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Abstract
Defeasible reasoning is a simple but efficient rule-based approach to nonmonotonic reasoning. It has
powerful implementations and shows promise to be applied in the areas of legal reasoning and the
modeling of business rules. This paper establishes significant links between defeasible reasoning and
argumentation. In particular, Dung-like argumentation semantics is provided for two key defeasible
logics, of which one is ambiguity propagating and the other ambiguity blocking.

There are several reasons for the significance of this work: (a) establishing links between formal
systems leads to a better understanding and cross-fertilization, in particular our work sheds light on the
argumentation-theoretic features of defeasible logic; (b) we provide the first ambiguity blocking Dung-
like argumentation system; (c) defeasible reasoning may provide an efficient implementation platform
for systems of argumentation; and (d) argumentation-based semantics support a deeper understanding
of defeasible reasoning, especially in the context of the intended applications.
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1 Introduction
Defeasible reasoning [31, 32] supports rule-based reasoning where rules may be defeated
by other rules that support a contrary conclusion. The concept of defeat lies at the heart of
defeasible reasoning. Where conflicts between rules arise, priorities can be used to resolve
these conflicts.

Defeasible reasoning was developed to support practical nonmonotonic reasoning. Re-
cently it has been proposed as an appropriate language for executable regulations [4], con-
tracts [36], business rules [19], e-commerce [13], automated negotiation [14], and policy-
based intentions [17].

The starting point in our considerations is the classical Defeasible Logic of [31] in the
formalization of [6]. Unlike other nonmonotonic approaches, Defeasible Logic was designed
with implementation in mind. In fact, recently very powerful implementations of defeasible
logic became available, capable of handling 100,000s of defeasible rules [30]. The logic has
been shown to have linear complexity [26].

In previous work we developed a framework for the definition of variants of Defeasible
Logic [29, 2]; this framework allows us to “tune” defeasible logics in order to obtain a logic
with desired properties. The issue of whether non-monotonic logics and, in particular, inher-
itance networks should be ambiguity blocking or ambiguity propagating has been the subject
of considerable discussion (see, for example, [39, 38]). The original defeasible logic is ambi-
guity blocking, but we can also define an ambiguity propagating defeasible logic [2]. Most of
the logics described in [2], including this ambiguity propagating defeasible logic, have been
implemented in the Deimos system.1 These two defeasible logics will be the focus of this
paper.

Argumentation has long been used to study defeasible reasoning [8], and recently ab-
stract argumentation frameworks have been developed [12, 40] to support the characterization
of non-monotonic reasoning in argumentation-theoretic terms. The basic elements of these
frameworks are the notions of arguments and “acceptability” of an argument. Briefly, an ar-
gument is acceptable if it is possible to show that it is not possible to rebut it with stronger
arguments. Although defeasible logics can be described informally in terms of arguments,
the logics have been formalized in a proof-theoretic setting in which arguments play no role.

Dung [11, 12] presented an abstract argumentation framework, and [7] showed that sev-
eral well-known nonmonotonic reasoning systems are concrete instances of the abstract frame-
work. Unfortunately, so far only one sceptical argumentation semantics (called grounded
semantics) has been put forward. In this paper we will adapt Dung’s framework to provide
argumentation semantics for the two defeasible logics we investigate. We show that Dung’s
grounded semantics characterizes the ambiguity propagating defeasible logic. For the origi-
nal (ambiguity blocking) defeasible logic, we modify Dung’s notion of acceptability to give
an argumentation characterization of this logic.

This work is part of our ongoing effort to establish close connections between defeasible
reasoning and other formulations of non-monotonic reasoning. Such connections usually
lead to a better understanding of each area, and cross-fertilization. Moreover the elegance
of the correspondence we establish in this instance suggests that defeasible reasoning and
argumentation are conceptually closely linked.

The significance of this paper to defeasible reasoning lies in the elegant argumentation-
theoretic semantics we develop. In comparison, the proof theory defining the defeasible

1www.cit.gu.edu.au/∼arock/defeasible/Defeasible.cgi
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logics is clumsy. The argumentation-theoretic semantics will prove useful in the intended
applications of defeasible logic mentioned above, where arguments are a natural feature of
the problem domain.

The study of argumentation will also benefit from our work. For one, our argumentation
semantics of classical defeasible logic provides an ambiguity blocking argumentation sys-
tem, to our knowledge the first one. In addition, we admit infinite chains of reasoning as
arguments, whereas most argumentation systems permit only finite arguments. We also char-
acterize an underlying Kunen semantics of failure-to-prove [24] in argumentation-theoretic
terms. Technically, we admit infinite arguments in our argumentation framework to achieve
this characterization.

Furthermore, usually argumentation is studied theoretically, with not so much emphasis
placed on implementation. On the other hand, there are already very powerful systems of
defeasible reasoning. Thus our research may lead to the implementation of argumentation
systems on the basis of defeasible reasoning.

This paper is structured as follows. In the next section we provide a brief introduction
to defeasible logics. We then provide our argumentation-theoretic semantics for defeasible
logic and an ambiguity propagating variant with the appropriate soundness and completeness
results in Section 3, which is the main part of this paper. Related work is discussed in Section
4. All proofs may be found in an appendix at the end of the paper.

2 Overview of Defeasible Logics
We begin by presenting the basic ingredients of defeasible logic. A defeasible theory contains
four different kinds of knowledge: strict rules, defeasible rules, defeaters, and a superiority
relation. We consider only essentially propositional rules. Rules containing free variables are
interpreted as the set of their ground instances.

Strict rules are rules in the classical sense: whenever the premises are indisputable (e.g.
facts) then so is the conclusion. An example of a strict rule is “Emus are birds”. Written
formally: emu(X) → bird(X). Strict rules with an empty body represent indisputable state-
ments called facts. An example is “Tweety is an emu”. Written formally: → emu(tweety).

Defeasible rules are rules that can be defeated by contrary evidence. An example of such
a rule is “Birds typically fly”; written formally: bird(X) ⇒ flies(X). The idea is that if
we know that something is a bird, then we may conclude that it flies, unless there is other
evidence suggesting that it may not fly.

Defeaters are rules that cannot be used to draw any conclusions. Their only use is to
prevent some conclusions. In other words, they are used to defeat some defeasible rules by
producing evidence to the contrary. An example is “If an animal is heavy then it might not be
able to fly”. Formally: heavy(X) ; ¬flies(X). The main point is that the information that
an animal is heavy is not sufficient evidence to conclude that it doesn’t fly. It is only evidence
against the conclusion that a heavy animal flies. In other words, we don’t wish to conclude
¬flies if heavy, we simply want to prevent a conclusion flies.

The superiority relation among rules is used to define priorities among rules, that is,
where one rule may override the conclusion of another rule. For example, given the facts

→ bird
→ brokenWing
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and the defeasible rules
r : bird ⇒ flies
r′ : brokenWing ⇒ ¬flies

which contradict one another, no conclusive decision can be made about whether a bird with
a broken wing can fly. But if we introduce a superiority relation > with r′ > r, then we can
indeed conclude that the bird cannot fly. The superiority relation is required to be acyclic.

In this paper we disregard the superiority relation to keep the discussion and the techni-
calities simple. This restriction does not affect the generality of our approach: In [1] we gave
a modular transformation that empties the superiority relation while maintaining the same
conclusions in the language of the original theory. That result was proven for our original
(ambiguity blocking) defeasible logic, but subsequent work proved its correctness also for
the ambiguity propagating defeasible logic we will be considering. The previous example
about birds (with the relation r′ > r) is transformed into the following equivalent theory with
an empty superiority relation:

bird ⇒ ¬inf(r)
¬inf(r) ⇒ flies

brokenWing ⇒ ¬inf(r′)
¬inf(r′) ⇒ ¬flies

→ bird
→ brokenWing

¬inf(r′) ⇒ inf(r)

The compilation of priorities into a rule set is used in other non-monotonic reasoning ap-
proaches, too, for example in default logic [9]. The intuition behind the compilation used in
defeasible logic is to split each defeasible rule r into two rules connected by an inf (r) literal,
where inf (r) expresses the idea that rule r is overruled by a (strict or defeasible) superior
rule. Accordingly ¬inf (r) means that r is not inferior to any applicable (strict of defeasible)
rule. Finally, for each pair of rules for which the superiority relation obtains, we introduce a
defeasible rule whose interpretation is that if the stronger rule is applicable and not overruled
then the weaker rule is overruled. For the full explanation of this and related transformations
see [1].

Now we present the defeasible logics formally. A rule r consists of its antecedents (or
body) A(r) which is a finite set of literals, an arrow, and its consequent (or head) C(r) which
is a literal. There are three kinds of arrows, →, ⇒ and ; which correspond, respectively, to
strict rules, defeasible rules and defeaters. Where the body of a rule is empty or consists of
one formula only, set notation may be omitted in examples.

Given a set R of rules, we denote the set of all strict rules in R by Rs, the set of strict and
defeasible rules in R by Rsd, the set of defeasible rules in R by Rd, and the set of defeaters in
R by Rdft. R[q] denotes the set of rules in R with consequent q. If q is a literal, ∼q denotes
the complementary literal (if q is a positive literal p then ∼q is ¬p; and if q is ¬p, then ∼q is
p).

A defeasible theory D is a finite set of rules R. A conclusion of D is a tagged literal; in
our original defeasible logic there are two tags, ∂ and ∆, that may have positive or negative
polarity (further tags for defeasible logic variants will be introduced shortly):

+∆q which is intended to mean that q is definitely provable in D (i.e., using only strict
rules).

−∆q which is intended to mean that it is proved that q is not definitely provable in D.
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+∂q which is intended to mean that q is defeasibly provable in D.

−∂q which is intended to mean that it is proved that q is not defeasibly provable in D.

Provability is based on the concept of a derivation (or proof) in D = R. A derivation is a
finite sequence P = (P (1), . . . , P (n)) of tagged literals satisfying four conditions (which
correspond to inference rules for each of the four kinds of conclusion). In the following
P (1..i) denotes the initial part of the sequence P of length i.

+∆:
If P (i + 1) = +∆q then

∃r ∈ Rs[q]
∀a ∈ A(r) : +∆a ∈ P (1..i)

−∆:
If P (i + 1) = −∆q then

∀r ∈ Rs[q]
∃a ∈ A(r) : −∆a ∈ P (1..i)

The definition of ∆ describes just forward chaining of strict rules. For a literal q to be defi-
nitely provable we need to find a strict rule with head q, of which all antecedents have been
definitely proved previously. And to establish that q cannot be proven definitely we must
establish that for every strict rule with head q there is at least one antecedent which has been
shown to be non-provable.

Now we turn to the more complex case of defeasible provability.

+∂:
If P (i + 1) = +∂q then either
(1) +∆q ∈ P (1..i) or

(2.1) ∃r ∈ Rsd[q]∀a ∈ A(r)
+∂a ∈ P (1..i) and

(2.2) −∆∼q ∈ P (1..i) and
(2.3) ∀s ∈ R[∼q]

∃a ∈ A(s) : −∂a ∈ P (1..i)

−∂:
If P (i + 1) = −∂q then
(1) −∆q ∈ P (1..i) and

(2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r) :
−∂a ∈ P (1..i) or

(2.2) +∆∼q ∈ P (1..i) or
(2.3) ∃s ∈ R[∼q] such that

∀a ∈ A(s) : +∂a ∈ P (1..i)

Let us work through the condition for +∂. To show that q is provable defeasibly we
have two choices: (1) We show that q is already definitely provable; or (2) we need to argue
using the defeasible part of D as well. In particular, we require that there must be a strict
or defeasible rule with head q which can be applied (2.1). But now we need to consider
possible “attacks”, that is, reasoning chains in support of ∼q. To be more specific: to prove q
defeasibly we must show that ∼q is not definitely provable (2.2). And finally (2.3), we need
to show that all rules with head ∼q are inapplicable.

In [2] we presented a framework for defeasible logic, where we showed how to tune de-
feasible logic in order to define variants able to deal with different nonmonotonic phenomena.
In particular, we proposed different ways in which conclusions can be obtained. One of the
properties most discussed in the literature is whether ambiguities should be propagated or
blocked (see, for example, [39, 38]).

We illustrate the notion of ambiguity with the following example

Example 1 Consider the following defeasible theory D.

⇒ a
⇒ ¬a

⇒ b
a ⇒ ¬b
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Here a is ambiguous since we have applicable rules for both a and ¬a, and we have no means
to decide between them. In a setting where the ambiguity is blocked, b is not ambiguous
because we have an applicable rule for b and, at the same time, the rule for¬b is not applicable
since we cannot prove its antecedent. On the other hand, in an ambiguity propagating setting,
b is ambiguous because there are rules for both b and ¬b antecedent of the rule for ¬b is
ambiguous, and hence the ambiguity is propagated to b. We have proofs in this theory for
−∂a, −∂¬a, +∂b, and −∂¬b, thus showing the ambiguity blocking behavior of Defeasible
Logic.

In the logic above ambiguities are blocked. In the following we introduce an ambiguity
propagating variant. The result of [1] has been extended to this variant; thus, once again,
the appropriate inference rules will be presented in simplified form without reference to the
superiority relation.

The first step is to determine when a literal is “supported” in a defeasible theory D.
Support for a literal p (+Σp) consists of a monotonic chain of reasoning that would lead us
to conclude p in the absence of conflicts. This leads to the following inference conditions:

+Σ:
If P (i + 1) = +Σp then

∃r ∈ Rsd[p]:
∀a ∈ A(r) : +Σa ∈ P (1..i)

−Σ:
If P (i + 1) = −Σp then

∀r ∈ Rsd[p]:
∃a ∈ A(r) : −Σa ∈ P (1..i)

A literal that is defeasibly provable is supported, but a literal may be supported even
though it is not defeasibly provable. Thus support is a weaker notion than defeasible prov-
ability. For example, given two rules⇒ p and⇒ ¬p, both p and ¬p are supported, but neither
is defeasibly provable. We say that p is ambiguous. In general, a literal is ambiguous if there
is a chain of reasoning that supports a conclusion that p is true, and another that supports that
∼p is true.

We can achieve ambiguity propagation behavior by making a minor change to the infer-
ence condition for +∂: instead of requiring that every attack on p be inapplicable in the sense
of−∂, now we require that the rule for∼p be inapplicable because one of its antecedents can-
not be supported. By making attack easier we are imposing a stronger condition for proving
a literal defeasibly. Here is the formal definition:

+∂ap:
If P (i + 1) = +∂apq then either
(1) +∆q ∈ P (1..i) or

(2.1) ∃r ∈ Rsd[q]∀a ∈ A(r) :
+∂apa ∈ P (1..i) and

(2.2) −∆∼q ∈ P (1..i) and
(2.3) ∀s ∈ R[∼q]

∃a ∈ A(s) : −Σa ∈ P (1..i)

−∂ap:
If P (i + 1) = −∂apq then
(1) −∆q ∈ P (1..i) and

(2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r) :
−∂apa ∈ P (1..i) or

(2.2) +∆∼q ∈ P (1..i) or
(2.3) ∃s ∈ R[∼q] such that

∀a ∈ A(s) : +Σa ∈ P (1..i)

EXAMPLE 1 (continued)
We consider the defeasible theory of Example 1, but this time we compute the consequences
using the conditions given above; we have +Σa, +Σ¬a, +Σb and +Σ¬b showing that there
are chains of reasoning supporting a, ¬a, b and ¬b. Moreover we can derive−∂apa,−∂ap¬a,
−∂apb and −∂ap¬b showing that the resulting logic exhibits an ambiguity propagating be-
havior. In fact b is now ambiguous, and its ambiguity depends on the ambiguity of a.
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We present now an hypothetical scenario based on a legal proceeding –and whose structure
frequently occurs in legal reasoning– where an ambiguity blocking argumentation framework
seems more appropriate that the corresponding ambiguity propagation one2.

Example 2 Let us suposse that a piece of evidence A suggests that the defendant is responsi-
ble while a second piece of evidence (let us call it B) indicates that he/she is not responsible;
moreover the sources are equally reliable. According to the underlying legal system a defen-
dant is presumed innocent (i.e., not guilty) unless responsibility has been proved.

The above scenario is encoded in the following defeasible theory:

⇒ ¬guilty
evidenceA ⇒ responsible responsible ⇒ guilty
evidenceB ⇒ ¬responsible

Given both evidenceA and evidenceB , the literal responsible is ambiguous. If we propagate
ambiguity then the literals guilty and ¬guilty are ambiguous; thus an undisputed conclusion
cannot be drawn. On the other hand, if we assume an ambiguity blocking stance, the literal
¬guilty is not ambiguous and a definite verdict can be reached.

The above example shows that in domains where arguments are part of larger arguments and
definite conclusions must be reached, which is often the case in the legal domain, ambigu-
ity blocking systems offer more natural and intuitive representations than the corresponding
ambiguity propagation ones. For a thorough discussion of various types of arguments, their
applications and motivations see [35].

To conclude this section we notice that the inference conditions for defeasible logic
closely resemble the inference mechanism of Prolog. In [29, 2] we have introduced a fam-
ily of meta-programs for various variants of defeasible logic and we proved that defeasible
logic is characterized by Kunen semantics. The meta-programs corresponding to the variants
discussed in this paper are given in Appendix B.

3 Argumentation for Defeasible Logics
In this section we give the formal definition of an argumentation framework, and we describe
in details two variants; the first capturing ambiguity propagation and the second ambiguity
blocking. Moreover we prove that the two variants of defeasible logic presented in the previ-
ous section are sound and complete w.r.t the appropriate version of the semantics (Theorems
14 and 17).

3.1 Arguments
Argumentation systems usually contain the following basic elements: an underlying logical
language, and the definitions of: argument, conflict between arguments, and the status of ar-
guments. The latter elements are often used to define a consequence relation. In what follows
we present an argumentation system containing the above elements in a way appropriate for
defeasible logic.

Obviously, the underlying logical language we use is the language of defeasible logic.

2A similar structure is present in Example 3.11 of [21] about a medical procedure.
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As usual, arguments are defined to be proof trees (or monotonic derivations). However,
defeasible logic requires a more general notion of proof tree that admits infinite trees, so that
the distinction is kept between an unrefuted, but infinite, chain of reasoning and a refuted
chain.

An argument for a literal p based on a set of rules R is a (possibly infinite) tree with nodes
labeled by literals such that the root is labeled by p and for every node with label h:

1. If b1, . . . , bn label the children of h then there is a rule in R with body b1, . . . , bn and
head h.

2. If this rule is a defeater then h is the root of the argument.

3. The arcs in a proof tree are labeled by the rules used to obtain them.

Although condition 3 is required formally, to distinguish between rules with different arrows,
we will not employ it in our examples since there is no chance of this confusion in our
examples.

Condition 2 specifies that a defeater may only be used at the top of an argument; in par-
ticular, no chaining of defeaters is allowed. We illustrate this point by the following example.

Example 3 Consider the following defeasible theory D:

; a

a ; b

⇒ ¬b

Then ; a ; b is not an argument (from now on we often use this linear, more compact
representation of arguments that have one branch only, instead of a tree based representation).
The reason is that, as we said before, defeaters are only used to prevent conclusions, but do
not provide positive evidence. In our example, we have evidence against ¬a (by the first
defeater), but no evidence for a. Therefore the second defeater cannot be used since to do so
we would need evidence for a. The proof theory of defeasible logic was defined in agreement
with this reading, therefore D ` +∂¬b and D ` +∂ap¬b.

Given a defeasible theory D, the set of arguments that can be generated from D is denoted
by ArgsD.

Any literal labeling a node of an argument A is called a conclusion of A. However, when
we refer to the conclusion of an argument, we refer to the literal labeling the root of the
argument. A (proper) subargument of an argument A is a (proper) subtree of the proof tree
associated to A.

Sometimes we need to differentiate between arguments, depending on the rules used.

• A supportive argument is a finite argument in which no defeater is used.

• A strict argument is an argument in which only strict rules are used.

• An argument that is not strict is called defeasible.

Example 4 Consider the following defeasible theory D.
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⇒ d
→ e
⇒ f

{a,¬b} ⇒ c
e → a
f ; b
d ⇒ ¬b

Now we consider the following arguments:

C :

• e

• a
B :

• f

• b
A :
• c

�
��

A
AA

• e

• a

• d

•¬b

Then A is a supportive argument for c, but not a strict argument. B is an argument for b
that is not supportive. C is a strict supportive argument for a.

3.2 Arguments and Monotonic Proofs
At this stage we can characterize the definite conclusions of defeasible logic in argumentation-
theoretic terms.

Proposition 5 Let D be a defeasible theory and p be a literal.

1. D ` +∆p iff there is a strict supportive argument for p in ArgsD

2. D ` −∆p iff there is no (finite or infinite) strict argument for p in ArgsD

At the same time we are ready to characterize the connection between the notion of sup-
port in defeasible logic and the existence of arguments.

Proposition 6 Let D be a defeasible theory and p a literal.

1. D ` +Σp iff there is a supportive argument for p in ArgsD.

2. D ` −Σp iff there is no (finite or infinite) argument ending with a supportive rule for
p in ArgsD.

Both propositions are natural since strict provability in defeasible logic, support in defeasible
logic, and arguments are monotonic proofs where no conflicting rules, respectively argu-
ments, are considered.

EXAMPLE 4 (continued)
For the theory D in Example 4 we have the following:

D ` +∆a

D ` +Σc

D ` −∆f (there is no strict rule with head f )

D ` −Σb (there is no strict or defeasible rule with head b)
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It is straightforward to see that these results are in agreement with the existence or otherwise
of arguments, as specified by the propositions above. Arguments C and A provide the agree-
ment in the first two cases, while the non-existence of an appropriate rule to place at the top
of an argument provides the agreement in the last two cases.

3.3 Conflicting Arguments: Attack and Undercut
Next we begin to study the interaction between defeasible arguments. Obviously it is possible
that arguments support contradictory conclusions. In Example 4 the arguments⇒ f ; b and
⇒ d ⇒ ¬b are conflicting.

An argument A attacks a defeasible argument B if a conclusion of A is the complement
of a conclusion of B, and that conclusion of B is not part of a strict subargument of B. A set
of arguments S attacks a defeasible argument B if there is an argument A in S that attacks
B.

EXAMPLE 4 (continued)
The arguments A and B attack each other.

A defeasible argument A is supported by a set of arguments S if every proper subargu-
ment of A is in S.

Despite the similarity of name, this concept is not directly related to support in defeasible
logic, nor to supportive arguments/proof trees. Essentially the notion of supported argument
is meant to indicate when an argument may have an active role in proving or preventing the
derivation of a conclusion. The main difference between the above notions is that infinite
arguments and arguments ending with defeaters can be supported (thus preventing some con-
clusions), while supportive proof trees are finite and do not contain defeaters (cf. Proposition
6).

A defeasible argument A is undercut by a set of arguments S if S supports an argument B
attacking a proper non-strict subargument of A. That an argument A is undercut by S means
that we can show that some premises of A cannot be proved if we accept the arguments in S.

It is worth emphasizing that the above definitions concern only defeasible arguments and
subarguments; for strict arguments we stipulate that they cannot be undercut or attacked.
This is in line with definite provability in defeasible logic, where conflicts among rules are
disregarded.

EXAMPLE 4 (continued)
The argument A is undercut by the set S = {⇒ f} (where f should be read as a tree
consisting only of its root which is labeled by ⇒ f ):

• S supports the argument B;

• B attacks a proper subargument of A: ⇒ d ⇒ ¬b.

3.4 The Status of Arguments
The heart of an argumentation semantics is the notion of an acceptable argument. Based on
this concept it is possible to define justified arguments and justified conclusions, conclusions
that may be drawn even taking conflicts into account. Intuitively, an argument A is acceptable
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w.r.t. a set of arguments S if, once we accept S as valid arguments, we feel compelled to
accept A as valid.

The notion of acceptable argument can be defined in various ways – two such ways will
be used later to characterise ambiguity propagating and ambiguity blocking defeasible logic.
For the moment we leave this notion open, as a parameter that may be instantiated in different
ways:

Given an argument A and a set S of arguments (to be thought of as arguments
that have already been demonstrated to be justified), we assume the existence of
the concept: A is acceptable w.r.t. S.

Based on this concept we proceed to define justified arguments and justified literals.

Definition 7 Let D be a defeasible theory. We define JD
i as follows.

• JD
0 = ∅;

• JD
i+1 = {a ∈ ArgsD | a is acceptable w.r.t. JD

i }.

The set of justified arguments in a defeasible theory D is JArgsD = ∪∞i=1J
D
i .

A literal p is justified if it is the conclusion of a supportive argument in JArgsD.

That an argument A is justified means that it resists every reasonable refutation. However,
defeasible logic is more expressive since it is able to say when a conclusion is demonstrably
non-provable (−∂, −∂ap). Briefly, that a conclusion is demonstrably non-provable means
that every possible argument not involving defeaters has been refuted. In the following we
show how to capture this notion in our argumentation system by assigning the status rejected
to arguments that are refuted. Roughly speaking, an argument is rejected if it has a rejected
subargument or it cannot overcome an attack from another argument.

Again there are several possible definitions for the notion of rejected argument. Similarly
to what we have done for the notion of acceptable argument we leave it temporarily undefined.

Given an argument A, a set S of arguments (to be thought of as arguments that
have already been rejected), and a set T of arguments (to be thought of as justi-
fied arguments that may be used to support attacks on A), we assume the exis-
tence of the concept: A is rejected by S and T .

Based on this concept we proceed to define rejected arguments and rejected literals.

Definition 8 Let D be a defeasible theory and T be a set of arguments. We define RD
i (T ) as

follows.

• RD
0 (T ) = ∅;

• RD
i+1(T ) = {a ∈ ArgsD | a is rejected by RD

i (T ) and T}.

The set of rejected arguments in a defeasible theory D w.r.t. T is RArgsD(T ) = ∪∞i=1R
D
i (T ).

We say that an argument is rejected if it is rejected w.r.t. JArgsD.
A literal p is rejected by T if there is no argument in ArgsD −RArgsD(T ), the top rule

of which is a strict or defeasible rule with head p. A literal is rejected if it is rejected by
JArgsD.
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Note that a literal p is not necessarily rejected if there is no supportive argument for p
in ArgsD − RArgsD(T ), because there may be an infinite argument for p in ArgsD −
RArgsD(T ) without any defeaters (recall that supportive arguments must be finite). Thus it
is possible for a literal to be neither justified nor rejected. The situation is similar to defeasible
logic, where we may have both D 6 ` +∂p and D 6 ` −∂p. A sufficient condition that prevents
this situation is the acyclicity of the atom dependency graph (see [6]).

The different definitions of acceptable and rejected that we will introduce in the following
sections satisfy similar technical properties, and consequently the two argumentation systems
have some similar properties. Later, in Section 3.7, we will further investigate similarities –
and establish some differences – between the two systems. Here we focus on some common
technical properties of the argumentation systems.

Lemma 9 The sequences of sets of arguments JD
i and RD

i (T ) are monotonically increasing.

Lemma 10 Every subargument of a justified argument is justified.

Lemma 11 Let A be an argument.

1. A is acceptable w.r.t. JArgsD iff A ∈ JArgsD.

2. A is rejected by RArgsD(T ) and T iff A ∈ RArgsD(T ).

We will see later, in Theorem 18, that, for the concepts of acceptability and rejected that
we investigate, no argument or literal is both justified and rejected.

3.5 Grounded Semantics and Ambiguity Propagation
Dung [11, 12] proposed an abstract argumentation framework giving rise to several argumen-
tation semantics, in particular to a skeptical semantics (called grounded semantics) which has
been widely used to characterize several defeasible reasoning systems [12, 7, 34].

In this section we show how to modify Dung’s definition of acceptable argument in order
to suit defeasible logic. We begin by providing precise definition for the parameters left open
in the previous section (acceptable argument w.r.t. S; argument rejected by S and T ).

Definition 12 An argument A for p is acceptable w.r.t a set of arguments S if A is finite, and

1. A is strict, or

2. every argument attacking A is attacked by S.

The idea behind this definition is to provide a notion of “validity” of arguments w.r.t. a set
of arguments that have already been assessed as valid. First of all, an argument to be valid
must be finite (to avoid well-known fallacies such as circular argument and infinite regress).
Secondly, as we have seen in the previous section, strict arguments are just monotonic proofs;
thus they are per se valid. Finally, we consider to be valid those arguments whose counterar-
guments have been undermined by arguments that have already been assessed as valid.

Definition 13 An argument A is rejected by sets of arguments S and T when A is not strict,
and either

1. a proper subargument of A is in S, or

12



2. it is attacked by a finite argument.

Note that T is not used in this definition.
An argument can be rejected for two reasons: (1) part of the argument has already been

rejected and (2) there is a competing argument. The intuition behind (2) is that there is no
superiority relation so, given two competing arguments, there is no way to decide between
the two; thus, due to the sceptical nature of this semantics, we reject the two arguments.

EXAMPLE 4 (continued)
The argument A is acceptable w.r.t. S = {⇒ d ⇒ ¬b} because S attacks B, the only
argument attacking A.

The argument ⇒ d ⇒ ¬b is rejected by any sets S and T because it is attacked by the
argument B.

Using the notions of acceptable and rejected argument in Definitions 7 and 8 enables us to
provide a characterization of defeasible provability in ambiguity propagating defeasible logic.

Theorem 14 Let D be a defeasible theory, p be a literal, and T be a set of arguments.

1. D ` +∂app iff p is justified.

2. D ` −∂app iff p is rejected by T .

In a situation where there are no strict arguments, and only finite arguments, Definition 13
reduces to Dung’s definition of acceptability [12]. When combined with Definition 7, it be-
comes apparent that JArgsD is Dung’s grounded semantics under these circumstances. For
this reason, we refer to this semantics of our argumentation systems as grounded semantics.

The following examples demonstrate the concepts defined in this and the previous section.

EXAMPLE 1 (continued)
We calculate the following:

JD
0 = ∅;

JD
1 = ∅ = JArgsD.

RD
0 (T ) = ∅;

RD
1 (T ) = {⇒ a, ⇒ ¬a, ⇒ b, ⇒ a ⇒ ¬b};

RD
2 (T ) = RD

1 (T ) = RArgsD(T ).

All arguments in RD
1 (T ) are supportive arguments and each is attacked by at least another

one. As a result, there are no justified literals and four rejected literals. This outcome agrees
with the ambiguity propagating defeasible logic where−∂apa, −∂ap¬a, −∂apb, −∂ap¬b can
be derived.

EXAMPLE 4 (continued)
We have:

JD
0 = ∅;

JD
1 = {→ e, → e → a, ⇒ f, ⇒ d};

JD
2 = JD

1 = JArgsD.
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Thus a, e, d, f are the justified literals. This corresponds to the derivability results D ` ∂apa,
D ` ∂ape, D ` ∂apd, D ` ∂apf which follow easily using the proof theory of section 2.

RD
0 (T ) = ∅;

RD
1 (T ) = {A,B,⇒ d ⇒ ¬b};

RD
2 (T ) = RD

1 (T ) = RArgsD(T ).

The arguments for b and ¬b attack each other; since these are both finite arguments, both
are rejected. The literals b,¬b and c are rejected because the only arguments for them are
rejected. The literals ¬a,¬c,¬d,¬e,¬f are rejected, since there is no argument for them.
Again this outcome corresponds to the non-derivability results D ` −∂ap¬a, D ` −∂apb,
etc.

3.6 Defeasible Semantics and Ambiguity Blocking
In the previous section we gave an argumentation theoretic characterization of defeasible
logic with ambiguity propagation. In this section we see how to modify the notions of ac-
ceptable and rejected argument in order to capture defeasible provability in defeasible logic
with ambiguity blocking (our original defeasible logic).

Definition 15 An argument A for p is acceptable w.r.t. a set of arguments S if A is finite,
and

1. A is strict, or

2. every argument attacking A is undercut by S.

Here a defeasible argument is assessed as valid if we can show that the premises of all argu-
ments attacking it cannot be proved if we consider valid the arguments in S.

Definition 16 An argument A is rejected by sets of arguments S and T when A is not strict
and

1. a proper subargument of A is in S, or

2. it is attacked by an argument supported by T .

The simple existence of a competing argument is not enough to state that an argument is
rejected. The attacking argument must be supported by the set of justified arguments.

Now we are ready to provide a characterization of defeasible logic.

Theorem 17 Let D be a defeasible theory and p be a literal.

1. D ` +∂p iff p is justified.

2. D ` −∂p iff p is rejected by JArgsD.

We refer to the semantics of argumentation systems defined in this subsection as defeasi-
ble semantics because of the above characterization of the original defeasible logic.

EXAMPLE 1 (continued)
We calculate the following:
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JD
0 = ∅;

JD
1 = {⇒ b};

JD
2 = JD

1 = {⇒ b} = JArgsD.

RD
0 (JArgsD) = ∅;

RD
1 (JArgsD) = {⇒ a, ⇒ ¬a, ⇒ a ⇒ ¬b};

RD
2 (JArgsD) = RD

1 (JArgsD(∅) = RArgsD(JArgsD).

Note that JD
0 = ∅ undercuts the argument ⇒ a ⇒ ¬b because ∅ trivially supports the

argument ⇒ ¬a which attacks ⇒ a ⇒ ¬b.
As a result of our calculations b is justified while a,¬a,¬b are rejected. This outcome

is consistent with the way ambiguity blocking defeasible logic works: there is evidence for
b and the evidence against b cannot be used because its antecedent a is not defeasible prov-
able. Thus the ambiguity of a is not propagated to b, instead it is used directly to allow the
derivation of b.

3.7 Grounded Semantics versus Defeasible Semantics
It is worthwhile elucidating the differences between defeasible semantics and grounded se-
mantics as defined in the previous subsections. In both cases the set of justified arguments
is defined by Definition 7, but with different notions of acceptable. Under the grounded se-
mantics, any argument attacking an acceptable argument A must be countered by an attack
from S. Under the defeasible semantics the kind of counter required is different: the counter-
argument must attack a subargument, not the conclusion, and the counter-argument need only
be supported by S, not be a member of S as in the grounded semantics.

There are similar differences in the definitions of rejected arguments. Under the grounded
semantics, an argument is rejected if it is attacked by any finite argument. Under the defea-
sible semantics, an argument is rejected if it is attacked by a (possibly infinite) argument
supported by T . In the important case when T is JArgsD, the class of arguments rejected
under the defeasible semantics is smaller than under the grounded semantics, as we will see.

Despite these definitional differences, the two semantics share many common properties.
We have already seen some of these properties in Section 3.4. Here we will first present some
deeper common properties, before addressing the differences between the semantics.

The following common property of the two semantics represents a consistency condition:
no argument is both “believed” and “disbelieved”.

Theorem 18 For every defeasible theory:

• No argument is both justified and rejected.

• No literal is both justified and rejected.

The following lemma is a consequence of Theorem 18.

Lemma 19 If JArgsD contains two arguments with conflicting conclusions then both argu-
ments are strict.
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This means that inconsistent conclusions can be reached only when the strict part of the
theory is inconsistent. According to Definition 7 an argument is justified if it is acceptable
and Definitions 12 and 15 stipulate that strict arguments are always accepted. Hence as a
corollary to Theorem 18 we can show that the set of justified arguments is harmonious in the
following sense.

Corollary 20 No justified argument is attacked by a justified argument.

These properties demonstrate the proper behavior of the proposed semantics. They show that
the formal concepts behave in accord with our intuitions in some important respects.

In the case of grounded semantics, we can establish a further property, permitting a sim-
plification of the semantics and a simpler notion of justified argument.

Theorem 21 Let D be a defeasible theory. Under the grounded semantics:

1. JArgsD = JD
1 .

2. An argument is justified iff no argument attacks it.

The meaning of this theorem is that, under the grounded semantics, we do not have to con-
struct the set of accepted arguments recursively.

Let us consider a literal p to be ambiguous in D if there is a finite argument for each of
p and ∼p. As a consequence of this theorem, no ambiguous literal can be justified under the
grounded semantics. Indeed, as a consequence of Theorem 23, every ambiguous literal is
rejected under the grounded semantics.

Unfortunately this simplification (or a similar one) is not possible for the defeasible se-
mantics. In fact, the next example shows that Theorem 21 does not hold for that semantics.

Example 22 The following theory shows why the set JArgsD has to be built recursively
under the defeasible semantics. There are the following rules, for i = 1, . . . , n

⇒ ¬ai

¬ai ⇒ ¬bi

bi ⇒ ai+1

⇒ bi

and the rule ⇒ a1.
In this theory we have the following conclusions −∂ai, −∂¬ai, +∂bi, −∂¬bi, for i =

1, . . . , n.
For each i > 0, consider the arguments

Ai : ⇒ bi

Bi : ⇒ ¬ai ⇒ ¬bi

Ci : ⇒ bi−1 ⇒ ai

Notice that

• each Ai is attacked by Bi;

• each Ci attacks a proper subargument of Bi;
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• each Ai supports Ci+1;

and, consequently,

• each Bi is undercut by {Ai}.

It is immediate to see that the argument A1 is acceptable w.r.t. JD
0 since no argument attacks

it, so A1 is in JD
1 . At this point C2 is supported by JD

1 , and therefore B2 is undercut by JD
1 ;

hence A2 is acceptable w.r.t. JD
1 . We can repeat this argument to show that each Ai is in JD

i .
However, we must first establish that Ai is justified before we can establish that Ai+1 is

justified. By Definitions 7 and 15, if Ai+1 ∈ JD
i+1, then Bi is undercut by JD

i . But the only
argument that undercuts Bi is Ai. Thus Ai+1 ∈ JD

i+1 implies Ai ∈ JD
i , for i = 1, . . . , n. It

follows that
JD

0 ⊂ JD
1 ⊂ · · · ⊂ JD

n+1.

In comparison, it is clear that all literals in the theory are ambiguous. Thus, no literal is
justified under the grounded semantics.

The ambiguity propagating defeasible logic is conceptually simpler than the ambiguity
blocking defeasible logic. Consequently, the differentiation between these two logics pro-
vided by Theorem 21 and Example 22 is not a complete surprise. We might expect that a
similar differentiation applies when considering rejected arguments, especially since the def-
inition of RArgsD(T ) is independent of T under the grounded semantics, but that is not so.
In fact, under both semantics we have simplifications of the definition of RArgsD(T ) and
simpler notions of rejected argument.

Theorem 23 Let D be a defeasible theory, and T be a set of arguments. Under both the
grounded and defeasible semantics:

• RArgsD(T ) = RD
1 (T ).

Moreover, for any argument A,

1. A is rejected by T under the grounded semantics iff A is attacked by a finite argument.

2. A is rejected by T under the defeasible semantics iff A is attacked by an argument
supported by T .

The meaning of this theorem is that we do not have to recursively construct RArgsD(T ),
the set of arguments rejected by T , if we are given T . This result contradicts speculation in
[15] that, under the defeasible semantics, RArgsD(JArgsD) would require an iterative (or
recursive) definition, even when JArgsD is given. However, when JArgsD is not given, an
iterative definition of RArgsD(JArgsD) is required, as the next example shows.

EXAMPLE 22 (continued)
Clearly the arguments

Ai : ⇒ bi

Di : ⇒ ¬ai

are supported by JArgsD. Thus Bi and Ci are rejected, using the above theorem. Further-
more, Ci is supported by JArgsD, and so Di is rejected. However, notice that Di cannot be
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rejected until Ci is supported, that is, until Ai is justified. Thus, under the defeasible seman-
tics, calculation of the rejected arguments is dependent on the justified arguments, in contrast
to the situation under grounded semantics.

Under the grounded semantics, Ai, Bi, Ci and Di are rejected, since each is attacked by a
finite argument. Clearly, identifying the justified arguments is unnecessary when determining
the rejected arguments.

Our final result provides a comparison of the inferential power of the grounded and defea-
sible semantics. It shows that the defeasible semantics justifies more arguments, but rejects
fewer arguments, than the grounded semantics. Thus, although both semantics are fundamen-
tally sceptical, the defeasible semantics can be considered more credulous than the grounded
semantics. Parts 3 and 4 were originally proved in [2].

Theorem 24 Fix a defeasible theory D. Let A be an argument, and p be a literal.

1. If A is justified under the grounded semantics then A is justified under the defeasible
semantics.

2. If A is rejected under the defeasible semantics then A is rejected under the grounded
semantics.

3. If p is justified under the grounded semantics then p is justified under the defeasible
semantics.

4. If p is rejected under the defeasible semantics then p is rejected under the grounded
semantics.

We conclude this section with examples demonstrating how two traditionally problematic
features of argumentation are handled by the two semantics.

Example 25 (Self-defeating arguments) In this example we show how our framework deals
with the so-called self-defeating arguments. Consider the defeasible theory with the follow-
ing rules:

true ⇒ p
p ⇒ ¬p

This defeasible theory produces the following conclusion −∂¬p. The arguments that can be
built from the theory are:

A1 : ⇒ p
A2 : ⇒ p ⇒ ¬p

Here A2 is a self-defeating argument.
Under the ambiguity blocking, defeasible semantics, the argument A1, although sup-

ported by JD
0 , is not acceptable w.r.t. JD

0 since there is an attacking argument, A2, which
is not undercut by JD

0 : no proper subargument of A2 is defeated by an argument supported
by JD

0 . For the same reason A2 is not acceptable w.r.t. JD
0 . Consequently JD

1 = JD
0 , and

therefore JArgsD is empty. Furthermore, A2 ∈ RArgsD. The reason why A2 is rejected is
the following: although A1 is not justified, it is supported by JArgsD, and so it can be used
to stop the validity of another argument, since we have no means of deciding which one is to
be preferred. On the other hand, A1 cannot be rejected since the argument attacking it (A2)
is not supported by JArgsD: as we have already seen ⇒ p is not a justified argument.
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Under the ambiguity propagating, grounded semantics, the argument A1 is, again, not
acceptable w.r.t. JD

0 since it is attacked by A2, and A2 is not attacked by JD
0 . Similarly, A2

is not acceptable w.r.t. JD
0 and hence JArgsD is empty. Both A1 and A2 are rejected w.r.t.

RD
0 (T ), since each is attacked by the other, and hence RArgsD(T ) = ∅. Thus the ambiguity

propagating semantics differs from the ambiguity blocking semantics in that it rejects A1

whereas the ambiguity blocking semantics does not.

Example 26 (Circular arguments) Very often circular arguments are not considered to be
true arguments since they represent a very well known fallacy, and they are excluded from the
set of arguments using syntactical definitions. Briefly an argument is circular if a conclusion
depends on itself as a premise.

In our approach, circular arguments correspond to infinite arguments, and they are not
justified. At the same time, however, they are not automatically rejected. Moreover, such an
argument can be used to attack (and defeat) other arguments.

Let us first consider the defeasible theory D1 consisting of the rules

p ⇒ q
q ⇒ p

It is immediate to see that the only possible arguments here are the infinite arguments

A1 . . . p ⇒ q ⇒ p ⇒ q
A2 . . . q ⇒ p ⇒ q ⇒ p

They are not justified since no proper subargument is justified, and they are not rejected
since no proper subargument is rejected and there is no argument attacking them. Thus both
semantics agree on D1.

The meaning of the theory at hand is that if something is p, then normally it is q, and
if something is q, then normally it is p. Thus this amounts to say that normally p and q are
equivalent properties.

We add to D1 the following rules:

q ⇒ r
⇒ ¬r

obtaining the defeasible theory D2. In this scenario, under the defeasible (respectively,
grounded) semantics, the argument for r is infinite, circular, and rejected since there is a
supported (respectively, finite) argument for ¬r. However, the argument A3 : ⇒ ¬r is not
justified, since the argument for r attacks it and is not undercut (respectively, not attacked)
by JArgsD.

Finally, D3 is obtained from D2 by adding the rule true ⇒ ¬p. Now, under the defeasible
semantics, A3 becomes justified since, trivially, the argument A4 : ⇒ ¬p is supported by
JD3

0 , A4 attacks A2, and therefore the argument for r is undercut. Indeed, the argument for
r is rejected. A4 is not justified, but nor is it rejected. Under the grounded semantics, the
argument for r is rejected, since it is attacked by A4, but A3 and A4 are not rejected, since
there is no finite argument attacking them. However A3 and A4 are not justified, since there
is no argument in JD

0 that attacks the infinite arguments attacking them.
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4 Related Work
[23] proposes an abstract defeasible reasoning framework that is achieved by mapping ele-
ments of defeasible reasoning into the default reasoning framework of [7]. While this frame-
work is suitable for developing new defeasible reasoning languages, it is not appropriate for
characterizing defeasible logic because:

• [7] does not address Kunen’s semantics of logic programs which provides a character-
ization of failure-to-prove in defeasible logic [29].

• The correctness of the mapping needs to be established if [23] is to be applied to an
existing language like defeasible logic. In fact the representation of priorities is inap-
propriate for defeasible logic.

In section 3.5 we have seen that Dung’s grounded semantics can be used to provide an ar-
gumentation theoretic characterization of the ambiguity propagating variant of Defeasible
Logic; however we have shown (Theorem 21) that when we have a specific symmetric notion
of attack between argument instead of an abstract one the semantics can be simplified and
there is no need for a recursive construction.

Two more systems characterized by Dung’s grounded semantics, even though developed
with different design choices and motivations, are those proposed by Simari and Loui [37]
and Prakken and Sartor [34, 33]. Both are similar to the ambiguity propagating variant of
defeasible logic, but their superiority relations are different: the first is argument based instead
of rule based, while the second does not deal with teams of rules (see [2] for an explanation
of the term “team defeat”, which refers to the full defeasible logic with priorities).

[21] proposes a labeling system, in some way similar in intuition to the tags used in De-
feasible Logic, to determine the status of arguments. Moreover they show that their minimal
semantics, which is defined by the usual recursive definition of accepted argument, corre-
sponds to Dung’s grounded semantics. Therefore minimal semantics characterises the jus-
tified conclusions of the ambiguity propagating variant of Defeasible Logic. However they
do not contemplate a sceptical ambiguity blocking semantics, even though they advocate the
need for it.

The abstract argumentation framework of [40] addresses both strict and defeasible rules,
but not defeaters. However, the treatment of strict rules in defeasible arguments is different
from that of defeasible logic, and there is no concept of team defeat. There are structural
similarities between the definitions of inductive warrant and warrant in [40] and JD

i and
JArgsD, but they differ in that acceptability is monotonic in S whereas the corresponding
definitions in [40] are antitone. The semantics that results is not sceptical, and more related
to stable semantics than Kunen semantics. The framework does have a notion of ultimately
defeated argument similar to our rejected arguments.

Among other contributions, [10] provides a sceptical argumentation theoretic semantics
and shows that LPwNF – which is weaker, but very similar to defeasible logic [5] – is sound
with respect to this semantics. However, both LPwNF and defeasible logic are not complete
with respect to this semantics.

Governatori and Maher [15] have developed an argumentation theoretic semantics for
ambiguity blocking defeasible logic with superiority relation. It is easy to see that the defea-
sible semantics presented here is a special case of that of [15] when the superiority relation
is empty. However, as we have already alluded to, the superiority relation does not add to
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the formal expressive power of the variants of defeasible logic presented in this paper. More-
over the presence of the superiority relation makes the definitions of the notions involved
much more complicated since they are strictly entangled together. Therefore we believe that
the present semantics is simpler and more elegant than that of [15] enabling thus a better
understanding of the basic mechanisms of defeasible reasoning.

Other semantic frameworks have been used recently to characterize Defeasible Logic. In
[29, 2] we used a meta-programming approach to characterize Defeasible Logic. A denota-
tional semantics for Defeasible Logic was presented in [25], and a model-theoretic semantics
in [27].

5 Conclusion
Defeasible logic is a non-monotonic formalism able to capture many different facets of non-
monotonic reasoning; moreover, it has been applied to several fields. As is usual with non-
monotonic formalism many semantics have been devised for defeasible logic, but, despite
their mathematical interest, they lack the intuitive appeal that argumentation semantics offers
for non-monotonic systems.

To obviate this problem we have developed an argumentation framework for defeasible
logic, and we have identified conditions corresponding to two important variants of defeasi-
ble logic: one enforcing ambiguity blocking and the other ambiguity propagation. We have
shown that the ambiguity propagating variant is characterized by Dung’s grounded seman-
tics. On the other hand ambiguity blocking did not correspond to any existing argumentation
semantics. In most argumentation frameworks arguments are considered as black boxes with-
out any consideration of the internal structure of the argument. The analysis of the internal
structure of arguments has enabled us to determine the relation between arguments needed
for capturing ambiguity blocking. At the same time it has allowed us to give a better charac-
terization of ambiguity propagating argumentation.

Finally, the close connection between defeasible logic and argumentation frameworks
opens up the possibility of using existing efficient implementations of defeasible logic as a
computational platform for argumentation.
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A Proofs

Monotonic Proofs
PROPOSITION 5
Let D be a defeasible theory and p be a literal.

1. D ` +∆p iff there is a strict supportive argument for p in ArgsD.

2. D ` −∆p iff there is no (finite or infinite) strict argument for p in ArgsD.

Proof We prove the only if part by induction on the length of defeasible proofs, the if direc-
tion of Case 1 by induction on the height of finite arguments, and the if direction of Case 2
through the contrapositive.

Case 1 (⇒).

Inductive base. The proof has a single line and P (1) = +∆p. This means that there is a rule
r for p with empty antecedent. Thus p itself is a strict proof tree for itself.

Inductive step. Let us suppose the proposition holds for proofs of length up to n, and P (n +
1) = +∆p. This means that there is a strict rule r for p such that ∀a ∈ A(r), +∆p ∈ P (1..n).
By inductive hypothesis we have strict arguments (i.e., strict proof trees) for each a ∈ A(r).
Let τ be the proof tree with root p and with children the proof trees for the a ∈ A(r). It is
immediate to verify that τ is a strict proof tree/argument for p.

(⇐).
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Inductive base. Let A be a strict argument for p of height 1, that is, A is a strict rule for p
with empty antecedent; therefore it is immediate to see that +∆p.

Inductive step. Let us suppose the proposition holds for arguments of height less than n, and
let A be a strict argument for p of height n. The root of A is a strict rule A(r) → p. By
construction, for each q ∈ A(r) we a strict argument of height less than n, thus all such
literals are justified, and, by inductive hypothesis, we have +∆q; therefore the conditions to
derive +∆p are satisfied.

Case 2 (⇒).

Inductive base. The proof consists of a single line and P (1) = −∆p. This is possible only
if there are no strict rules for p. But if there are no strict rules for p a proof tree for p cannot
exist.

Inductive step. Let us suppose the proposition holds for proofs of length up to n, and P (n +
1) = −∆p. This means that for each strict rule r for p, there exists a literal a in A(r) such
that −∆a ∈ P (1..n). By inductive hypothesis there is no strict tree (argument) for a, and
then r cannot be used to construct a strict proof tree for p. However, this is true for each strict
rule for p, therefore a strict proof tree (argument) for p cannot be built.

(⇐).
Suppose D 6 ` −∆p. We will construct the required argument. If ∀r ∈ Rs[p] ∃a ∈

A(r) D ` −∆a then D ` −∆p, since we can concatenate all such proofs and then apply
the −∆ inference rule. This contradict the original supposition. Hence ∃r ∈ Rs[p] ∀a ∈
A(r) D 6 ` −∆a. We can construct a partial argument for p that begins with r and where
every leaf a satisfies D 6 ` −∆a. We can apply the same argument to each leaf to construct
a deeper partial argument. Repeated applications will construct either a finite argument or,
when carried on indefinitely, an infinite argument. This completes the proof.

PROPOSITION 6
Let D be a defeasible theory and p a literal.

1. D ` +Σp iff there is a supportive argument for p in ArgsD.

2. D ` −Σp iff there is no (finite or infinite) argument ending with a supportive rule for
p in ArgsD.

Proof The proof of this proposition is analogous to the proof of Proposition 5; all we have
to do is to replace the occurrences of “strict” with “strict or defeasible”.

Common Properties
Although the notion of justified is different in the two semantics we consider, the proof of the
following lemma is essentially the same for both semantics.

LEMMA 10
Every subargument of a justified argument is justified.

Proof An argument A is justified iff for some n, A is acceptable w.r.t. JD
n . Consequently, it

suffices to show that, for an arbitrary set of arguments S, if A is acceptable w.r.t. S then every
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subargument of A is acceptable w.r.t. S. Under the grounded semantics, A is acceptable w.r.t.
S iff A is finite and strict, or A is finite and every argument attacking A is attacked by S.

Let A be acceptable w.r.t. S and let B be a subargument of A. Then B is finite. If A
is strict then B must also be strict, and hence B is acceptable w.r.t. S. Every argument C
attacking B must also attack A. Since A is acceptable w.r.t. S, C is attacked by S. Thus
every argument attacking B is attacked by S, and hence B is acceptable w.r.t. S.

Under the defeasible semantics the proof is essentially the same, except that “attacked
by” is replaced by “undercut by”, reflecting the difference between the two definitions of
acceptable.

Many of the common properties have similar proofs for the grounded and defeasible
semantics, as in the previous lemma. In the next proof we exploit Theorem 21 to give a
particularly simple proof in the grounded semantics case.

THEOREM 18
For every defeasible theory:

1. No argument is both justified and rejected.

2. No literal is both justified and rejected.

Proof Suppose there is an argument that is both justified and rejected. Let n be the smallest
index such that, for some argument A, A ∈ RArgsD(JArgsD) and A ∈ JD

n .
For the grounded semantics: From the definitions, there is a finite argument B that attacks

A, and B is attacked by JD
n−1. By Theorem 21, n = 1, and thus B is attacked by JD

0 = ∅.
But no argument can be attacked by ∅, and hence the original supposition is false.

For the defeasible semantics: From the definitions, there is an argument B, supported
by JArgsD, that attacks A, and B is undercut by JD

n−1. Thus there is an argument C,
supported by JD

n−1, that attacks a proper subargument B′ of B. Since B′ ∈ JArgsD, C is
undercut by JArgsD, that is, there is an argument E, supported by JArgsD, that attacks a
proper subargument C ′ of C. C ′ ∈ JD

n−1 since C ′ is a proper subargument of an argument
supported by JD

n−1. Moreover, C ′ is rejected, since it is attacked by an argument (E) that is
supported by JArgsD. But this contradicts the assumed minimality of n. Hence the original
supposition is false, and no argument is both justified and rejected.

The second part follws easily from the first: if p is justified there is a supportive argument
for p in JArgsD. From the first part, this argument is in ArgsD − RArgsD(JArgs). Thus
if p is justified then it is not rejected.

The following lemma is a consequence of Theorem 18.

LEMMA 19
If JArgsD contains two arguments with conflicting conclusions then both arguments are
strict.

Proof Let the two arguments be A and B. Suppose B is strict. Then, for A to be acceptable
w.r.t. any S, A must be strict (since B attacks A, and B cannot be attacked or undercut,
because it is strict). Thus, by symmetry, either A and B are strict, or both are non-strict.

For the grounded semantics: Suppose both A and B are non-strict. Both must be finite
arguments, from the definition of acceptability. A must be rejected because it is attacked by
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a finite argument (B), and is justified by assumption. By Theorem 18, this is not possible.
Thus no two non-strict justified arguments have conflicting conclusions.

For the defeasible semantics: The same argument applies, replacing “attacked by a finite
argument” by “attacked by an argument supported by JArgsD”.

The following corollary follows immediately from the previous lemma.

COROLLARY 20
No justified argument is attacked by a justified argument.

Proof Suppose one justified argument attacks another at p, say. Let A and B be the cor-
responding subarguments with roots p and ∼p. By Lemma 19, A and B are strict. Thus
the original argument does not attack the other at p. From this contradiction, the original
supposition is false.

LEMMA 11
Let A be an argument.

1. A is acceptable w.r.t. JArgsD iff A ∈ JArgsD

2. A is rejected by RArgsD(T ) and T iff A ∈ RArgsD(T ).

Proof If A ∈ JArgsD then A ∈ JD
n+1, for some n. Hence, A is acceptable w.r.t. JD

n .
Since the notion of acceptability is monotonic, A is acceptable w.r.t. JArgsD. Conversely,
since JArgsD = JD

m , for some m, if A is acceptable w.r.t. JArgsD then A ∈ JD
m+1. Thus

A ∈ JArgsD.
If A ∈ RArgsD(T ) then A ∈ RD

n+1(T ), for some n. Hence, A is rejected by RD
n (T )

and T . Since the notion of rejection by S and T is monotonic in T , A is rejected by
RArgsD(T ) and T . Conversely, since RArgsD(T ) = RD

m(T ), for some m, if A is rejected
by RArgsD(T ) and T then A ∈ RD

m+1(T ). Thus A ∈ RArgsD(T ).

THEOREM 23
Let D be a defeasible theory, and T be a set of arguments. Under both the grounded and
defeasible semantics:

• RArgsD(T ) = RD
1 (T ).

Moreover, for any argument A,

1. A is rejected w.r.t. T under the grounded semantics iff A is attacked by a finite argu-
ment.

2. A is rejected w.r.t. T under the defeasible semantics iff A is attacked by an argument
supported by T .

Proof By definition, RArgsD(T ) is the set of arguments rejected w.r.t. T . Using the defi-
nition of RD

i and Definition 13 (respectively Definition 16), RD
1 (T ) is the set of arguments

attacked by a finite argument (respectively, attacked by an argument supported by T ). Thus,
the equation RArgsD(T ) = RD

1 (T ) follows immediately from the numbered statements.
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1. If A is rejected then A ∈ RD
i+1(T ), for some i. That is, A is rejected by RD

i (T ) and
T . Hence, either a proper subargument A1 of A is in RD

i−1(T ) or A is attacked by a
finite argument. If the latter is true then the result is established. Otherwise, consider
A1 ∈ RD

i−1(T ). Applying this argument i times, we find that there is a subargument Ai

of A for which either a subargument is in RD
0 (T ) or Ai is attacked by a finite argument.

Since RD
0 (T ) = ∅, the former is not possible, and hence Ai (and A) is attacked by a

finite argument.

Conversely, if A is attacked by a finite argument then, from the second condition of
rejection by S and T , A is rejected.

2. The above proof applies, replacing “a finite argument” by “an argument supported by
T ”.

Ambiguity Propagating
Let the notions of accepted argument and rejected argument be those given in Definition 12
and Definition 13. Thus we are employing the grounded semantics.

LEMMA 9 (Ambiguity Propagating)
The sequences of sets of arguments JD

i and RD
i (T ) are monotonically increasing.

Proof We prove the lemma by induction on i. The inductive base is trivial since JD
0 = ∅

and RD
0 (T ) = ∅, and therefore JD

0 ⊆ JD
1 and RD

0 (T ) ⊆ RD
1 (T ).

Let us assume it holds up to JD
n and RD

n (T ).
By definition, strict arguments are acceptable w.r.t. every set of arguments; thus they are

in every JD
i .

Let A be an argument in JD
n . By Definition 12 if there is an argument B attacking A,

then B is attacked by JD
n−1; by inductive hypothesis JD

n−1 ⊆ JD
n , thus A is acceptable w.r.t.

JD
n , and therefore A ∈ JD

n+1.
Let A be an argument in RD

n (T ). By Definition 13 either there is a proper subargument B
of A in RD

n−1(T ) or A is attacked by a finite argument. By inductive hypothesis RD
n−1(T ) ⊆

RD
n (T ) and thus, in the first case, B also is in RD

n (T ), and therefore A is in RD
n+1(T ). If A

is attacked by a finite argument then A is in every RD
i (T ).

Corollary 27 1. If JD
n = JD

n+1, then ∀m,n < m JD
n = JD

m = JArgsD.

2. If RD
n (T ) = RD

n+1(T ), then ∀m,n < m RD
n (T ) = RD

m(T ) = RArgsD(T )

Proof The two properties are immediate consequences of the proof of Lemma 9, and the
definitions of JArgsD and RArgsD.

THEOREM 21
Let D be a defeasible theory. Under the grounded semantics:

1. JArgsD = JD
1 .

2. an argument is justified iff no argument attacks it.

28



Proof By definition JArgsD =
⋃∞

i=1 JD
i . By Corollary 27, all we have to show is that

JD
1 = JD

2 .
Let us suppose it is not true; therefore there is an argument A such that A ∈ JD

2 but
A /∈ JD

1 . If no argument attacks A then A ∈ JD
1 . Otherwise, let B an argument that attacks

A; since A is in JD
2 there must be an argument C in JD

1 that attacks B. If C attacks B, then
B attacks C. Thus, since C ∈ JD

1 , there must be an argument E in JD
0 attacking B. However

JD
0 = ∅, thus no argument in JD

0 attacks B, therefore C cannot be in JD
1 , hence A /∈ JD

2 ,
and we have a contradiction.

THEOREM 14
Let D be a defeasible theory and p be a literal. Under the grounded semantics:

1. D ` +∂app iff p is justified.

2. D ` −∂app iff p is rejected.

Proof (⇒) We prove this direction by induction on the length of derivations in Defeasible
Logic.

Inductive Base. Let P be a proof in Defeasible Logic of length 1. Thus P consists of a single
line ±∂app.

Case P (1) = +∂app. This means there is either a 1) strict rule r for p or 2) a defeasible rule
r for p with empty antecedent and there is no rule for ∼p. In both cases r alone is a proof
tree: for 1) the argument is strict and therefore is accepted, and for 2) there is no argument
for ∼p. Therefore the argument p is acceptable w.r.t. JD

0 , and then, by the monotonicity of
the sets of justified argument (Lemma 9), p is justified.

Case P (1) = −∂app. This means that there are no strict or defeasible rules for p. Therefore
there is no argument for p, and thus there are no arguments for p in JArgsD −RArgsD.

Inductive step. We assume that the property holds for proofs of length up to n and P (n+1) =
±∂app.

Case P (n + 1) = +∂app. By definition this implies that there exists a rule r such that 1)
r ∈ Rsd[p], 2) ∀q ∈ A(r),+∂apq ∈ P (1..n), and 3) ∀s ∈ R[∼p]∃as ∈ A(s) such that
−Σas ∈ P (1..n).

From 2) and the inductive hypothesis we have that each q is justified, thus for each q we
have a justified argument Aq; from this and 1) we have a supportive argument A for p. Let m
be the smallest index such that JD

m contains such Aqs and their subarguments.3 Let us now
consider the eventual arguments that might attack A. Let B be an argument attacking A at p.
Suppose first that B is an argument for ∼p. So B is a proof tree whose root is labeled with a
rule for ∼p. From 3) we know that for each rule for ∼p there is a literal q in the antecedent
of the rule such that −Σq is provable; by proposition 6 there is no supportive argument for
q, and therefore there is no argument for ∼p. Thus B is not an argument. On the other hand
if B attacks a proper subargument of A, let us say As, then B is attacked by an argument in
JD

m (namely As). Since all arguments attacking A are attacked by JD
m , A ∈ JD

m+1.

Case P (n + 1) = −∂app. We have to consider two cases: 1) ∀r ∈ Rsd[p]∃q ∈ A(r) such
that −∂apq ∈ P (1..n) and 2) ∃s ∈ R[∼p]∀q ∈ A(s),+Σq ∈ P (1..n). Let us consider an
argument A whose ending rule is a supportive rule for p.

3As shown in Lemma 10, a subargument of a justified argument is itself justified.
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For 1) we have that, by inductive hypothesis for any supportive rule for p there is a literal
for which either all the arguments are rejected or there is no argument; in the first case a
proper subargument of A is rejected and thus A is rejected too, and in the second case A is
not an argument. Thus either all the supportive arguments for p are rejected or there are no
such arguments.

For 2) by Proposition 6 we have a finite argument for ∼p, and therefore any argument A
for p is rejected.

Case 1 (⇐). Here we prove that if a supportive argument for p is in JD
1 , then p is provable

defeasibly. An argument A is in JD
1 if A is acceptable w.r.t. JD

0 , that is, the empty set. If p
is justified according to JD

1 , then there is an argument A accepted w.r.t. the empty set. The
argument A for p must be finite, and either 1) A is strict, or 2) every argument attacking A is
attacked by JD

0 . 1) If A is strict then, by Proposition 5, D ` +∆p and therefore D ` +∂app;
otherwise we consider the height n of A.

If A has height 1, then the argument consists of a single rule with empty body, so the
only possible form of attack is an attack to the head. This means there is an argument for
∼p. However, every argument for ∼p must be attacked by an argument in JD

0 ; but JD
0 is

the empty set, thus there is no argument for ∼p. But if there are no argument for ∼p, then,
according to Proposition 6, D ` −Σ∼p. Therefore, in this case D ` +∂app.

We assume that the property holds for arguments in JD
1 with height up to n. Let B an ar-

gument attacking A. Now B can attack A in two ways: they have competing conclusions, or
B and a proper subargument of A have competing conclusions. We use the same reasoning in
both cases: an argument in JD

1 cannot be attacked by any argument, otherwise the attacking
argument must be attacked by an argument in the empty set; thus D ` −Σ∼p. Moreover,
each subargument of A, has height less than n, and we can make use of the inductive hypoth-
esis to conclude that there is a (strict or defeasible) rule r for p, and ∀q ∈ A(r), D ` +∂apq.
Hence D ` +∂app.

Case 2 (⇐).
If D 6 ` −∂app then either
(1) D 6 ` −∆p, or
(2) ∃r ∈ Rsd[p] ∀a ∈ A(r) D 6 ` −∂apa and ∀s ∈ R[∼p] ∃a ∈ A(s) D 6 ` +Σa
We construct an unrejected argument for p, starting from a partial tree containing only the

unexpanded node p.
If (1) then, by Proposition 5, there is a finite or infinite strict argument B for p. Since B

is strict, it is not rejected. Expanding the node p with B constructs the argument (and so p is
not rejected).

If (2) then, for every rule s for ∼p, some a ∈ A(s) satisfies D 6 ` +Σa. By Proposition
6, there is no supportive argument for a. Hence, there is no finite argument for ∼p.

In addition, there is a supportive rule r for p such that ∀a ∈ A(r) D 6 ` −∂apa. Thus we
can expand p to have the unexpanded children a ∈ A(r). We can repeat this construction for
each a ∈ A(r), and for each of their unexpanded children, and so on. Thus we can construct
a finite or infinite argument C for p that does not use defeaters.

Furthermore, for every literal q in C, there is no finite argument for∼q attacking C: either
(1) applied at this node and this subargument is strict (and thus cannot be attacked), or (2)
applied and we established above that there is no finite argument for ∼q. Thus C, and every
subargument of C, is not attacked by by a finite argument. Hence, by Theorem 23, C is not
rejected.
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Ambiguity Blocking
Let the notions of accepted argument and rejected argument be those given in Definition 15
and Definition 16. Thus we are employing the defeasible semantics.

LEMMA 9 (Ambiguity Blocking)
The sequences of sets of arguments JD

i and RD
i (JArgsD) are monotonically increasing.

Proof We prove the lemma by induction on i. The inductive base is trivial in both cases
since JD

0 = ∅ and RD
0 (T ) = ∅ and thus JD

0 ⊆ JD
1 and RD

0 (T ) ⊆ RD
1 (T ).

By definition strict arguments are acceptable w.r.t. every set of arguments thus they are in
every JD

i .
Let A be an argument in JD

n , and let B an argument attacking A. By construction B is
undercut by JD

n−1, and, by inductive hypothesis JD
n−1 ⊆ JD

n ; hence B is undercut by JD
n .

Therefore A ∈ JD
n+1.

We consider now the sequence of rejected arguments. Any argument attacked by an
argument supported by T is in RD

i (T ), for every i. Let A be an argument in RD
n (T ). If

a proper subargument B of A is in RD
n−1(T ), then, by inductive hypothesis, B ∈ RD

n (T );
therefore A ∈ RD

n+1(T ).

THEOREM 17
Let D be a defeasible theory and p be a literal. Under the defeasible semantics:

1. D ` +∂p iff p is justified.

2. D ` −∂p iff p is rejected by JArgsD.

Proof (⇒). We prove the only if direction of the theorem by induction on the length of
derivations in Defeasible Logic.

Inductive Base. Let P be a derivation in Defeasible Logic.

Case P (1) = +∂p. This means there is supportive rule for p with empty antecedent. If the
rule is strict the rule itself is a strict argument for p, and strict argument are acceptable w.r.t.
any JD

i . Therefore the argument is justified and so is p. If the rule for p is defeasible then the
rule itself is a defeasible argument for p. Let us call this argument A. Moreover, condition
2.3 of +∂ must be satisfied. This is possible only if there are no rules for ∼p, but if there
are no rules for ∼p, there are no arguments for ∼p; the only way A can be attacked is by
an argument for ∼p. We have seen that in such a case there are no arguments for ∼p, and
therefore A ∈ JD

1 . By Lemma 9, A ∈ JArgs, and so p is justified

Case P (1) = −∂p. This is possible only in the case where there are no supportive rules for
p; then there are no supportive arguments for p in ArgsD, so p is rejected.

Inductive Step. As usual we assume that the theorem holds for derivations whose length is
less than or equal to n.

Case P (n + 1) = +∂p. We consider only the cases different from those investigated in
the inductive base. By definition there is a supportive rule r ∈ Rsd[p] such that ∀ar ∈
A(r), +∂ar ∈ P (1..n). By inductive hypothesis we have justified arguments for each ar;
this implies we have a supportive argument for p, let us call it A. Moreover ∀s ∈ R[∼p],
∃as ∈ A(s) such that −∂as ∈ P (1..n). By inductive hypothesis such ass are rejected w.r.t.
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JArgsD; that is either there are no supportive arguments or such arguments are attacked by
arguments supported by JArgsD.4

Consider an argument B attacking A. If it attacks a proper subargument of A then it is
undercut by JArgsD, since the subarguments are justified. If B attacks A at ∼p, then the
subargument at some child of ∼p in B is rejected w.r.t. JArgsD, as discussed above. Thus
some proper subargument of B is attacked by an argument supported by JArgsD. Hence,
also in this case, B is undercut by JArgsD. Consequently, every argument attacking A is
undercut by JArgsD. It follows that A is acceptable w.r.t. JArgsD, and hence p is justified.

Case P (n + 1) = −∂p. By definition ∀r ∈ Rsd[p] either (a) ∃ar ∈ A(r) such that −∂ar ∈
P (1..n) or (b) ∃s ∈ R[∼p] such that ∀as ∈ A(s) +∂as ∈ P (1..n).

For (a), by inductive hypothesis any supportive argument for p has a rejected proper sub-
argument. Therefore all the supportive arguments for p are rejected, and hence p is rejected.

For (b), by inductive hypothesis, every argument for p is attacked by an argument sup-
ported by JArgsD. Hence every argument for p is rejected, and also in this case p is rejected.

(⇐). We prove the first part by induction on the stage of acceptability of arguments for p and
by induction on the height of trees for p.

Case 1. To prove this case we have to use a double induction. The external induction on the
stage of acceptability of arguments, and then induction on the height of arguments with the
same stage of acceptability.

Case Inductive Base. we begin by considering supportive arguments acceptable w.r.t. JD
0

whose height is 1. Such arguments consist of a single supportive rule r for p with empty
antecedents. If the argument (let us say A) is strict then r is strict and therefore we can prove
D ` +∆p and consequently D ` +∂p. If the argument is defeasible then r is a defeasible
rule, and in such a case we know that every attack on A is undercut by JD

0 , that is the empty
set. Let B be an argument attacking A whose root is a rule s for ∼p. Obviously, B is an
argument for ∼p. Since A is acceptable w.r.t. JD

0 , B is undercut by JD
0 ; therefore there is

an argument C attacking a subargument of B. The argument C is supported by JD
0 ; thus C

consists of a single rule for ∼q, for some q occurring in B. At this point it is immediate to
verify that the conditions to prove −∂q are satisfied.

We now show that ∀s ∈ R[∼p] ∃a ∈ A(s) : D ` −∂a. Suppose, to obtain a contradic-
tion, that ∃s ∈ R[∼p] ∀a ∈ A(s) : D 6` −∂a. We construct a (possibly infinite) argument
for ∼p as follows.

Initially, the partial tree contains ∼p at the root, with unexpanded children a ∈ A(s).
Now, let a be an unexpanded node such that D 6` −∂a. From the inference rule −∂, we

know that if D 6 ` −∂a then either
(1) D 6 ` −∆a, or
(2) ∃r ∈ Rsd[a] ∀a′ ∈ A(r) D 6 ` −∂a′

If (1) then, by Proposition 5, there is a finite or infinite strict argument B for a. Expanding
the node a with B constructs the argument. Otherwise, (2) holds and there is a supportive
rule r for a such that ∀a′ ∈ A(r) D 6 ` −∂a′. Thus we can expand a to have the unexpanded
children a′ ∈ A(r).

4If we unravel the derivation of −∂as we have that some rules are discarded because some antecedents are not
provable (i.e., for some literals q we can prove −∂q and then we have to repeat the same reasoning). Otherwise we
have a rule for ∼as and we can attach the tag +∂ to every literal in the antecedent of that rule; we can apply the
inductive hypothesis for such literals, thus they are justified, and so an argument for∼as is supported by JArgsD .
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We can repeat this construction for each unexpanded node that appears in the partial tree.
Thus we can construct a finite or infinite argument B for ∼p where every literal a in B
satisfies D 6 ` −∂a.

However, we have already noted that for any such argument B there is an argument C
attacking a subargument of B at some q, and that D ` −∂q. Thus we have a contradiction,
and consequently ∀s ∈ R[∼p] ∃a ∈ A(s) : D ` −∂a. Combined with the finite argument A
for p, we thus have D ` +∂p.

To compete the proof of the inductive base we have to show that the property holds for
arbitrary arguments in JD

1 . So, we assume, by induction, that the theorem is true for literals
having arguments in JD

1 whose height is less than h. Let A be a supportive argument for p
whose height is h. All the subarguments of A have height less than h, therefore, if r is the
rule labeling the root of A, by induction we have ∀ar ∈ A(r), D ` +∂ar. At this point we
can repeat the reasoning of the previous case.

Inductive step. We can repeat the proof of the inductive base noting that the undercutting
arguments are supported by JD

n , and any argument in JD
n is justified; thus for any literal q in

the antecedents of undercutting arguments we have D ` +∂q.

Case 2. We prove the contrapositive. From the inference rule −∂, we know that if D 6 ` −∂p
then either

(1) D 6 ` −∆p, or
(2) ∃r ∈ Rsd[p] ∀a ∈ A(r) D 6 ` −∂a and ∀s ∈ R[∼p] ∃a ∈ A(s) D 6 ` +∂a
We construct an unrejected argument for p, starting from a partial tree containing only the

unexpanded node p.
If (1) then, by Proposition 5, there is a finite or infinite strict argument B for p. Since B

is strict, it is not rejected. Expanding the node p with B constructs the argument (and so p is
not rejected).

If (2) then there is a supportive rule r for p such that ∀a ∈ A(r) D 6 ` −∂a. Thus we
can expand p to have the unexpanded children a ∈ A(r). We can repeat this construction for
each a ∈ A(r), and for each of their unexpanded children, and so on. Thus we can construct
a finite or infinite argument C for p that does not use defeaters.

Consider an argument E attacking C at q. If this node satisfies (1) then it is part of a
strict argument and cannot be attacked. Consequently the node satisfies (2). Hence, ∀s ∈
R[∼q] ∃a ∈ A(s) D 6 ` +∂a. So whatever rule s is at the root of E, a child a satisfies
D 6 ` +∂a. By the first part of this theorem, a is not justified. Thus E is not supported by
JArgsD. Consequently C is not undercut by an argument. Hence, using Theorem 23, C is
not rejected.

Comparison
THEOREM 24
Fix a defeasible theory D. Let A be an argument, and p be a literal.

1. If A is justified under the grounded semantics then A is justified under the defeasible
semantics.

2. If A is rejected under the defeasible semantics then A is rejected under the grounded
semantics.
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3. If p is justified under the grounded semantics then p is justified under the defeasible
semantics.

4. If p is rejected under the defeasible semantics then p is rejected under the grounded
semantics.

Proof By Theorem 21, if A is justified under the grounded semantics then it is not attacked
by any argument. Consequently, A ∈ JD

1 under the defeasible semantics.
By Theorem 23, if A is rejected by JArgsD under the defeasible semantics then A is

attacked by an argument supported by JArgsD. Since all justified arguments are finite, A is
attacked by a finite argument. Thus, again by Theorem 23, A is rejected under the grounded
semantics.

Parts 3 and 4 follow immediately from parts 1 and 2 and Definitions 7 and 8.

B Metaprogam
The meta-programs defined in this appendix are based on the family of meta-programs given
in [2]. We have permitted ourselves some syntactic flexibility in presenting the meta-programs.
However, there is no technical difficulty in using conventional logic programming syntax to
represent these programs.

c1 definitely(p):- fact(p).

c2 definitely(p):- strict rule(r, p, [q1, . . . , qn]),
definitely(q1), . . . , definitely(qn).

c3 supported(p):- fact(p).

c4 supported(p):- supportive rule(r, p, [q1, . . . , qn]),
supported(q1), . . . , supported(qn).

c5 defeasibly(p):- definitely(p).

c6 defeasibly(p):- not definitely(∼p),
supportive rule(r, p, [q1, . . . , qn]),
defeasibly(q1), . . . , defeasibly(qn),
not overruled(r, p).

c7 overruled(r, p):- rule(s,∼p, [q1, . . . , qn]),
defeasibly(q1), . . . , defeasibly(qn).

c8 overruled(r, p):- rule(s,∼p, [q1, . . . , qn]),
supported(q1), . . . , supported(qn).

The interpretation of the predicates is straightforward. The first two clauses address definite
provability, the second two describe the notion of support and the remainder address defea-
sible provability. The clauses specify if and how a rule in defeasible logic can be overridden
by another, among other aspects of the structure of defeasible reasoning in defeasible logic.

Clauses c1–c6 are common to the two variants of defeasible logic. Clause c7 defines
overruled in the ambiguity blocking variant of defeasible logic while clause c8 defines
the same notion in the ambiguity propagtion version. Intuitivelly clauses c7 and c8 roughly
corresponds to the notions of undercut and the attack among arguments.
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