (actual and not) reasons against
the desired conclusion. Finally in the last phase, we have to rebut
all the counterarguments. This can be done in two ways: we can
show that some of the premises of a counterargument do not ob-
tain, or we can show that the argument is weaker than an argument
in favour of the conclusion. This is formalised by the following
(constructive) proof conditions.

Again we start with the conditions for transient defeasible con-
clusions.

+∂ t
X : If P(n+1) = +∂ t

X q : t then
1) +∆X q : t ∈ P(1..n), or
2) −∆X ∼q : t ∈ P(1..n) and

2.1) ∃r ∈ Rsd [q : t]: r is ∂X -applicable and
2.2) ∀s ∈ R[∼q : t] either s is ∂X -discarded or

∃w ∈ R[q : t]: w is ∂X -applicable and w� s.

−∂ t
X : If P(n+1) =−∂ t

X q : t then
1) −∆t

X q : t ∈ P(1..n), and
2) +∆X ∼q : t ∈ P(1..n) or

2.1) ∀r ∈ Rt
sd [q : t]: either r is ∂X -discarded or

2.2) ∃s ∈ R[∼q : t]: s is ∂X -applicable and
∀w ∈ R[q : t]: w is either ∂X -discarded or w 6� s.

The above conditions are, essentially, the usual conditions for de-
feasible derivations in defeasible logic, we refer the reader to [18,
1, 10] for more thorough treatments. The only points we want to
highlight here are:

• clause 2 requires that the complement of the literal we want
to prove is not definitely provable (or definitely provable
for −∂ ), but it does not specify whether it is persistent or
transient: remember that what we want to achieve is to see
whether the literal or its complement are provable at t but
not both; in the same way, and for the same reason, q can be
attacked by any compatible rule for the complement of q.

• count-as rules, as in the case of definite derivations, can play
the role of deontic rules and results-in rules when all the liter-
als in the body are ∂X -derivable, and iii) that current deriva-
tions take precedences over persistent literals. We will return
on this issue after we have introduced the conditions for per-
sistent derivations.

The inference conditions for persistent defeasible proofs are as
follows.

+∂
p
X : If P(n+1) = +∂

p
X q : t then

1) +∆
p
X q : t ∈ P(1..n), or

2) −∆X ∼q : t ∈ P(1..n), and
2.1) ∃r ∈ Rp

sd [q : t]: r is ∂X -applicable, and
2.2) ∀s ∈ R[∼q : t]: either s is ∂X -discarded or

∃w ∈ R[q : t]: w is ∂X -applicable and w� s; or
3) ∃t ′ ∈T : t ′ < t and +∂

p
X q : t ′ ∈ P(1..m) and

3.1) ∀s ∈ R[∼q : t ′′]: t ′ < t ′′ ≤ t, s is ∂X -discarded, or
∃w ∈ R[q : t ′′]: w is ∂X -applicable and w� s

−∂
p
X : If P(n+1) =−∂

p
X q : t then

1) −∆
p
X q : t, and

2) +∆X ∼q : t, or
2.1) ∀r ∈ Rp[q : t]: either r is δX -discarded or
2.2) ∃s ∈ R[∼q : t]: r is ∂X -applicable and

∀w ∈ R[q : t] either w is ∂X -discarded or w 6� t; and
3) ∀t ′ ∈T : t ′ < t, if +∂

p
X q : t ′ ∈ P(1..m), then

3.1) ∃s ∈ R[∼q : t ′′]: t ′ < t ′′ ≤ t, s is ∂X -applicable, and
∀w ∈ R[q : t ′′]: either w is ∂X -discarded or w 6� s.

Clauses 1 and 2 of the above proof conditions are the same as the
corresponding clause for transient defeasible derivations, the only
difference is in clause 3. In the same way we have a persistence
clause in definite derivation we have a persistence clause to de-
feasibly prove/disprove a literal. Thus to show that a literal holds
defeasibly at t we can check that the literal has been proved at a
time t ′, t ′ < t, and that for every instant of time between the two
the property has not been terminated. This amounts to show that all



possible termination events were not triggered or they are weaker
than some reasons in favour of the persistence of the property.

Let us illustrate how the above conditions work with the help of
the following theory.

(F = {A : t0, B : t2, C : t2, D : t3},
R = {r1 : A : t ⇒p

c E : t,

r2 : B : t ⇒p
c ¬E : t,

r3 : C : t ;p
c E : t,

r4 : D : t ⇒t
c ¬E : t},

�= {r3 � r2, r1 � r4})

At time t0, r1 is the only applicable rule; accordingly we derive
+∂

p
c E : t0, or, using the terminology of Section 2, E initiates at t0.

At time t1 no rule is applicable, and the only derivation permitted
is the derivation of +∂

p
c E : t1 using the persistence condition; so E

holds at t1. At time t2 both r2 and r3 are applicable, but r4 is not. If
r2 prevailed, then it would terminates E. However, it is rebutted by
r3, thus, in this case we derive +∂

p
c E : t2. Finally at time t3, rule r4

is applicable, thus we derive +∂ t
c¬E and −∂

p
c E : t3, which means

that r4 terminates E. Notice that, even if r4 is weaker than r1, the
rule that has initiated E at t0, the latter is not applicable at t3, thus
it does not offer any support to maintain E.

In the definition of a literal to be ∂ -provable, we stated that
Permil is provable if there is a line of a derivation containing +πOi l.
Here we give the proof conditions for such a proof tag.

+πt
Oi : If P(1..n) = +πt

Oi q : t, then
1) −∆∼ p ∈ P(1..n); and
2) ∃r ∈ Rt

dft[q : t]: r is ∂Oi -applicable, and
3) ∀s ∈ R[∼q : t]: either s is ∂Oi -discarded or r � s.

+π
p
Oi : If P(1..n) = +π

p
Oi q : t, then

1) −∆∼ p ∈ P(1..n); and
2) ∃r ∈ Rp

d f t [q : t]: r is ∂Oi -applicable, and
∀s ∈ R[∼q : t]: either s is ∂Oi -discarded or r � s; or

3) ∃t ′T : t ′ < t, +π
p
Oi q : t ′ ∈ P(1..n), and

∀s ∈ R[∼q : t ′′]: t ′ < t ′′ ≤ t either s is ∂Oi -discarded or r � s.

While it is possible to define −π , we will refrain from it since it is
not clear how we can make use of it.

In standard deontic logic Perm is defined as the dual of Obl.
Something similar to this has been also adopted here. Given this
assumption, it is redundant to introduce in our system an additional
type of rule devised to capture the idea of permission. However,
since we do not have rules that embed in the consequent obliga-
tions, it could seem hard to represent permissions, which corre-
spond to ¬Obl¬. But, as it is possible to see in the proof condi-
tions, this is not a real problem: It suffices to understand a literal p
to be permitted if there is a defeater with the head p such that this
defeater overrides all obligation rules that allow to infer ¬p.

To derive a permission, let us say Permi p we have to show that
the derivation of the corresponding prohibition (Obli¬p) fails. In
the logic we have developed, obligation rules are meant to intro-
duce a positive modal conclusion, thus it is not possible to prove
directly ¬Obli. There could be two reasons why Obli¬p fails to
be provable: the theory does not have enough resources to prove
it, i.e., there are no applicable obligation rules for p, or the obliga-
tion rules for ¬p are all defeated by obligation rules for p. As we
have seen, only strict and defeasible rules can be used to support
a conclusion, but any rule can be used to prevent the derivation of
a conclusion. Thus if we do not want to obtain the stronger con-
clusion that p is permitted because it is obligatory we have to use

a defeater to defeat a rule for ¬p. For example, suppose there is a
norm that prohibits to U-turn at traffic lights unless there is a “U-
turn permitted” sign. This scenario can be represented as follows:

r1 : ⇒t
Oi ¬Uturn

r2 : UturnSign ;t
Oi Uturn.

where r2 � r1. If both rules are applicable then we have
−∂Oi¬Uturn and +πOi Uturn, from which we obtain PermiUturn,
i.e., U-turn is permitted. If r2 were a defeasible rule, then we would
get +∂Oi Uturn, which means ObliUturn, that is, we have the oblig-
ation to U-turn.

3.3 Example
Let us illustrate our system with the help of a toy, but more con-

crete, example. Suppose the agent i wants to buy on-line a software
from company X . To do this, i should contact X by using the on-
line service provided by X . Any agent has to process her purchase
order within 8 time instants since she connected to the on-line ser-
vice; otherwise a timeout feature will automatically log the agent
off. As soon as the purchase order is sent to X and processed, the
system will log the agent off. If i sends a purchase order which
matches X’s conditions, and provided that X made an on-line offer
for the software, this counts as i’s proclamation that the software
is purchased. Once that the act of purchasing is performed some
obligations follow:

• X is obliged towards i to deliver an invoice; this obligation
will not longer hold when the invoice is sent;

• after receiving the invoice, i in turn will have to pay X the
price.

The scenario is represented as follows (bold type expressions de-
note action symbols, the italicised ones state of affairs; to save
space, DInvoice abbreviates “Deliver the Invoice”):

F = {AdvertisingX : t0,ProvideServiceX : t0,ConnectServicei : t1,

SendOrderi : t2,BringsX DInvoice : t4,BringsiPay : t7}
R = {r1 : ConnectServicei : tx ⇒p

i UseService : tx,

r2 : TimeOut : tx+8 ⇒p
X ¬UseService : tx+8,

r3 : BringsiPurchase : ty ⇒p
X ¬UseService : ty+1,

r4 : BringsiUseService : tz,SendOrderi : tz ⇒t
c ProcliPurchase : tz,

r5 : AdvertisingX : tk,ProvideServiceX : tk ⇒p
c BringsX Offer : tk,

r6 : BringsX Offer : tz,ProcliPurchase : tz ⇒t
c BringsiPurchase : tz,

r7 : BringsiPurchase : tz ⇒p
Oi BringsX DInvoice : tz+1,

r8 : BringsX DInvoice : th ;
p
Oi ¬BringsX DInvoice : th+1,

r9 : BringsiPurchase : tq,BringsX DInvoice : tq ⇒p
OX BringsiPay : tq+1,

r10 : BringsiPay : tv ;
p
OX ¬BringsiPay : tv+1}

�= {r10 � r9, r8 � r7, r3 � r1, r2 � r1}

Let us comment this scenario by focusing on the relevant time in-
stants. At t0 we have AdvertisingX, ProvideServiceX and these
count as BringsX Offer. At t1 i connects to on-line service provided
by X and so we get BringsiUseService. At t2 agent i sends her
purchase order to X : again, we have BringsiUseService, but we
also get ProcliPurchase; since BringsX Offer still holds, we obtain
via r6 BringsiPurchase. At t3 we will infer BringsX¬UseService;
since the agent has already made the purchase, X is obliged to
deliver the invoice. At t4 this obligation holds, but we also have
BringsX DInvoice. Thus, at point t5, the obligation to deliver the
invoice will no longer apply to X . At t6 we get OblXBringsiPay. At
t7, i pays X ; so, by virtue of r10, at any subsequent instant of t7, i is
no longer obliged to pay.



4. CONCLUSIONS
Nute [19] proposed a Deontic Defeasible Logic which, in some

respect, is similar to the framework presented here. Beside minor
differences in the way rules are handled at the propositional level,
the main difference is that Nute develops a system able to deal with
non-temporalised and non-directed obligations. To do this, he uses
one type of rule and adds explicit operators in the head of rules.
Traditionally, in proof-theory, rules to introduce operators give the
meaning of them. Thus using one and the same type of rule for
obligation and factual conclusion does not show the real meaning
of the operators involved. Moreover, it is not clear to us whether
and how conversions, such as those that permit to obtain +∆OiC
from A,B →t

c C and the fact that ObliA and ObliB are ∆-provable,
can be dealt with only using a single rule type.

This paper originates from two lines of research. The first con-
cerns the logical treatment of directed obligations. In this regard,
we started, though with some differences, from the analysis of [14].
As regards other aspects such as the research into legal positions,
and particularly into the notion of power, we are particularly in-
debted to the seminal work [13]. The second line of research con-
cerns the temporal and dynamic treatment of obligations. In this
regard, a large piece of recent literature is available. We are partic-
ularly indebted to the works by Sergot and colleagues on the use of
Event Calculus, such as [3].

Let us see shortly some issues for future research. In this paper
violations are viewed as neutral with regard to obligations. If an
obligation holds at a certain instant, the violation will not be con-
sidered and such an obligation will simply continue to hold until it
is complied with. In [11, 8] we showed how the non-classical (sub-
structural) connective ⊗, whose interpretation is such that p⊗q is
read as “q is the reparation of the violation of p”, can be embed-
ded within DL. This work has to be extended to cover temporalised
normative concepts. [16] has proved, for the propositional case,
that the set of tagged literals can be derived from the theory in lin-
ear time in the number of rules in it. We expect not to be hard to
extend this result to the modal case. The distinction of different
kinds of rules does not seem to affect the complexity of the the-
ory. The case for basic rules is the same adopted in standard DL
while, for the other components, we convert relevant rules into the
appropriate “extended” modal literals. At this point, the inference
mechanism is the same as the standard one.
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