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This paper presents an approach for the specification and implementation of translating
contracts from a human-oriented form into an executable representation for monitoring.
This will be done in the setting of RuleML. The task of monitoring contract execution and
performance requires a logical account of deontic and defeasible aspects of legal language;
currently such aspects are not covered by RuleML; accordingly we show how to extend
it to cover such notions. From its logical form, the contract will be thus transformed into
a machine readable rule notation and eventually implemented as executable semantics
via any mark-up languages depending on the client’s preference, for contract monitoring
purposes.
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1. Background and Motivation

Business contracts are mutual agreements between two or more parties engaging

in various types of economic exchanges and transactions. They are used to specify

the obligations, permissions and prohibitions that the signatories should be held

responsible for and to state the actions or penalties that may be taken when any of

the stated agreements are not being met.

Given the increasing efforts by organisations to carry out their business via

the Internet, it is crucial to model contracts in terms of workflows, such that all

relevant tasks of contracts can be described as elements of business processes, where

business processes are constrained by business rules, statements or policies listed in

business contracts or other legal documents that are used by organisations to run

the activities, to provide an understanding of how a business operates, and to direct

the behaviour of the organisation.

Business rules are typically expressed implicitly in documents and they are also

hidden in many programs across clients, applications and database tiers of today’s

business information systems, which make it even harder to monitor the expected

behaviour of the policies.
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Business rules are usually applicable at two levels: the business domain and the

operational level of an information system. In the business domain, business rules

are usually described in the form of natural language expressions. However, this form

cannot be applied to information systems; hence these statements of business rules

must be made operational by transforming them into a declarative (rule) language.

The need to formalise business rules explicitly has thus become increasingly essential

with the growing reliance on online business exchanges.

This paper focuses on transforming business contract rules from natural lan-

guage into a machine readable and executable form. In particular, our aim is to

implement the contract in a way that allows explicit monitoring of rules by the

computer for any case of violation. Based on a given contract scenario, the contract,

being in its human-oriented form will be analysed and represented in a logical form

using Deontic and Defeasible Logic. The contract will be transformed from its logi-

cal form into a machine readable rule notation, based on RuleML, and implemented

as executable semantics.

In addition the use of logic modelling techniques is beneficial for reasoning about

contracts in various ways. Here we outline some possible application areas where the

formal representation of a contract can prove useful. In particular we distinguish

between benefits for drafting contracts, and benefits for understanding and the

application of contracts.

Drafting contracts can be supported in the following ways:

1. Anomaly detection: Formal methods can be used to detect anomalies such

as inconsistency, incompleteness and circularity. Such anomalies can be

detected either by static analysis or by the performance of the proof theory.

2. Hypothetical reasoning: It is possible to investigate the effects of changes

to clauses of an entire contract. This is possible because a contract is rep-

resented as executable specifications.

3. Debugging: In many cases we know what the answer to a specific query

should be, yet a contract in its current form leads to a different answer.

Debugging suggests changes to the contract which will have as an effect the

desired outcome. In our project, debugging can be carried out along the

lines of “declarative debugging”28.

Regarding the understanding and application of contracts, formal systems have

the following advantages. These advantages are important, for example, for “naive

users/subjects of contracts” who are regulated but do not wish to study the contract

in detail.

4. Decision support: It is possible to run a specific case with a given contract to

obtain the expected output. For example, given the formal representation

of a contract, a user can interrogate the system to determine whether a

course of action will result in a breach of the contract before the user

commits herself to that course of action.
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5. Explanation: When an output is given, there is also a reasoning chain ex-

plaining this response. This can be most useful in, say, help desks.

6. Monitoring: A contract, implemented as executable semantics, can be trans-

formed in a workflow specification for the automated execution of the busi-

ness processes defined by the clauses of the contract. To this end it is

important that all implicit conditions of the contract are made explicit.

The paper is organised as follow. In Section 2 we introduce a simple contract

comprising most of the salient features typically present in contracts. The contract

will be used to motivate and illustrate how to use the logical framework and RuleML

in this context. Then in Section 3 we will outline the logical framework required

to represent contracts. Section 4 introduces and motivates RuleML. In Section 5

we discuss the relationships between Defeasible Logic and RuleML before showing

(Section 6) how to extend RuleML with tags corresponding to the normative notions

relevant for contracts, and how to use the logical framework for reasoning with and

about contracts (Section 7). We conclude in Section 8 with some final remarks and

suggestions for future extensions of this work.

2. A Sample Contract

A contract is a declarative act jointly performed by all parties whose status is

going to be changed by the declaration they are performing. Such joint declarations

are usually performed by combining two acts, the first of which is called offer and

the second acceptance11. As is well-known, this general perspective has been widely

adopted in the e-commerce domain, and indeed communicative aspects are crucial in

scenarios such as the contract net protocol30,11. However, we are not interested here

in modelling of negotiation and establishment of contracts. Rather, we will focus

on the monitoring of contract execution and performance. Contract monitoring is a

process whereby activities of the parties listed in the contract are governed legally,

so that the correspondence of the activities listed in the contract can be monitored

and violations acted upon.

This paper is based on the analysis of the following sample contract.

CONTRACT OF SERVICES

This Deed of Agreement is entered into as of the Effective Data iden-
tified below.

BETWEEN

ABC Company (To be known as the Purchaser)

AND

ISP Plus (To be known as the Supplier)

WHEREAS (Purchaser) desires to enter into an agreement to pur-
chase from (Supplier) Application Server (To be known as (Goods) in
this Agreement).

NOW IT IS HEREBY AGREED that (Supplier) and (Purchaser)
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shall enter into an agreement subject to the following terms and condi-
tions:

1 Definitions and Interpretations

2.1 Price is a reference to the currency of the Australia unless otherwise
stated.

2.2 This agreement is governed by Australia law and the parties hereby
agree to submit to the jurisdiction of the Courts of the Queensland
with respect to this agreement.

2 Commencement and Completion

3.1 The commencement date is scheduled as January 30, 2002.
3.2 The completion date is scheduled as January 30, 2003.

3 Price Policy

3.1 A “Premium Customer” is a customer who has spent more that
$10000 in goods. Premium Customers are entitled a 5% discount
on new orders.

3.2 Goods marked as “special order” are subject to a 5% surcharge.
Premium customers are exempt from special order surcharge.

3.3 The 5% discount for premium customers does not apply for goods
in promotion.

4 Purchase Orders

4.1 The (Purchaser) shall follow the (Supplier) price lists at
http://supplier.com/catalog1.html.

4.2 The (Purchaser) shall present (Supplier) with a purchase order for
the provision of (Goods) within 7 days of the commencement date.

5 Service Delivery

5.1 The (Supplier) shall ensure that the (Goods) are avail-
able to the (Purchaser) under Quality of Service Agreement
(http://supplier/qos1.htm). (Goods) that do not conform to the
Quality of Service Agreement shall be replaced by the (Supplier)
within 3 days from the notification by the (Purchaser), otherwise
the (Supplier) shall refund the (Purchaser) and pay the (Purchaser)
a penalty of $1000.

5.2 The (Supplier) shall on receipt of a purchase order for (Goods)
make them available within 1 days.

5.3 If for any reason the conditions stated in 4.1 or 4.2 are not met,
the (Purchaser) is entitled to charge the (Supplier) the rate of $
100 for each hour the (Goods) are not delivered.

6 Payment

6.1 The payment terms shall be in full upon receipt of invoice. Interest
shall be charged at 5 % on accounts not paid within 7 days of the
invoice date. The prices shall be as stated in the sales order unless
otherwise agreed in writing by the (Supplier).

6.2 Payments are to be sent electronically, and are to be performed
under standards and guidelines outlined in PayPal.

7 Termination NOT SHOWN TO SAVE SPACE

8 Disputes NOT SHOWN TO SAVE SPACE
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SIGNATURES

In a nutshell, the items covered within this contract are: (a) the roles of the parties;

(b) the period of the contract (the times at which the contract is in force); (c) the

nature of consideration (what is given or received), e.g., actions or items; (d) the

obligations and permissions associated with each role, expressed in terms of criteria

over the considerations, e.g., quality, quantity, cost and time; (e) the domain of

the contract (which determines the rules under which the validity, correctness, and

enforcement of the contract will operate). A contract can be viewed as a legal

document consisting of a finite set of articles, where each article consists of finite

set of clauses. Following our sample, there are basically two types of clauses:

(1) definitional clauses, which define relevant concepts occurring in the contract;

(2) normative clauses, which regulate the actions of the parties for contract per-

formance, and include deontic modalities such as obligations, permissions and

prohibitions.

3. The Logical Framework

In this section we sketch the basics of the logical apparatus used in the paper. Basi-

cally, we will combine three logical components: Defeasible Logic, deontic concepts,

and a fragment of a logic intended to deal with normative violations.

RuleML 32 is used here to make explicit all conditions of contracts in a machine

readable language, which, in turn, is transformed into executable code. RuleML

provides a way of expressing business rules as modular, stand-alone units35,36. It also

possesses the ability to resolve conflicts using priorities and override predicates8,36.

3.1. Defeasible Logic

Courteous logic programming (CLP) has been advanced as the inferential engine

for business contracts represented in RuleML 18,17,19. Here, instead, we propose De-

feasible Logic (DL) as the inferential mechanism for RuleML. In fact, CLP is just

one of the many variants of DL6. Over the years DL proved to be a flexible non-

monotonic formalism able to capture different and sometimes incompatible facets

of nonmonotonic reasoning4, and efficient and powerful implementations have been

proposed26,7,17. The primary use of DL in the present context is aimed at the reso-

lution of conflicts that might arise from the clauses of a contract. DL analyses the

conditions laid down by each rule in the contract, identifies the possible conflicts

that may be triggered and uses the priorities defined over the rules to eventually

resolve a conflict. In addition DL encompasses other existing formalisms for norma-

tive reasoning developed in the AI & Law field13 such as Prakken and Sartor’s31

and Loui and Simari’s33, and recent work shows that DL is suitable for extensions

with modal and deontic operators15.
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In the rest of the section we first give an informal presentation of Defeasible

Logic and then we present it formally. Finally we illustrate how to use it with the

help of an example.

3.1.1. A Defeasible Logic Primer

A defeasible theory contains five different kinds of knowledge: facts, strict rules,

defeasible rules, defeaters, and a superiority relation.

Facts are indisputable statements, for example, “the price of the spam filter is

$50”. Facts are represented by predicates

Price(SpamFilter , 50).

Strict rules, defeasible rules and defeaters are represented, respectively, by expres-

sions of the form A1, . . . , An → B, A1, . . . , An ⇒ B and A1, . . . , An ; B, where

A1, . . . , An is a possibly empty set of prerequisites and B is the conclusion of the

rule. We only consider rules that are essentially propositional. Rules containing free

variables are interpreted as the set of their ground instances.

Strict rules are rules in the classical sense: whenever the premises are indis-

putable then so is the conclusion. Thus they can be used for definitional clauses.

An example of a strict rule is “A ‘Premium Customer’ is a customer who has spent

$10000 on goods” (Clause 3.1, part 1):

TotalExpense(X, 10000) → PremiumCustomer(X).

Defeasible rules are rules that can be defeated by contrary evidence. An example

of such a rule is “Premium Customer are entitled to a 5% discount” (Clause 3.1,

part 2):

PremiumCustomer(X) ⇒ Discount(X).

The idea is that if we know that someone is a Premium Customer, then we may

conclude that she is entitled to a discount unless there is other evidence suggesting

that she may not be (for example if she buys a good in promotion, Clause 3.3).

Defeaters are a special kind of rules. They are used to prevent conclusions not

to support them. For example:

SpecialOrder(X ),PremiumCustomer(X) ; ¬Surcharge(X).

This rule (Clause 3.2, part 2) states that premium customers placing special orders

might be exempt from the special order surcharge. This rule can prevent the deriva-

tion of a “surcharge” conclusion. On the other hand it cannot be used to support

a “not surcharge” conclusion. It is worth noting that RuleML does not support de-

featers: this is not a limitation since defeaters do not augment the expressive power

of a theory; in fact defeaters can be simulated by defeasible rules5. Moreover it is

not clear to us whether defeaters correspond to “natural” and “intuitive” clauses

in contracts. In the rest of the paper we will not make use of defeaters.
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Defeasible Logic is a “skeptical” non-monotonic logic, meaning that it does not

support contradictory conclusions. Instead Defeasible Logic seeks to resolve con-

flicts. In cases where there is some support for concluding A but also support for

concluding ¬A, Defeasible Logic does not conclude either of them (thus the name

“skeptical”). If the support for A has priority over the support for ¬A then A is con-

cluded. This means that the designer of a Defeasible Logic theory (a contract) has

to identify pairs of incompatible literals. Two literals are said to be incompatible if

they cannot both hold at the same time, which essentially means that one of the lit-

erals implies the negation of the other. This means that for every literal A, A and its

negation ¬A are incompatible, but there are other cases. For example, let us suppose

we have the predicates PremiumCustomer and BasicCustomer . If we know that,

according to the interpretation of the business rules behind the contract we want to

model they cannot be true at the same time for one and the same individual; then

we can specify that PremiumCustomer and BasicCustomer are incompatible which

each other. This means that PremiumCustomer(a) and BasicCustomer (a) cannot

both be true for the same customer a. Another example of conflicting literals re-

gards the price of goods, where for each literal Price(X, Y ) the literals incompatible

with it are all literals Price(X, Z), where Z 6= Y . This construction ensures that

for every good X , the price to be paid for it is unique (even if this price can be

calculated from the advertised price and the eventual discount and surcharge, and

distinct instances of it can be different).

Having identified conflicting literals, with the aid of an inference tool we can

then detect conflicting (defeasible) rules, i.e., rules such that the literals appearing

in the conclusions are incompatible. As we have alluded to above, no conclusion can

be drawn from conflicting rules in defeasible logic unless these rules are prioritised.

The superiority relation among rules is used to define priorities among rules, that

is, where one rule may override the conclusion of another rule. For example, given

the defeasible rules

r : PremiumCustomer(X) ⇒ Discount(X)

and

r′ : SpecialOrder (X) ⇒ ¬Discount(X)

which contradict one another, no conclusive decision can be made about whether a

Premium Customer who has placed a special order is entitled to the 5% discount.

But if we introduce a superiority relation > with r′ > r, then we can indeed conclude

that special orders are not subject to discount.

We now give a short informal presentation of how conclusions are drawn in

Defeasible Logic. A conclusion p can be derived if there is a rule whose conclusion

is p, whose prerequisites (antecedent) have either already been proved or given in

the case at hand (i.e. facts), and any stronger rule whose conclusion is ¬p has

prerequisites that fail to be derived. In other words, a conclusion p is derivable

when:
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• p is a fact; or

• there is an applicable strict or defeasible rule for p, and either

– all the rules for ¬p are discarded (i.e., are proved to be not applicable) or

– every applicable rule for ¬p is weaker than an applicable stricta or defea-

sible rule for p.

The formal definitions of derivations in Defeasible Logic are in the next section;

the reader not interested in the technical details can skip directly to Section 3.1.3

where we provide a comprehensive example of how to use Defeasible Logic.

3.1.2. A Formal Presentation of Defeasible Logic

Now we present defeasible logics formally. A rule r consists of its antecedents (or

body) A(r) which is a finite set of literals, an arrow, and its consequent (or head) C(r)

which is a literal. There are three kinds of arrows, →, ⇒ and ; which correspond,

respectively, to strict rules, defeasible rules and defeaters. Where the body of a rule

is empty or consists of one formula only set notation may be omitted in examples.

For each literal p we define the set of p-Incompatible literals (I(p)), that

is, the set of literals that cannot hold when p does. We stipulate that the

negation of a literal is always complementary to the literal. Let us consider

again the predicates PremiumCustomer and BasicCustomer . If according to

the business rules those two predicate cannot be both true for one and the

same customer, then we define, for any constant a, I(PremiumCustomer (a)) =

{¬PremiumCustomer(a),BasicCustomer (a)}.

Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of

strict and defeasible rules in R by Rsd, the set of defeasible rules in R by Rd, and

the set of defeaters in R by Rdft. R[q] denotes the set of rules in R with consequent

q, and R[I(q)] denotes the set of rules in R whose consequent is in I(q).

A defeasible theory D is a structure

D = (F, R, <, I)

where F is a finite set of facts, R is a finite set of rules, < is a binary relation

over R, and I is a function mapping a literal to a set of literals (the set of literals

incompatible with it).

A conclusion in DL is a tagged literal and can have one of the following forms:

• +∆q to mean that the literal q is definitely provable (i.e., using only facts and

strict rules),

• −∆q when q is not definitely provable,

• +∂q, whenever q is defeasibly provable, and

• −∂q to mean that we have proved that q is not defeasibly provable.

aNotice that a strict rule can be defeated only when its antecedent is defeasibly provable.



July 5, 2005 18:47 WSPC/INSTRUCTION FILE coala

Representing Business Contracts in RuleML 9

Provability is based on the concept of a derivation. A derivation is a finite sequence

P = (P (1), . . . , P (n)) of tagged literals satisfying four conditions (which correspond

to inference rules for each of the four kinds of conclusion). Here we will give only

the conditions for +∆ and +∂q. P (1..i) denotes the initial part of the sequence P

of length i:

+∆: If P (i + 1) = +∆q then

(1) q ∈ F or

(2) ∃r ∈ Rs[q] ∀a ∈ A(r) : +∆a ∈ P (1..i).

This definition describes forward chaining of strict rules. For a literal q to be def-

initely provable we need to find a strict rule with head q (r ∈ Rs[q]), of which all

antecedents have been definitely proved previously (∀a ∈ A(r) : +∆a ∈ P (1..i).).

−∆: If P (i + 1) = −∆q then

∀r ∈ Rs[q]∃a ∈ A(r) : −∆a ∈ P (1..i).

To establish that q cannot be proven definitely we must establish that for every

strict rule with head q there is at least one antecedent which has been shown to be

non-provable.

Now we turn to the more complex case of defeasible provability. Before giving

its formal definition we provide the idea behind such a notion. A defeasible proof

of a literal p consists of three phases. In the first phase either a strict or defeasible

rule is put forth in order to support a conclusion p; then we consider an attack

on this conclusion using the rules for its negation ¬p. The attack fails if each rule

for ¬p is either discarded (it is possible to prove that part of the antecedent is not

defeasibly provable) or if we can provide a stronger counterattack, that is, if there is

an applicable strict or defeasible rule stronger than the rule attacking p. It is worth

noting that defeaters cannot be used in the last phase.

+∂: If P (i + 1) = +∂q then either

(1) +∆q ∈ P (1..i) or

(2) (2.1) ∃r ∈ Rsd[q]∀a ∈ A(r) : +∂a ∈ P (1..i) and

(2.2) ∀p ∈ I(q) − ∆p ∈ P (1..i) and

(2.3) ∀s ∈ R[I(q)] either

(2.3.1) ∃a ∈ A(s) : −∂a ∈ P (1..i) or

(2.3.2) ∃t ∈ Rsd[q] such that

∀a ∈ A(t) : +∂a ∈ P (1..i) and t > s.

Let us work through the condition for +∂, an analogous explanation holds for −∂

below. To show that q is provable defeasibly we have two choices: (1) We show that

q is already definitely provable; or (2) we need to argue using the defeasible part

of D as well. In particular, we require that there must be a strict or defeasible rule

with head q (r ∈ Rsd[q]) which can be applied (2.1), i.e., that all the premises in the

antecedent of the rule are already provable. But now we need to consider possible

“attacks”, that is, reasoning chains in support of a complementary of q. To be more
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specific: to prove q defeasibly we must show that every complementary literal is

not definitely provable (2.2). Also (2.3) we must consider the set of all rules which

are not known to be inapplicable and which have head in I(q) (note that here we

consider defeaters, too, whereas they could not be used to support the conclusion

q; this is in line with the motivation of defeaters given before). Essentially each

such rule s attacks the conclusion q. For q to be provable, each such rule s must

be counterattacked by a rule t with head q with the following properties: (i) t must

be applicable at this point, and (ii) t must be stronger than s. Thus each attack on

the conclusion q must be counterattacked by a stronger rule.

−∂: If P (i + 1) = −∂q then

(1) −∆q ∈ P (1..i) and

(2) (2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r) : −∂a ∈ P (1..i) or

(2.2) ∃p ∈ I(q) such that +∆p ∈ P (1..i) or

(2.3) ∃s ∈ R[I(q)] such that

(2.3.1) ∀a ∈ A(s) : +∂a ∈ P (1..i) and

(2.3.2) ∀t ∈ Rsd[q] either

∃a ∈ A(t) : −∂a ∈ P (1..i) or t 6> s

The purpose of the −∂ inference rules is to establish that it is not possible to

prove +∂. This rule is defined in such a way that all the possibilities for proving

+∂q (for example) are explored and shown to fail before −∂q can be concluded.

Thus conclusions tagged with −∂ are the outcome of a constructive proof that the

corresponding positive conclusion cannot be obtained.

As we have already said defeaters can be simulated in term of the other elements

of Defeasible Logic5, thus we can consider theories without defeaters. The same is

true for the superiority relation, it is possible to give a linear and modular transfor-

mation that “compiles” the superiority relation in the rest of the theory, however,

the resulting theory is not as natural as with explicit priorities.

3.1.3. Defeasible Logic at Work

To explain the mechanism of defeasible derivations we consider the fragment of the

contract representing the price policy:

r1 : AdvertisedPrice(X, Y ),Discount(X, Z),

Surcharge(X, W ), K = Y − Z + W ⇒ Price(X, K)

r2 : ⇒ Discount(X, 0)

r3 : ⇒ Surcharge(X, 0)

r4 : Promotion ⇒ Discount(X, 0)

r5 : PremiumCustomer ,AdvertisedPrice(X, Y ), Z = Y ∗ .05 ⇒ Discount(X, Z)

r6 : SpecialOrder ,AdvertisedPrice(X, Y ), Z = Y ∗ .05 ⇒ Surcharge(X, Z)

r7 : PremiumCustomer ⇒ Surcharge(X, 0)
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The first rule states that the price of a good is determined by its advertised price

plus the surcharge minus the discount. Rules r2 and r3 set the value of discount

and surcharge to 0. However those value depend on the status of the goods and

customer. Rule r4 specifies that goods in promotion are not subject to discount,

while rule r5 gives a 5% discount to premium customer. The idea of rules r6 and

r7 is that special orders are subject to a 5% surcharge unless they are placed by

premium customers.

According to the above discussion the superiority relation is as follows:

r2 < r5 < r4 r3 < r6 < r7

and the (p-)incompatile literals are defined such that for every good X the price,

discount and surcharge are unique.

Let us examine the following cases: 1) there is a premium customer who has

bought a good, and 2) a premium customer placed a special order on a good in

promotion. Notice that there is always an applicable instance of rule r1. Obviously

the parameters in it depend on the conditions determined by the other rules. In the

first case rules r2 and r5 (with the right instances) are both applicable and their

conclusion conflict with each other, thus we have to use the superiority relation to

resolve the conflict, and we have that r5 prevails over r2. For Surcharge we have

to consider rules r3, r6 and r7, where only r3 and r7 are applicable and agree

on the second argument of the predicate. Thus we obtain Discount(X, 5%), and

Surcharge(X, 0).

In the second case, as before rule r5 is applicable, but here we have that rule

r4 is applicable as well. Since r4 is superior to r4 we derive that the discount

is not applicable (i.e., Discount(X, 0)). Since the order is a special order, rule r6

is applicable, but this rule is defeated by the stronger rule r7. Thus there is no

surcharge (Surcharge(X, 0)).

It is worth noting that in this example the superiority relation is explicitly given.

In some cases the superiority relation can depend on the context. To accommodate

this phenomenon a variant of Defeasible Logic where the superiority relation is

computed dynamically according to some principles encoded as defeasible rules has

been proposed2. We will not pursue this issue any further in this work.

3.2. Defeasible Deontic Logic

The version of Defeasible logic we have presented in the previous section does not

support explicit reasoning on deontic concepts and is unable to identify the be-

haviour of roles in the contract and contract violations. On the contrary, moni-

toring contract performance obviously requires dealing with these aspects. Rather

than adding ad hoc predicates to the language, improvements must be made by

adding deontic modalities29,15 and a logic for violations14, so as to achieve a richer

language that can represent the behaviour of roles in the contract in a more natural

and applicable manner. The advantage of this approach is to incorporate general

and flexible reasoning mechanisms within the inferential engine.
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A formal representation language should offer concepts close to the notions the

language is designed to capture. Contracts typically contain provisions about de-

ontic concepts such as obligations, permissions, entitlements, violations and other

(mutual) normative positions the signatories of a contract agree to comply with.

Accordingly a (business) contract language should cater for those notions.

In addition the language should be supplemented by either a formal semantics

or facilities to reason with and about the symbols of the language to give meaning

to them. As usual the symbols of the language can be partitioned in two classes:

logical symbols and extra logical symbols. The logical symbols are meant to repre-

sent general concepts and structures common to every contract, while extra logical

symbols encode the specific subject matter of given contracts. In this perspective

the notions of obligation and permission will be represented by deontic modalities,

while concepts such as price, service and so on are better captured by predicates

since their meaning varies from contract to contract.

We believe that the approach with deontic modalities is superior to the use of

ad hoc predicates at least for the following aspectsb:

• Ease of expression and comprehension. In the modal approach the relationships

among the modalities (and normative positions) are encoded in the logic and

reasoning mechanism, while for ad hoc predicates contracts are cluttered with

rules describing the logical relationships among different modes/representations

of one and the same concept. For example, given the predicate pay(X), we

have to create predicates such as obligatory pay(X), permitted pay(X), . . . and

rules such as obligatory pay(X) → permitted pay(X) and so on. Thus ad hoc

predicates do not allow users to focus only and exclusively on aspects related

to the content of a contract, without having to deal with any aspects related to

its implementation.

• Clear and intuitive semantics. It is possible to give a precise, unambiguous, intu-

itive and general semantics to the notions involved, while each ad hoc predicate

requires its own individual interpretation, and in some cases complex construc-

tions (for example reification) are needed to interpret some ad hoc predicates.

• Modularity. A current line of research proposes that the combination of deon-

tic modalities with modalities for speech acts and actions faithfully represent

complex normative positions such as delegation, empowerment as well as many

others that may appear in contracts24,11. In the modal approach those aspects

can be added or decomposed modularly without forcing the user to rewrite the

predicates and rules to accommodate the new facilities, or to reason at different

granularity.

bIn addition to the aspects we discuss here, we would like to point out that it has been agued20,23

that deontic logic is better than a predicate based representation of obligations and permissions
when the possibility of norm violation is kept open. As we argue in the next section a logic of
violation is essential for the representation of contracts where rules about violations are frequent.
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Thus, we make use of the deontic modalities of obligation and permission. Over

the years many approaches to normative reasoning have been proposed and conse-

quently many deontic logics, sometimes with different and incompatible intuitions

and motivations, have been developed. See, among others, Hilpinen22 for a recent

overview of the most important approaches. Given the plethora of systems pro-

posed we believe that it is not crucial to provide here a full characterisation of

these concepts. However, the majority of the logics assumes at least a logic for obli-

gation enjoys OA → ¬O¬A, is closed under logical equivalence and contains the

usual schema OA ≡ ¬P¬A (or equivalently PA ≡ ¬O¬A), where O and P are,

respectively, the deontic operators for obligation and permission. Accordingly we

will assume a logic that satisfies these minimal principles; other properties can then

be added when needed. The formalism is enriched to deal with directed deontic op-

erators: the expression Os,bA states that A is obligatory such that s is the subject

of such an obligation and b is its beneficiary21.

To extend defeasible logic with deontic operators we have two options: the first

is to use the same inferential mechanism as basic defeasible logic and to represent

explicitly the deontic operator in the conclusion of normative rules29 while for the

second option we introduce new types of rules for the deontic operator to differen-

tiate between normative and definitional (or factual) rules15.

For example Clause 4.1 “The Purchaser shall follow the Supplier price lists.”

can be represented as

AdvertisedPrice(X) ⇒ Opurchaser ,supplierPay(X)

if we follow the first option and

AdvertisedPrice(X) ⇒Opurchaser,supplier
Pay(X)

according to the second option, where ⇒Opurchaser,supplier
denotes a new type of defea-

sible rule relative to the deontic operator Opurchaser ,supplier .

The differences between the two approaches, besides the fact that in the first ap-

proach there is only one type of rules while the second accounts for factual and deon-

tic rules, is that the first approach has to supplement the definition of p-incompatible

literals with appropriate literals for each literal p. The second approach can use dif-

ferent proof conditions for deontic modalities to offer a more fine grained control

over the deontic operators and it allows for interaction between deontic operators

and other modal operators15.

3.3. Logic of Violation

Finally, let us sketch how to incorporate a logic for dealing with normative violations

within the framework we have described so far. A violation of an obligation does

not imply the cancellation of such an obligation. This often makes it difficult to

characterise the idea of violation in many formalisms for defeasible reasoning34.

We will take and adapt some intuitions we developed fully elsewhere14. To reason

aboupt violations we have to represent contrary-to-duties (CTDs) or reparational
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obligations. These are in force only when normative violations occur and are meant

to “repair” violations of primary obligations9. Thus a contrary-to-duty is a condi-

tional obligation arising in response to a violation, where a violation is signalled

by an unfulfilled obligation. Very often contracts make provisions about unfulfilled

clauses: those provisions describe what some of the subjects of a contract have to

do in case they breach the contract (or part of it), and can vary from (pecuniary)

penalties –where the obligation to pay the penalty is a contrary-to-duty– to the

termination of the contract itself –in this case contrary-to-duties do not exist, i.e.,

a breach of the contract that cannot be repaired.

3.3.1. Obligations, Violations and Contrary-to-Duties

Contrary-to-duties are one of the most debated fields of deontic logic, and, at the

same time, they provide a very fertile area for the development of the so called

contrary-to-duty paradoxes. In response to the paradoxes many systems often with

different intuitions and motivations have been proposed. The question whether an

ultimate solution for all CTD paradoxes exists is still open. In this paper we do

not touch upon this issue and we focus on a simple logic of violation that seems

to avoid most of the well-known paradoxes, offers a simple computational model

to compute chains of violations and reparations and can be combined with the

Defeasible Deontic Logic of Section 3.2. As we will see the ability do deal with

violations or potential violations and the reparational obligation generated from

them is one the essential requirements for reasoning about and monitoring the

implementation and performance of business contracts.

The idea behind the logic of violation14 we are going to outline here is that the

meaning of a clause of a contract (or, in general a norm in a normative system)

cannot be taken in isolation: it depends on the context where the clause is embedded

in (the contract). For example a violation cannot exist without an obligation to be

violated. The second aspect we have to consider is that a contract is a finite set of

explicitly given clauses and, very often, some other clauses are implicit (or can be

derived) from the already given clauses. The ability to extract all the implicit clauses

from a contract is of paramount importance for the monitoring of it; otherwise some

aspects of the contract could be missing from its implementation. Accordingly a

logic of violation to be useful for the monitoring and analysis of a contract should

provide facilities to i) related interdependent clauses of it and ii) extract or generate

all the clauses (implicit or explicit) of a contract.

As we have just discussed a violation cannot exist without an obligation to be

violated. Thus we have a sequential order among an obligation, its violation and

eventually an obligation generated in response to the violation and so on. To capture

this intuition we introduce the non-classical connective ⊗, whose interpretation is

such that OA⊗OB is read as “OB is the reparation of the violation of OA”; in other

words the interpretation of OA ⊗ OB, is that A is obligatory, but if the obligation

OA is not fulfilled (i.e., when ¬A is the case, and consequently we have a violation
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of the obligation OA), then the obligation OB is in force. Elsewhere14 we discuss

that the above interpretation shows that violations are special kinds of exceptions.

Several authors have used exceptions to raise conditions to repair a violation in the

context of contract monitoring27,19.

3.3.2. Reasoning about Violations

The connective ⊗ permits combining primary and CTD obligations into unique

regulations. The operator ⊗ is such that ¬¬A ≡ A for any formula A and enjoys

the properties of associativity (i.e., A ⊗ (B ⊗ C) ≡ (A ⊗ B) ⊗ C), duplication and

contraction on the right, i.e., A ⊗ B ⊗ A ≡ A ⊗ B. The right-hand side part of

the equivalence states that B is the reparation of the violation of the obligation A.

That is, B is in force when ¬A is the case. For the left-had side we have that, as

before, a violation of A, i.e., ¬A, generates a reparational obligation B, and then the

violation of B can be repaired by A. Hoverer, this is not possible since we already

have ¬A.

One of the features of the logic of violation is to take two rules, or clauses in a

contract, and merge them into a new clause. Let examine some common patterns

for this kind of construction (the general rule for merging clauses is given in (1) in

Section 3.3.3 where we present the logical machinery for it).

Let us consider a policy like (in what follows Γ and ∆ are sets of premises, and

s and b are respectively the subject and beneficiery of the obligation)

Γ ⇒ Os,bA.

Given an obligation like this, if we have that

∆,¬A ⇒ Os′,b′C,

then the latter must be a good candidate as reparational obligation of the former.

This idea is formalised is as follows:

Γ ⇒ Os,bA ∆,¬A ⇒ Os′,b′C

Γ, ∆ ⇒ Os,bA ⊗ Os′,b′C

According to this view, if there exists a conditional obligation whose antecedent is

the negation of the propositional content of a different norm, then the latter is a

reparational obligation of the former. In this way, the CTD obligation can be forced

to be an explicit reparational obligation with respect to the violation of its primary

counterpart. Accordingly, it seems reasonable to discard both premises when they

are subsumed by the conclusion. Their reciprocal interplay makes them two related

norms so that they cannot be viewed anymore as independent obligations. Notice

that the subjects and beneficiaries of the primary obligation and its reparation can

be different, even if very often in contracts they are the same.

Suppose the theory includes (in the following examples the subscripts p and s

of the deontic operators refer to the purchaser and the supplier )

r : Invoice ⇒ Op,sPayWithin7Days
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and

r′ : ¬PayWithin7Days ⇒ Op,sPayWithInterest .

From these we obtain

r′′ : Invoice ⇒ Op,sPayWithin7Days ⊗ Op,sPayWithInterest .

The schema in (1) can also generate chains of CTDs in order to deal iteratively

with violations of reparational obligations. The following case is just an example of

this process.

Γ ⇒ Os,bA ⊗ Os,bB ¬A,¬B ⇒ Os,bC

Γ ⇒ Os,bA ⊗ Os,bB ⊗ Os,bC

For example we can consider the situation described by Clause 5.1 of the contract.

Given

r : Invoice ⇒ Os,pQualityOfService ⊗ Os,pReplace3days

and

r′ : ¬QualityOfService,¬Replace3days ⇒ Os,pRefund&Penalty

we derive the new rule

r′′ : Invoice ⇒ Os,pQualityOfService ⊗ Os,pReplace3days ⊗ Os,pRefund&Penalty.

Given the structure of the inference mechanism it is possible to combine rules in

slightly different ways, and in some cases the meaning of the rules resulting from

such operations is already covered by other rules in the contract. In other cases the

rules resulting from the merging operation are generalisations of the rules used to

produce them, consequently, the original rules are no longer needed in the contract.

Thus some clauses can be removed from the contract without changing the meaning

of it. To deal with this issue we introduce the notion of subsumption between rules.

Intuitively a rule subsumes a second rule when the behaviour of the second rule is

implied by the first rule. The formal definition of subsumption appropriate for this

scenario will be given in Section 3.3.3. Here we illustrate this notion with the help

of some examples.

Let us consider the rules

r : Invoice ⇒ Os,pQualityOfService ⊗ Os,pReplace3days ⊗ Os,pRefund&Penalty,

r′ : Invoice ⇒ Os,pQualityOfService ⊗ Os,pReplace3days .

The first rule, r, subsumes the second r′. Both rules state that after the seller

has sent an invoice she has the obligation to provide goods according to the

published standards, and if she fails to do so (i.e., if she violates such an obli-

gation), then the violation of QualityOfService can be repaired by replacing the

faulty goods within three days (Os,pReplace3days). In other words Os,pReplace3days

is a secondary obligation arising from the violation of the primary obligation

Os,pQualityOfService. In addition r prescribes that the violation of the secondary
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obligation Os,pReplace3days can be repaired by Os,pRefund&Penalty, i.e., the seller

has to refund the purchaser and in addition she has to pay a penalty.

As we discussed in the previous paragraphs the conditions of a contract cannot

be taken in isolation in so far as they exist in a contract. Consequently the whole

contract determines the meaning of each single clause in it. In agreement with this

holistic view of norms we have that the normative content of r′ is included in that

of r. Accordingly r′ does not add any new piece of information to the contract, it

is redundant and can be dispensed from the explicit formulation of the contract.

Another common case of subsumption is exemplified by the rules:

r : Invoice ⇒ Op,sPayWithin7Days ⊗ Op,sPayWithInterest ,

r′ : Invoice,¬PayWithin7Days ⇒ Op,sPayWithInterest .

It is immediate to recognise that here we have a simple instance of a CTD. The

first rule says that after the seller sends the invoice the purchaser has one week

to pay it, otherwise the purchaser has to pay the principal plus the interest. Thus

we have the primary obligation Op,sPayWithin7Days , whose violation is repaired

by the secondary obligation Op,sPayWithInterest , while, according to the second

rule, given the same set of circumstances Invoice and ¬PayWithin7Days we have

the primary obligation Op,sPayWithInterest . However, the primary obligation of r′

obtains when we have a violation of the primary obligation of r. Thus the condition

of applicability of the second rule includes that of the first rule. Therefore the first

rule is more general than the second and we can discard r′ from the contract.

We are now ready to describe how the apply the logical machinery we have

developed to deal with business contracts.

(1) Given a formal representation of the explicit clauses of a contract we apply the

merging mechanism of the logic of violation to generate all implicit conditions

that can be derived from the contract.

(2) At this stage we can clean the resulting representation of the contract by throw-

ing away all redundant rules according to the notion of subsumption.

(3) Then we are ready to use defeasible logic to reason about and implement the

contract. In particular we can

(a) detect conflicting rules and solve the resulting conflicts using the superiority

relation and

(b) identify violations and the obligations generated from them, using derivation

in defeasible deontic logic.

In the next section we give a formal presentation of the logic of violation and we

show how to combine it with Defeasible Deontic Logic. The reader not interested in

the mathematical details can skip to Section 4 where we introduce RuleML and we

show how ot use it to represent contracts in a language that is suitable for machine

processing and human reading.
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3.3.3. Defeasible Deontic Logic with Violations

The first thing to do is to extend the language of Defeasible Deontic Logic to

accommodate the new connective ⊗. Well-formed-formulas are then defined using

the unary connective ¬ (negation) and the binary connective ⊗ which is intended

to formalise CTD statements. However, given the intended interpretation of ⊗ we

impose some restrictions about its use in rules. Formulas containing ⊗ are only

permitted in the head of defeasible rules. Thus a rule consists of an antecedent

(a set of literals) and a conclusion that can be either a literal of a formula whose

main operator is ⊗, if the rule is a defeasible rule. Given this the usual rules of

contraction, duplication and exchange hold trivially for the antecedent of a rule.

However, they do not make any sense for the consequent so that we need properties

describing the structural behaviour of ¬ and ⊗.

The only property we assume for ¬ is that it is an involutive operator, i.e.,

¬¬A ≡ A for any formula A; while the basic logical properties for ⊗ are the follow-

ing:

(1) A ⊗ (B ⊗ C) ≡ (A ⊗ B) ⊗ C

(2)
⊗n

i=1
Ai ≡ (

⊗k−1

i=1
Ai) ⊗ (

⊗n

i=k+1
Ai) where Aj = Ak and j < k

Condition 1 is just associativity of ⊗, while condition 2 corresponds to duplication

and contraction. In fact, according to the intuitive reading of this connective given

in the previous section, the expression on the right side of ⇒ can be considered as

an ordered set.

It is possible to give inference rules both for the introduction and elimination of

⊗14. However, for the purposes of this paper, it is sufficient to define the following

inference rule for introducing ⊗:

Γ ⇒ Os,bA ⊗ (
⊗n

i=1
Os,bBi) ⊗ Os,bC ∆,¬B1, . . . ,¬Bn V Xs,bD

Γ, ∆ ⇒ Os,bA ⊗ (
⊗n

i=1
Os,bBi) ⊗ Xs,bD

(1)

where X denotes an obligation or a permission. In this last case, we will impose

that D is an atom. Since the minor premise states that Xs,bD is a reparation for

Os,bBn, i.e. the last literal in the sequence
⊗n

i=1
Os,bBi, we can attach Xs,bD to

such sequence. In other words, this rule permits to combine the two premises into

a unique regulation.

As we alluded to in the previous section we use (1) to generate new rules. As

soon as we apply it as much as possible we have to drop all redundant rules. This

can be done by means of the notion of subsumption given below.

Definition 3.1. Let r1 = Γ ⇒ A ⊗ B ⊗ C and r2 = ∆ ⇒ D be two rules, where

A =
⊗m

i=1
Ai, B =

⊗n

i=1
Bi and C =

⊗p

i=1
Ci. Then r1 subsumes r2 iff

(1) Γ = ∆ and D = A; or

(2) Γ ∪ {¬A1, . . . ,¬Am} = ∆ and D = B; or

(3) Γ ∪ {¬B1, . . . ,¬Bn} = ∆ and D = A ⊗
⊗k≤p

i=0
Ci.
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The idea behind this definition is that the normative content of r2 is fully in-

cluded in r1. Thus r2 does not add anything new to the system and it can be safely

discarded. In the examples above, we can drop rule r, whose normative content is

included in r′′.

To accommodate the new connective in Defeasible Deontic Logic we have to

revise the proof conditions. However, the change needed will affect only the con-

ditions for +∂ and −∂. The proof conditions for definite derivations, ±∆, are left

unchanged since ⊗ is not allowed in the head of strict rules. The first thing we have

to note is that now a defeasible rule can be used to derive different conclusions. For

example given the rule

r : A ⇒ Os,bB ⊗ Os,bC

we can use it to derive Os,bB if we have A, but if we know A and ¬B then the

same rule supports the conclusion Os,bC. To capture the potential multiplicity of

conclusion of rule we adopt the following notation for rules. With R[ci = q] we

denote the set of rules where the head of the rule is ⊗n
j=1cj where for some i,

1 ≤ i ≤ n, ci = q, and similarly for R[ci ∈ I(q)]. Thus for example r ∈ R[c1 = Os,bB]

and r ∈ R[c2 = Os,bC]. Given an obligation Os,bA, we use Os,bA to denote any

formula incompatible with A; formally Os,bA = I(A). In the simplest case Osb
(A)

contains just ¬A.

We are now ready to give the proof condition for +∂.

+∂: If P (i + 1) = +∂q then either

(1) +∆q ∈ P (1..i) or

(2) (2.1) ∃r ∈ Rsd[ci = q]

(2.1.1) ∀a ∈ A(r) : +∂a ∈ P (1..i) and

(2.1.2) ∀i′ < i, ∃a ∈ ci′ : +∂a ∈ P (1..i)

(2.2) ∀p ∈ I(q) − ∆p ∈ P (1..i) and

(2.3) ∀s ∈ R[cj ∈ I(q)] either

(2.3.1) ∃a ∈ A(s) : −∂a ∈ P (1..i) or

(2.3.2) ∃j′ < j, ∀a ∈ I(cj′ ) − ∂a ∈ P (1..i) or

(2.3.2) ∃t ∈ Rsd[q] such that

∀a ∈ A(t) : +∂a ∈ P (1..i)

∀k′ < k, ∃a ∈ ck′ : +∂a ∈ P (1..i) and

t > s.

The above condition is very similar to that presented in Section 3.1.2. The main

differences account for the ⊗ connective. What we have to ensure is that reparations

of violations are in force when we try to prove them. For example if we want to

prove Os,bC given the rule r : A ⇒ Os,bB ⊗ Os,bC, we must show that we are able

to prove A, and that the primary obligation B has been violated. In other words we

have already proved ¬B ar any other formula incompatible with B (Clause 2.1.2).

A similar explanation holds true for Clause 2.3.2 where we want to show that a rule

does not support an attack on the intended conclusion.
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We do not give here the proof condition for −∂. However, we point out that the

required modifications mimic the changes done for +∂.

4. Rule Markup Language

RuleML is an XML based language for the representation of rules. It offers fa-

cilities to specify different types of rules from derivation rules to transformation

rules to reaction rules. Moreover it is capable of specifying queries and inferences in

Web ontologies, mappings between Web ontologies, and dynamic Web behaviours

of workflows, services, and agents8.

The RuleML initiative32, started during the Pacific Rim International Confer-

ence on Artificial Intelligence (PRICAI 2000) in August 2000, brought together

experts from several countries to create an open, vendor neutral XML/RDF-based

rule language8.

The main goal of the initiative is to develop RuleML as the canonical web

language for rules, based on XML markup, formal semantics and efficient imple-

mentations. Its purpose is to allow exchange of rules between major commercial

and non-commercial rules systems on the Web and various client-server systems

located within large corporations. The RuleML initiative involves many organisa-

tions to propose RuleML as a standard language for exchange of rules to facilitate

business-to-customer (B2C) and business-to-business (B2B) interactions over the

Web.

From what we have said it is clear that RuleML is a generic extensible and

semantically neutral rule markup language mainly aimed at the exchange of rules.

Accordingly RuleML programs are not intended to be executed directly, but the

business logic of RuleML programs can be implemented via XSLT transformations

into the target language of the recipient rule-based systems and then executed.

4.1. Why RuleML

RuleML provides a way of expressing business rules in modular stand-alone units. It

allows the deployment, execution, and exchange of rules between different systems

and tools. It is expected that RuleML will be the declarative method to describe

rules on the Web and distributed systems36.

RuleML arranges rule types in an hierarchical structure comprising reaction rules

(event-condition-action-effect rules), transformation rules (functional-equational

rules), derivation rules (implicational-inference rules), facts (‘premiseless’ derivation

rules, i.e., derivation rules with empty bodies), queries (‘conclusionless’ derivation

rules, i.e., derivation rules with empty heads) and integrity constraints (consistency-

maintenance rules). Each part of a rule is an expression that has specific functions

in the rule.

The RuleML Hierarchy first directly branches out into two categories: Reac-

tion Rules and Transformation Rules. Transformation Rules then break down into



July 5, 2005 18:47 WSPC/INSTRUCTION FILE coala

Representing Business Contracts in RuleML 21

Derivation Rules, that, in turn, subdivide into Facts and Queries. Finally, Queries

break down into Integrity Constraints32. Refer to Figure 1 for the RuleML hierarchy.

Rules (rule)

Reaction Rules (react) Transformation Rules (trans)

Derivation Rules (imp)

Facts (fact) Queries (query)

Integrity Constraint (ic)

Fig. 1. RuleML Hierarchy

However in this paper we will only focus on derivation rules and facts since,

here we are interested in a conceptual representation of contracts. In general the

distinction among the types of rules is more pragmatic than conceptual and is geared

towards the actual implementation of the rules themselves, and very often several

types of rules can be transformed into other classes of rules straightforwardly8,32.

Conflicts among rules are very common in contracts; thus facilities to deal with

them are essential in any language designed to represent contracts. RuleML offers

two ways to prioritise rules (and then solve conflicts): quantitative priorities and

qualitative priorities. A quantitative priority is a numerical Priority property for

a rule; it states the salience of a rule. On the other hand a qualitative priority

is a binary relation defined over the set of rule labels and determines the relative

strength of two rules36. An alternative approach is to supplement the syntax of

RuleML with an empty <superiority> element with two attributes whose values

are the names of the rules the element refers to3.

However, as we said, RuleML is not without limitations. It does not support

the use of modality and it is unable to deal with violations. As such, improvements

must be made to cover these aspects if one wants to use it to represent business

contracts.
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4.2. Fundamentals of RuleML

In this section we are going to explore the building blocks of RuleML and we are

going to identify the additions required to faithfully represent contracts.

4.2.1. Premises and Conclusions

The first thing we have to consider is the representation of predicates (atoms) to

be used in premises or conclusions in RuleML. A predicate is an n-ary relation and

it is defined as an <Atom> element in RuleML with the following DTD definitionc

<!ELEMENT Atom (Not?,Rel,(Ind|Var)*)>

<!ELEMENT Not >

<!ELEMENT Rel (#PCDATA)>

<!ELEMENT Var (#PCDATA)>

<!ELEMENT Ind (#PCDATA)>

The elements <Var> and <Ind> are, respectively, placeholders for individual vari-

ables to be instantiated by ground values when the rules are applied and individual

constants. Individual constants can be just simple names or URIs referring to the

appropriate individuals. Rel is the element that contains the name of the predicate.

<Not> is intended to represent classical negation. Thus its meaning is that the atom

it negates is not the case (or the proposition represented by the atom is false and

consequently the proposition the element represents is true). RuleML contains two

types of negation, classical negation and negation as failure35,8. However, negation

as failure can be simulated by other means in Defeasible Logic6, so we do not include

it in our syntax.

Accordingly

<Atom>

<Rel>DeliverWithinOneDay</Rel>

<Ind>Good</Ind>

<Ind>PurchaseOrderDate</Ind>

<Ind>DeliveryDate</Ind>

</Atom>

is a predicate that is true when the supplier has delivered the Good specified by a pur-

chaser in a purchase order with date PurchaseOrderDate the day after the reception

of the purchase order, stored in the value of the ground instance of DeliveryDate.

4.2.2. Reaction Rules

Reaction Rules represent a key member of the RuleML family of languages. They

deal with invoking actions that are triggered as a reaction to an event. They define

the way the system reacts to changes in the environment and communication by

specifying the event, pre- and post - conditions and the actions that can be triggered

cAlthough the current version of RuleML (Version 0.87) is based on XML schema, here, due to
space limitations, we will give the XML grammar using simplified DTD definitions.
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by the event. A reaction rule can only be applied in a forward directional manner

in a natural fashion, i.e., it first checks for the events and conditions and then

executes the action where the events and conditions have been met. Thus they can

also be called Event-Condition-Action-(Effect) rules8,36,32. Currently reaction rules

have not been specified in RuleML.

4.2.3. Transformation Rules

Transformation rules were introduced in RuleML 0.81. They generally reuse the

same concrete syntax as other rule types, specifying the condition in the “<body>”.

Transformation rules consist of a transformation invoker, a condition, and a trans-

formation return.

Transformation rules have the following syntax:

<!ELEMENT Trans (head,body,foot)>

<!ELEMENT head (Atom)>

<!ELEMENT body (And)>

<!ELEMENT foot (Atom)>

<!ELEMENT And (Atom)+>

The <Trans> element is the top-level element denoting a transformation rule.

It uses the transformation invoker role “head”, followed by an optional condition

role “body”, and lastly the transformation return role “foot”, meaning if condition

specified in the <body> holds then conclusion in the <head> will be transformed to

the value in the <foot> section8. We are not going to consider transformation rules

in the present paper for the representation of contracts. However, a transformation

rule can be represented by two derivation rules (see the next subsection) where the

first derivation rule has the same <body> and <head> as the transformation rule

while the <body> and <head> of the second derivation rule are, respectively, the

<head> and the <foot> of the transformation rule.

4.2.4. Derivation Rules

Derivation Rules are special transformation rules that like characteristic functions

on success just return true32. An alternative way to understand derivation rules to

consider them as special reaction rules whose action is to add a conclusion when

certain conditions have been met. They comprise one or more conditions but derive

only one conclusion. These rules can be applied in a forward or backward manner,

the latter reducing the proof of a goal (conclusion) to proofs of all its subgoals

(conditions)8.

Derivation Rules allow the derivation of information from existing rules35. They

are able to capture concepts not stored explicitly from the existing information. For

example, a customer is labelled as a “Premium” customer when he buys $10000

worth of goods. As such, the rule here states that the customer must have spent

$10000 on goods, thus deriving the information here that the customer is a “Pre-

mium” customer.
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Derivation rules have the following syntax:

<!ELEMENT Imp ((head,body)|(body|head))>

<!ELEMENT body (And)>

<!ELEMENT head (Atom)>

<!ELEMENT And (Atom)+>

A derivation rule has two roles, Condition (<body>) and Conclusion (<head>); the

latter being an atomic predicate logic formula, and the former a conjunction of

formulas36, meaning that derivation rules consist of one more conditions and a

conclusion. Accordingly the above example can be represented as follows:

<Imp label="PremiumCustomerRule">

<body>

<And>

<Atom>

<Rel>TotalExpense</Rel>

<Var>Customer</Var>

<Var>Expense<Var>

</Atom>

<Atom>

<Rel>Greater</Rel>

<Var>Expense</Var>

<Ind>$10000</Ind>

</Atom>

</And>

</body>

<head>

<Atom>

<Rel>PremiumCustomer</Rel>

<Var>Customer</Var>

</Atom>

</head>

</Imp>

4.2.5. Facts

Facts are considered as special derivation rules but without the specification of

conjunction of premises or conditions “body”8. They denote simple pieces of infor-

mation that are deemed to be true. URLs/URIs can also be embedded within facts

to reference the elements that are being referred to.

Facts have the following syntax:

<!ELEMENT Fact (Atom)>

A <Fact> element uses just a conclusion role “head”, meaning whatever that is

included in the “head”, is understood as true8. Clauses 3.1 and 3.2 of the contract

can be deemed facts, thus, for example, the representation of Clause 3.1 is:

<Fact label="2.1">

<Atom>

<Rel>CommencementDate</Rel>

<Ind>2002-01-30</Ind>
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</Atom>

</Fact>

4.2.6. Queries

Queries are like derivation rules with the conclusion (<head>) empty8. Queries can

either be proved backward as top-down goals or forward via ‘goal-directed’ bottom-

up processing32.

Queries have the following syntax:

<!ELEMENT Query (body)>

A <Query> element uses just the conditions role “body”, meaning it is a conclu-

sionless derivation rule8, and can be used to obtain the set of tuples satisfying the

condition represented by the body.

4.2.7. Integrity Constraints

Integrity constraints also known as integrity rules are special reaction rules that alert

the system whenever an inconsistency has been detected after the event/condition

has been fulfilled. There are two types of Integrity Constraints: State Constraints

and Process Constraints. A state constraint must hold at all times. A process con-

straint is related to the dynamic integrity of the system. It interrupts the process of

a triggered action transiting from one state of the system process to another8,36,35.

Integrity constraints have the following syntax:

<!ELEMENT Ic (body)>

An element <Ic> represents an integrity constraint. The conditions specified in the

<body> are used to check if any inconsistency has happened without the need to

recognise any event. They were classified as a special case of reaction rules different

from derivation rules36. In the current version of RuleML integrity conditions are

just denials (derivation rules with empty head). Thus integrity constraints are meant

to represent situations that must be prevented in a system. Defeasible logic can use

its own reasoning mechanism to avoid inconsistency.

Grosof17 suggests the introduction of a <mutex> element (for “mutually exclu-

sive”) to represent the notion of p-incompatible literals. However, mutex literals are

just a special case of integrity constraints. Accordingly there is no need to introduce

a new tag for them, and consequently the specifications of p-incompatible literals

can be represented by <Ic> elements. For example p-incompatible literals for the

predicate (<rel>) Price can be defined in the following way:

<Ic label=’price’>

<And>

<Atom>

<Rel>Price</Rel>

<Var>Good</Var>

<Var>X</Var>
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</Atom>

<Atom>

<Rel>Price</Rel>

<Var>Good</Var>

<Var>Y</Var>

</Atom>

<Atom>

<not>

<eq>

<Var>X</Var>

<Var>Y</Var>

</eq>

</not>

</Atom>

</And>

</Ic>

As we have already discussed the price for a good is unique, thus the above integrity

constraint indicates a non legal state when we have that one and the same goods

(Good) is related via the the predicate Price to two different values X and Y.

5. RuleML Derivation Rules and Defeasible Logic

As we have alluded to in the previous section RuleML provides a semantically

neutral syntax for rules, and different types of rules can be reduced to other types. In

this paper we will concentrate only on derivation rules and integrity constraints. For

the relationships between RuleML and Defeasible Logic we will translate derivation

rules (Imps) into defeasible rules in defeasible logic and we will limit ourselves to

integrity constraints (Ics) corresponding to mutex that will be translated to p-

incompatible literals specifications. In this perspective a derivation rule

<Imp label=’label’>

<body>

...

</body>

<head>

...

</head>

</Imp>

is transformed into a defeasible rule

label : body ⇒ head.

A possible limitation of this approach is that all rules are defeasible. There are

no strict rules. In contracts we have two types of clauses: definitional and oper-

ational clauses. Definitional clauses define the meaning of the terms used in the

contract while operational clauses describe the behaviour of the contract. Typically

definitions are not defeasible while the behaviour is defeasible. Let us discuss some

possible solutions for this shortcoming.
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The first solution is to use both strict and defeasible rules: this can be achieved

by using <Imp> for strict rules and we can introduce a new type of rule <Def> for

defeasible rules3, or we can dispense with strict rules by observing that in a proper

definition, i.e., a definition that does not admit exceptions or all exceptions have

been catered for, sufficient conditions are monotonic. This also means that it is not

possible to have rules whose conclusion is incompatible with the definiendum. We

notice that for these cases defeasible rules behave as strict rules.

It has been argued that rule languages are not the most appropriate mean to

represent definitions of terms. Thus rule languages and reasoning must be sup-

plemented and integrated with ontologies and logic suitable for reasoning about

ontologies. Grosof and Poon19 propose the integration of RuleML and ontologies to

deal with business contracts. However, there is no discussion how to integrate on-

tologies and rules. Antoniou1 suggests the idea of using a Description Logic oracle

to derive strict terms and a Defeasible logic reasoner for non-monotonic deriva-

tions. If we allow definitions to be defeasible (which is often the case in normative

reasoning) then the situation is more complicated and we have to account for inter-

actions between the monotonic and non-monotonic parts of a contract. For example

Wang at al.10,37 put forth combinations of non-monotonic formalisms and descrip-

tion logic where the extension of strict literals (i.e., definitions) can be updated by

new instances derived in a non-monotonic fashion, while Governatori12 introduces

a seamless integration of (weakly expressive) defeasible logic and description logic.

We recognise here the importance of those aspects but we will not purse these issues

any further in this paper. We leave them for future extensions.

6. Contracts in RuleML

Any representation language should offer concepts closely related to those present

in the phenomenon the representation language is intended to capture. As we have

already noted, contracts contain normative concepts such as obligations, permis-

sions, violations. It has been argued that normative reasoning, by its own nature,

is defeasible. Thus to appropriately represent the deontic notions of obligation and

permission we introduce two new elements <Obligation> and <Permission>, which

are intended to replace <Atom> in the conclusion of normative rules. In addition de-

ontic elements can be used in the body of derivation rules. Hence we have to extend

the definition of And and head.

<!ELEMENT And (Atom|Obligation|Permission)*>

<!ELEMENT Head (Atom|Obligation|Permission)+>

<!ELEMENT Obligation (Not?,Rel,(Ind|Var)*)>

<!ATTLIST Obligation subject IDREFS beneficiary IDREFS>

<!ELEMENT Permission (Not?,Rel,(Ind|Var)*)>

<!ATTLIST Permission subject IDREFS beneficiary IDREFS>

The above grammar allows us to introduce obligations and permissions, and, in com-

bination with priorities, gives us the ability to represent contracts more faithfully.

For example, Clause 5.2 can be represented by the following rule:
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<Imp label="5.2">

<body>

<And>

<Atom>

<Rel>PurchaseOrder</Rel>

<Var>Good</Var>

<Var>PurchaseOrderDate</Var>

</Atom>

</And>

</body>

<head>

<Obligation subject="Supplier" beneficiary="Purchaser">

<Rel>DeliverWithinOneDay</Rel>

<Var>Good</Var>

<Var>PurchaseOrderDate</Var>

<Var>DeliverDate</Var>

</Obligation>

</head>

</Imp>

In a similar way Clause 4.1 is represented by the rule

<Imp label="4.1" href="http://supplier.com/catalog.htm">

<body>

<And>

<Atom>

<Rel>PurchaseOrder</Rel>

<Ind>Purchaser</Ind>

<Ind>Supplier</Ind>

<Var>Good</Var>

</Atom>

<Atom>

<Rel>AdvertisedPrice</Rel>

<Ind>Supplier</Ind>

<Var>Good</Var>

<Var>Price</Var>

</Atom>

</And>

</body>

<head>

<Obligation subject="Purchser">

<Rel>PurchaseOrderPrice</Rel>

<Var>Good</Var>

<Var>Price</Var>

</Obligation>

</head>

</Imp>

This rule states that if there is a purchase order issued by the purchaser about

a particular good, and the price of good is advertised in the supplier catalogue

published at the URI in the href attribute of the rule, then the price of the good

in the purchase order should be the advertised price.

To illustrate how to encode the superiority relation we consider the second part of

Clause 6.1
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<Imp label="6.1b">

<body>

<And>

<Atom>

<Rel>PurchaseOrder</Rel>

<Var>Good</Var>

<Var>Price</Var>

<Var>Date</Var>

</Atom>

</And>

</body>

<head>

<Obligation subject="Purchaser" beneficiary="Supplier">

<Rel>Pay</Rel>

<Var>Good</VAr>

<Var>Price</Price>

</Obligation>

</head>

</Imp>

<Imp label="6.1c">

<body>

<And>

<Atom>

<Rel>WrittenAgreement</Rel>

<Var>Good</Var>

<Var>Price</Var>

</Atom>

</And>

</body>

<head>

<Obligation subject="Purchaser" beneficiary="Supplier">

<Rel>Pay</Rel>

<Var>Good</Var>

<Var>Price</Price>

</Obligation>

</head>

</Imp>

The above two rules can conflict with each other when the price stated in them for

one and the same good is different. To resolve this conflict we have to assess the

relative strength of the two rules. This is achieved by a fact where the head states

that rule 6.1c overrides rule 6.1b:

<Fact>

<head>

<Atom>

<Rel>Override</Rel>

<Ind href="6.1c"/>

<Ind href="6.1b"/>

</Atom>

</head>

</Fact>

However, so far, we cannot deal with violations and the obligations arising in re-



July 5, 2005 18:47 WSPC/INSTRUCTION FILE coala

30 Guido Governatori

sponse to them. This type of construction occurs very frequently in contracts,

and it is very important for the correct (automatic) execution and monitoring

of e-contracts. To this end we propose to replace the content of the <head> el-

ement of normative rules with a <Behaviour> element, defined as a sequence of

<Obligation> and <Permission> elements with the constraints that the sequence

contains at most one <Permission> element, and this element is the last of the

sequence. This construction is meant to simulate the behaviour of ⊗. Also in this

case we refine the notion of head.

<!ELEMENT head (Atom|Obligation|Permission|Behaviour)>

<!ELEMENT Behaviour ((Obligation)+,Permission?)>

As an illustration of this construction consider the first part of Clause 6.1 where

the reparation to the violation is stated in the same clause as the main obligation:

<Imp label="6.1a">

<body>

<And>

<Atom><Rel>Invoice</Rel>

<Var>InvoiceDate</Var>

<Var>Amount</Var>

</Atom>

</And>

</body>

<head>

<Behaviour>

<Obligation subject="Purchaser" beneficiary="Supplier">

<Rel>PayInFullWithin7Days</Rel>

<Var>InvoiceDate</Var>

<Var>Amount</Var>

</Obligation>

<Obligation subject="Purchaser" beneficiary="Supplier">

<Rel>PayWithInterest</Rel>

<Var>Amount * 1.07</Var>

</Obligation>

</Behaviour>

</head>

</Imp>

It is possible to express a violation explicitly by saying that a particular rule is

triggered in response to a violation (i.e., when an obligation is not fulfilled) –just

look at the formulation of Clause 5.3. Thus it can be convenient to have facilities

to represent violations directly.

<!ELEMENT And (Atom|Obligation|Permission|Violation)*>

<!ELEMENT Violation >

<!ATTLIST Violation rule IDREF>

In general a violation can be one of the conditions that trigger the application of a

rule. Accordingly a <Violation> element can be included in the body of a rule. A

violation cannot subsist without a rule that is violated by it. Hence the attribute

rule is a reference to the rule that has been violated. Many contract languages19,27
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contain similar constructions. The activation of such constructions/processes re-

quires the generation of a violation event/literal. On the contrary our approach

does not require it All we have to do is to check for a sequence of literals joined

with the ⊗ operator where the initial part of the sequence is not satisfied.

Clause 5.3 contains a disjunction in the body. Thus we can split it into two

rules where we can use the violations of Clause 4.1 and Clause 4.2 in the respective

bodies. Here we show one of the two resulting rules; the other has the same structure

and the only difference is the value of the attribute of the <Violation> element.

<Imp label="5.3a">

<body>

<And>

<Violation rule="4.1"/>

</And>

</body>

<head>

<Permission subject="Purchaser" beneficiary="Supplier">

<Rel>Charge100DollarsPerHour</Rel>

</Permission>

</head>

</Imp>

In some cases one might have recurrent general penalties and it may be convenient

to state them once and refer back to them when they are called. To deal with this

case we introduce two additional elements Reparation and Penalty.

A Reparation element is just an empty element with a reference to a Penalty

element that can occur only after an obligation in a Behaviour element, where a

Penalty element is a premiseless rule with a normative head that is triggered only

when its corresponding violations are raised.

<!ELEMENT Behaviour ((Obligation+,Reparation)|(Obligation*,Permission?))>

<!ELEMENT Reparation >

<!ATTLIST Reparation penalty IDREF>

<!ELEMENT Penalty ((Obligation+,Reparation)|(Obligation*,Permission?))>

If this strategy is chosen then we can rewrite Clause 5.2 and Clause 5.3 as follows

<Imp label="5.2alternative">

<Body>

<And>

<Atom>

<Rel>PurchaseOrder</Rel>

<Var>Good</Var>

<Var>PurchaseOrderDate</Var>

</Atom>

</And>

</Body>

<Head>

<Obligation subject="Supplier" beneficiary="Purchaser">

<Rel>DeliverWithinOneDay</Rel>

<Ind>Supplier</Ind>

<Ind>Purchser</Ind>
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<Var>Good</Var>

<Var>PurchaseOrderDate</Var>

<Var>DeliveryDate</Var>

</Obligation>

<Reparation penalty="5.3"/>

</Head>

</Imp>

<Penalty label="5.3">

<Permission subject="Supplier" beneficiary="Purchaser">

<Rel>Charge100Hour</Rel>

</Permission>

</Penalty>

6.1. Deontic RuleML and Defeasible Deontic Logic

The idea of the translation here is the same as in Section 5. The only differences

concern the representation of the deontic tag. <Obligation> and <Permission>

are translated to O and P . The <Behaviour> element contains a sequence of two

or more deontic elements, thus

<Imp label="r">

<body>...</body>

<head>

<Behaviour>

<Obligation>A1</Obligation>

...

<Deontic>An</Deontic>

</Behaviour>

</head>

</Imp>

corresponds to

r : body ⇒ OA1 ⊗ · · · ⊗ XAn

where X is the translation of the <Deontic> (meta) element.

The remaining deontic tags, i.e., <Reparation>, <Penalty> and <Violation>,

do not increase the expressive power of the language but are included as conve-

nient shortcuts. <Reparation> and <Penalty> occur in pairs, where the penalty

attribute of <Reparation> refers to the label of the <Penalty> element. Hence

they can be combined in the rule where the <Reparation> element occur using the

⊗ operator.

For example given the following fragment of a contract
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<Imp label=’r’>

<body>...</body>

<head>

<Behaviour>

<Obligation>A1</Obligation>

...

<Obligation>An</obligation>

<Reparation penalty="p"/>

</Behaviour>

</head>

</Imp>

<Penalty label="p">

<Obligation>B1</Obligation>

...

<Deontic>Bm</Deontic>

</Penalty>

the rule corresponding to it is

r : body ⇒ OA1 ⊗ · · · ⊗ OAn ⊗ OB1 ⊗ · · · ⊗ XBm.

Finally, a Violation occurs in the body of rule and the rule attribute refers to the

violated rule. Every Violation element can be replaced by the conjunction of the

elements in the body of the violated rule, i.e., the rule the rule attribute refers to,

plus the negation of the un-modalised elements of the elements in the head of the

violated rule.

<Imp label="v">

<body>B1</body>

<head>

<Behaviour>

<Obligation>A1</Obligation>

...

<Obligation>An</Obligation>

</Behaviour>

</head>

</Imp>

<Imp label="r">

<body>

<And>

B2

<Violation rule="v"/>

</And>

</body>

<head>

<Behaviour>

<Obligation>C1</Obligation>

...

<Deontic>Cm</Deontic>

</Behaviour>

</head>

</Imp>

From the above RuleML code we generate two rules in Defeasible Deontic Logic,

namely

v : B1 ⇒ OA1 ⊗ · · · ⊗ OAn,

r : B1, B2,¬A1, . . . ,¬An ⇒ OC1 ⊗ · · · ⊗ XCm.

Eventually the two rules can be combined via the ⊗I rule (1) in

vr : B1, B2 ⇒ OA1 ⊗ · · · ⊗ OAn ⊗ OC1 ⊗ · · · ⊗ XCm.

7. Reasoning about Contracts in RuleML

The first step in processing a contract written in natural language is to provide its

logical representation. To this end all the clauses of the contract are transformed

into facts, definitions and normative rules. A normative rule is a single rule with a
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conjunctive body and head a sequence of obligations and permissions. This repre-

sentation can be given in a language that is suited to computers as well as humans.

At this stage the contract is ready to be processed in order to derive all conditions

included in it and eventually to detect inconsistencies and loopholes. Very often

contracts contain conditions that are implicitly stated in the clauses of the contract

but that can be derived from the explicit clauses. Thus at this stage we apply the

introduction rule (⊗I) to normalise the contract until we reach a fixed-point (i.e.,

when no further new rules can be derived). The result of normalisation can produce

redundant rules in the sense that the content/behaviour of a rule is part of the

content/behaviour of a more specific rule; hence the first rule is no longer required

to implement the contract, and can be safely removed. In this step we “throw away”

all rules subsumed (according to Definition 3.1) by some other rules in the contract.

After the subsumption step the contract can be fed in a RuleML engine to execute

or monitor the contract performance at run time.

8. Conclusions

Business Contracts are used to specify the modalities that the signatories should

be held responsible to, and to state the actions and penalties to be undertaken

in the event of a violation. We showed how to transform the contract from its

implicit to its explicit form to enable precise Contract Monitoring via the use of

computers. In particular, we formed RuleML to be an appropriate language in the

context of Contract Monitoring. Different choices than RuleML are available, such as

BCL (Business Contract Language)27 and XrML25. All these are XML dialects and

suitable candidates for Contract Monitoring tasks. However, conflicts in contract

rules may occur. RuleML supports the usage of priorities amongst rules for conflict

resolution and so it serves as a better choice as compared to the other options,

which are deficient in it.

RuleML has been extended to deal explicitly with deontic concepts and viola-

tions. Through the use of Deontic logic, modalities, roles and behaviours of the

contract have been defined. Defeasible Logic on the other hand has helped clarify

inconsistencies and derived additional information that has not been specifically

defined in the contract. It has also provided solutions to the resolution of con-

flicts comprised within the contract rules. We illustrated how different rules can

be merged together using the ⊗ connective to form a single simplified rule. This

process has helped in the elimination of redundancy and enhanced the efficiency in

the coding of the language that the contract will be implemented in. From the logi-

cal analysis in Deontic and Defeasible Logic, contract rules have been implemented

within the body and head of the RuleML structure. In this way, the logical rep-

resentation of the contract can be implemented into a machine executable syntax

using RuleML.
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