
European Journal of Law Philosophy and Computer Science
Practical Reason, History of Deontics, Computer Law
Vol. 1-2: 315–328

IDEALITY AND SUBIDEALITY FROM A COMPUTATIONAL
POINT OF VIEW

GUIDO GOVERNATORI∗

CIRFID, University of Bologna

1 Introduction

Why should Law need automated proof systems? The answer to this question im-
plies an answer to the following question: Is logic needed in Law? In fact it has been
argued that logics are useless for Law (see, for example, Kelsen 1989). We believe
that logic, and deontic logics in particular — but also modal logics — have a role to
play in Law; for example if one wants to study what the relationships are among the
various degrees of adjudication in Italian Law, one should note that they give rise
to a transitive, irreflexive and finite structure, which is the frame of the modal logic
of provability GL; one of the most important properties of such a logic is that no
system, (no court) in this frame, could claim its own correctness without becoming
incorrect (Boolos 1993, Smullyan 1988), but the correctness of a lower court can
be established by a higher one. This example shows that the study of modal logic
can help in finding certain already known properties of legal systems. Moreover,
each time we are dealing with the notions of Obligation and Permission, and we
are interested in the study of their mutual relationship, we can arrange them into a
deontic framework, thus producing a certain kind of deontic logic. Finally a hint
for the use of logic in legal reasoning is given, for example in the Italian case, by the
law itself; in fact article 192, 1◦ comma of the “Italian code of criminal procedure”
prescribes that the judges state the reasons of their adjudication; moreover several
other articles of the same code, state: when evidence is valid, how evidence should
be used in order to lead to an adjudication, etc. On this basis the “Italian code of
criminal procedure” can be thought of as a deductive system where its articles act as
the inference rules, whereas the articles of the “Italian code of criminal law” are the
axioms.

∗ I would like to thank Alberto Artosi and Giovanni Sartor for their helpful suggestions concerning the
logical part, and Michele Papa for a useful discussion about the role of evidence in legal systems. Thanks
are also due to Charles Hindley for revising the English version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

316 GUIDO GOVERNATORI

What does a proof system do? A proof system can work in two ways. The
first of them consists of producing admissible steps one after the other according
to the inference rules; in this way each step is guaranteed to be correct, but we are
not led to the goal we want to prove. The other one consists of verifying whether
a conclusion follows from given premises, i.e., if the adjudication follows logically
from the evidence, mainly by refuting the negation of the conclusion.

The system we propose is based on the logic of ideality and subideality developed
by Jones and Pörn, and it verifies in the above mentioned logical framework whether
a given conclusion follows from given premises. Moreover, due to its basic control
structure it can also be used as an analytic direct proof system.

2 Ideal and Subideal Deontic Logic

This logic has been developed in (Jones and Pörn 1985;1986) in order to have a
system which permits both factual and deontic detachment; moreover it is possible
to define several types of obligation, i.e., ideal obligation and subideal obligation,
thus avoiding the drawback that “actual” obligation collapses in the logical necessity
of the framework we are using (deontic necessity).

As pointed out by Kelsen
Jurisprudence, by describing the validity of a law system, does not assert what happens regu-
larly, but what ought to happen according to a given law system (Kelsen 1989, 458).

Jones and Pörn’s (1985, 1986) deontic logic DL has been devised for dealing with
ideal as well as sub-ideal situations, i.e., situations which admit some degree of vi-
olation of what is ideally the case. Formally it is an extension of standard deontic
logic (SDL), which is a normal KD system according to Chellas’ (1981) classifica-
tion, and which incorporates, besides the normal deontic operators Oi and Pi, the
deontic operators Os and Ps. Oi and Pi retain their usual reading. OiA (PiA), at a
world w, mean: A holds in all (some) of w’s deontically ideal versions. OsA (PsA),
at a world w, mean: A holds in all (some) of w’s sub-ideal versions. DL allows us
to define the following notions:

• NDA =df (OiA ∧ OsA) (Deontic Necessity)
• OTA =df (OiA ∧ Ps¬A) (Ought)

Since DL is a straightforward extension of SDL both Oi, Pi and Os, Ps behave as
normal KD-modalities. Models for DL are thus structures:

M = 〈W,Ri, Rs, υ〉

where Ri, Rs ⊆ W ×W are serial (not reflexive) relations on W (intuitive reading:
wRiv = v is an ideal version of w, wRsv = v is a sub-ideal version of w), subject to
the following conditions:

C1: Ri ∩Rs = ∅

IDEALITY AND SUBIDEALITY FROM A COMPUTATIONAL POINT OF VIEW 317

C2: {〈w,w〉 : w ∈ W} ⊆ Ri ∪Rs

This means that there cannot exist ideal worlds that are also sub-ideal, and every
world is either ideal or sub-ideal relative to itself (notice that this introduces some
form of reflexivity in the model); υ is as usual with the following clauses for Oi and
Os respectively

|=w OiA ⇔ ∀v ∈ W : wRiv, |=v A

|=w OsA ⇔ ∀v ∈ W : wRsv, |=v A

Remark 1. Condition C2 has been dropped in Jones 1991, so that possible worlds
can be both ideal and subideal with respect to themselves; however, when condition
C2 may be parametrized with respect to content matters, see Epstein 1990; but
this may lead to a more satisfactory solution; in fact a section of the “Italian code
of criminal procedure” concerns the connected crimes: in a criminal trial pieces of
evidence from other trials are examined if and only if they are judged to be relevant
(connected) to the subject of the trial; a parking fine, will not usually be considered
relevant in an adjudication for murder.

3 The System KEM

In this section we shall present KEM in its barest outline. We first recall some basic
notions. We shall use the letters X, Y, Z, . . . to denote arbitrary signed formulas (S-
formulas), i.e., formulas of the forms SA where S ∈ {T, F}. As usual XC will be
used to denote the conjugate of X , i.e., the result of changing S to its opposite (with
the exception of the following S-formulas1: T2A,F3A,F2A and F3A, which
also have T3¬A,F2¬A,F3¬A, T2¬A respectively as their conjugates). Two
S-formulas X, Z such that Z = XC , will be called complementary. As we have
already said, KEM approach requires us to work with “world” labels. A “world”
label is either a constant or a variable “world” symbol or a “structured” sequence
of world-symbols we call a “world-path”. Intuitively, constant and variable world-
symbols stand for worlds and sets of worlds respectively, while a world-path conveys
information about access between the worlds in it. We attach labels to S-formulas
to yield labelled signed formulas (LS-formulas), i.e., pairs of the form X, i where X
is an S-formula and i is a label. An LS-formula SA, i means, intuitively, that
A is true (false) at the (last) world (on the path represented by) i. In the course
of proof search, labels are manipulated in a way closely related to the semantics of
modal operators and “matched” using a (specialized, logic-dependent) unification
algorithm. That two world-paths i and k are unifiable means, intuitively, that they
virtually represent the same path, i.e., any world which you could arrive at by path
i could be reached by path k and vice versa. LS-formulas whose labels are unifiable
turn out to be true (false) at the same world(s) relative to the accessibility relation
that holds in the appropriate class of models. In particular two LS-formulas X, XC

318 GUIDO GOVERNATORI

whose labels are unifiable stand for formulas which are contradictory “in the same
world”. These ideas are formalized as follows.

3.1 Label Formalism

To treat DL we need three kinds of label world symbols

• Universal ΦW = {W1,W2, · · · } and Φw = {w1, w2, · · · }
• Ideal ΦD = {D1, D2, · · · } and Φd = {d1, d2, · · · }
• Subideal ΦS = {S1, S2, · · · } and Φs = {s1, s2, · · · }

Here the universal world labels denote worlds for which we do not have enough
information to specify whether they are ideal or subideal. Let us now define the set
of variable world symbols and constant world symbols respectively:

ΦV = ΦW ∪ ΦD ∪ ΦS and

ΦC = Φw ∪ Φd ∪ Φs.

On this basis the set = is now defined as

= =
⋃
1≤i

=i where =i is :

=1 = ΦC ∪ ΦV ;
=2 = =1 × ΦC ;
=n+1 = =1 ×=n.

In other words a world-label is either (i) an element of the set ΦC , or (ii) an element
of the set ΦV , or (iii) a path term (k′, k) where (iiia) k′ ∈ ΦC ∪ ΦV and (iiib)
k ∈ ΦC or k = (m′,m) where (m′,m) is a label. It is worth noting that such a
representation of labels captures the precise meaning of the accessibility relation; in
fact, the label (w2, (W1, w1)) denotes a path which leads to a world (w2) accessible
from all the worlds accessible from the world denoted by w1. If labels were sequences
of constants and variables, their reading would be ambiguous: i.e., what does a label
such as 〈W1, w2, w1〉 stand for? Does it mean that w1 sees all the worlds accessible
from w2, or does it have the same meaning as (W1, (w2, w1))? The two possible
readings of a label written as a sequence, give rise to different accessibility relations.

A bit of terminology. For any label i = (k′, k) we call k′ the head of i, k
the body of i, and denote them by h(i) and b(i) respectively. Notice that these
notions are recursive: if b(i) denotes the body of i, then b(b(i)) will denote the
body of b(i), b(b(b(i))) will denote the body of b(b(i)); and so on. For example,
if i is (w4, (W3, (w3, (W2, w1)))), then b(i) = (W3, (w3, (W2, w1))), b(b(i)) =
(w3, (W2, w1)), b(b(b(i))) = (W2, w1), b(b(b(b(i)))) = w1. We call each of
b(i),b(b(i)), etc., a segment of i. Let s(i) denote any segment of i (obviously, by

IDEALITY AND SUBIDEALITY FROM A COMPUTATIONAL POINT OF VIEW 319

definition every segment s(i) of a label i is a label); then h(s(i)) will denote the
head of s(i).

For any label i, we define the length of i, l(i), as the number of world-symbols
in i, i.e., l(i) = n ⇔ i ∈ =n.

We shall use sn(i) to denote the segment of i whose length is n

3.2 Unification Schemes

KEM ’s label unification scheme involves two kinds of unifications, respectively
“high” and “low”. “High” unifications are meant to mirror specific accessibility con-
straints and they are used to build “low” unifications, which account for the full
range of conditions governing the appropriate accessibility relation. We then begin
by defining the basic notion of “high” unification. First we define a substitution in
the usual way as a function

σ : Φ0
V −→ =−

: Φi
V −→ =i, (1 ≤ i ≤ n).

where =− = = − ΦV . For two labels i, k and a substitution σ, if σ is a unifier
of i and k then we shall say that i and k are σ-unifiable. We shall (somewhat
unconventionally) use (i, k)σ to denote both that i and k are σ-unifiable and the
result of their unification.

(i, k)σ =

{
σi = σk l(i) = l(k) = 1
((h(i), h(k))σ, (b(i), b(k))σ)

In order to get the appropriate unifications we need to define the following substi-
tution acting as σ for universal world symbols:

σ#ΦW = σΦW

and as follows for ideal an sub-ideal world symbols:

σ# : ΦS → Φs

: ΦD → Φd

where

Φd = {ir ∈ ΦC : r = d} Φs = {ir ∈ ΦC : r = s}

Φd,Φs denote the set of worlds that are respectively an ideal and a subideal version
of themselves.

320 GUIDO GOVERNATORI

According to the above substitutions we define the

(i, k)σR =

(sl(k)(i), k)σ l(i) > l(k), h(k) ∈ ΦC e

∀m > l(k), (im, h(k))σ# = (il(k), h(k))σ
(i, sl(i)(k))σ l(k) > l(i), h(i) ∈ ΦC e

∀m > l(i), (h(i), km)σ# = (h(i), kl(i))σ

(1)

For example the labels

(D1, (wi
2, w1)) (wi

2, w1)

σR-unify since
wi

2 = (D1, w
i
2)σ

= (wi
2, w

i
2)σ

+

and obviously (w1, w1)σ+.
We are now able to characterize DL by the notion of σDL-unification:

(i, k)σDL =

{
(i, k)σ+

(i, k)σR
(2)

from which follows

(i, k)σDL =

{
(cn(i), cm(k))σDL

(i, k)σDL
(σDL)

where w0 = (cn(i), cn(k))σDL.
A complex example of σDL-unification is provided by the labels

(ds
2, (D2, (W1, (D1, w

i
1)))) (S1, (W2, (si

2, w
i
1)))

((ds
2, w0), (S1, (W2, w0))σDL

given
(ds

2, S1)σ# = (ds
2,W2)σ+ = ds

2

and
w0 = ((D2, (W1, w

′
0)), (s

i
2, w

′
0))σDL ,

since
(D2, s

i
2)σ

= (W1, s
i
2)σ

+ = si
2

and finally
w′

0 = ((D1, w
i
1), w

i
1)σDL .

IDEALITY AND SUBIDEALITY FROM A COMPUTATIONAL POINT OF VIEW 321

3.3 Labels, Unifications and Legal Reasoning

What does a possible world denote? We suggest that a possible and plausible answer
could be that a possible world of a given type represents an actual fact, and another
type of possible world denotes laws. The unifications tell us when two labels are
“matchable”. If they are, we can compare whatever holds in the worlds they denote;
therefore we can decide, analytically, whether a given fact is a violation of a law.

Obviously, according to our philosophical point of view, the formalization of
norms will behave in different ways. We believe that our label manipulation could
help to examine a few ideas about norms. Let us examine the basic cases of unifica-
tions

Case 1. A variable and a constant;
Case 2. Two constants;
Case 3. Two variables.

Roughly, cases 1, 2 and 3 correspond respectively to:

• Distribution axiom 2(A → B) → (2A → 2B);

• Necessitation rule
A

2A
;

• Kant’s axiom 2A → 3A.

Combining cases 1, 2 and 3 we can obtain different philosophical positions con-
cerning norms.

Case 1 implies that norms express generic “situations” and we have to detect
whether a given “situation” falls into the category of the generic one.

Case 2 implies that each norm expresses a given situation and we have to detect
whether a given situation is the same as that of the norm, so each situation should
have its specific norm.

Case 3 (idealization) implies the completeness of a normative system in a weak
sense. So each instance of a situation should be determined by the norms. If there is
a gap in a normative system, this condition states that norms themselves should give
tools to fill the gap.

Almost every positive legal system has some mechanism to fulfil the requirement
of the last case. For example, in Italian Law, article 12, 2◦ comma of the “Preleggi”
prescribes analogical reasoning.

3.4 Inference Rules

We shall classify our inference rules in two main categories: structural rules and op-
erational rules; the operational rules describe the meaning of the various operators
and connectives involved (see D’Agostino and Mondadori 1994 for further explana-
tions), whereas structural rules describe semantic properties holding in the model for

322 GUIDO GOVERNATORI

the logic we are concerned with. Moreover it is possible to have other non-standard
connectives and operators for which we can state their appropriate inference rules
using labels (see D’Agostino and Gabbay 1994). The rules for the connectives are
stated as follows2:

α, j

α1, j

α, j

α2, j

β, j
βC

2 , k

β1, (j, k)σDL
(j, k)σDL

β, j
βC

1 , k

β2, (j, k)σDL
(j, k)σDL

For the modal-like operators we have

TNDA, j

TA, (Wn, j)

ν{i,s}A, j

ν0, ({D,S}n, j)
{D,S}n new

and
FNDA, i

FOiA ∧ OsA, i

π{i,s}, i

π0, ({d, s}n, i)
{d, s}n new

The “standard” structural inference rules, respectively the principle of bivalence
(PB) and the principle of not contradiction (PNC), are:

X, j XC , j
h(j) ∈ ΦC

X, j
XC , k

×(j, k)σDL
(j, k)σDL

Here the α-rules are just the familiar linear branch-expansion rules of the tableau
method, while the β-rules correspond to such common natural inference patterns
as modus ponens, modus tollens, etc. (i, k,m stand for arbitrary labels). The rules for
the modal operators are as usual. “New” in the proviso for the ν{i,s}- and π{i,s}-
rule means: {D,S}n, {d, s}n must not have occurred in any label yet used. Notice
that in all inferences via an α-rule the label of the premise carries over unchanged to
the conclusion, and in all inferences via a β-rule the labels of the premises must be
σDL-unifiable, so that the conclusion inherits their unification. PB (the “Principle
of Bivalence”) represents the (LS-version of the) semantic counterpart of the cut
rule of the sequent calculus (intuitive meaning: a formula A is either true or false
in any given world, whence the requirement that i should be restricted). PNC (the
“Principle of Non-Contradiction”) corresponds to the familiar branch-closure rule
of the tableau method, saying that from the occurrence of a pair of LS-formulas
X, i, XC , k such that (i, k)σDL (let us call them σDL-complementary) on a branch
we may infer the closure (“×”) of the branch. The (i, k)σDL in the “conclusion” of
PNC means that the contradiction holds “in the same world”.

IDEALITY AND SUBIDEALITY FROM A COMPUTATIONAL POINT OF VIEW 323

The peculiar structural inference rules of DL, the rules which represent the
conditions of the model, are:

X, (D, j)
X, (S, k)

X, (Wn, (j, k)σDL)
(j, k)σDL

which states that a property holds universally. The main purpose of this rule is to
ensure reflexivity with respect to j and k, i.e, each world is either an ideal or a
subideal version of itself; in fact a general property of labels and unifications states
that

(j, k)σDL ⇒ ((j, k)σDL, j)σDL and ((j, k)σDL, k)σDL

The next rule, RR (Reflexivity Rule) tells us when a world is an ideal or subideal
version of itself.

ν{i,s}, j

νC
0 , k

ν{i,s},m
r m = (j, k)σDL

νC
0 ,mr

where
ir = is if ν{i,s} = TOiA (FPiA)
ir = id if ν{i,s} = TOsA (FPsA)

and

ix = i : h(i) ∈ Φx, (x ∈ {d, s})

Obviously each Φr
X ⊆ ΦX . We shall call labels of the form ix, (x ∈ {d, s})

x-reflexive labels.
Besides the usual closure rule (PNC) and the principle of bivalence (PB) we

introduce the following rules LPNC and LPB

j ∈ Φs

j ∈ Φd

× X, ji K, js

stating, respectively, that no world can be at the same time an ideal and a subideal
version of itself and that each worlds is either an ideal or a subideal version of itself.

3.5 Proof search

324 GUIDO GOVERNATORI

] Let Γ = {X1, . . . , Xm} be a set of S-formulas. Then T is a KEM-tree for Γ
if there exists a finite sequence (T1, T2, . . . , Tn) such that (i) T1 is a 1-branch tree
consisting of {X1, i . . . ,Xm, i}, where i is an arbitrary constant label; (ii) Tn = T ,
and (iii) for each i < n, Ti+1 results from Ti by an application of a rule of KEM . A
branch τ of a KEM -tree T of LS-formulas is said to be σDL-closed if it ends with
an application of PNC, open otherwise. As usual with tableau methods, a set Γ of
formulas is checked for consistency by constructing a KEM -tree for Γ. It is worth
noting that each KEM -tree is a (class of) Hintikka’s model(s) where the labels
denote worlds (i.e., Hintikka’s modal sets), and the unifications behave according
to the conditions placed on the appropriate accessibility relations. Moreover we say
that a formula A is a KEM-consequence of a set of formulas Γ if A occurs in all the
open branches of a KEM -tree for Γ. We now describe a systematic procedure for
KEM . First we define the following notions.

Given a branch τ of a KEM -tree, we shall call an LS-formula X, i E-analysed
in τ if either (i) X is of type α and both α1, i and α2, i occur in τ ; or (ii) X is
of type β and one of the following conditions is satisfied: (a) if βC

1 , k occurs in τ
and (i, k)σDL, then also β2, (i, k)σDL occurs in τ ; or (b) if βC

2 , k occurs in τ and
(i, k)σDL, then also β1, (i, k)σDL occurs in τ ; or (iii) X is of type νi and ν0, (m, i)
occurs in τ for some m ∈ ΦV not previously occurring in τ ; or (iv) X is of type πi

and π0, (m, i) occurs in τ for some m ∈ ΦC not previously occurring in τ .
We shall call a branch τ of a KEM -tree E-completed if every LS-formula in

it is E-analysed and it contains no complementary formulas which are not σDL-
complementary. We shall call a branch τ of a KEM -tree completed if it is E-
completed and all the LS-formulas of type β in it either are analysed or cannot be
analysed. We shall call a KEM -tree completed if every branch is completed.

The following procedure starts from the 1-branch, 1-node tree consisting of
{X1, i1, . . . , Xm, im} and applies the rules of KEM until the resulting KEM -
tree is either closed or completed.

We shall say that a formula A is a theorem of DL when a closed KEM -tree for
FA,w1 exists.

At each stage of proof search (i) we choose an open non completed branch τ .
If τ is not E-completed, then (ii) we apply the 1-premise rules until τ becomes E-
completed. If the resulting branch τ ′ is neither closed nor completed, then (iii) we
apply the 2-premise rules until τ becomes E-completed. If the resulting branch τ ′ is
neither closed nor completed, then (iv) we choose an LS-formula of type β which is
not yet analysed in the branch and apply PB so that the resulting LS-formulas are
β1, i

′ and βC
1 , i′ (or, equivalently β2, i

′ and βC
2 , i′), where i = i′ if i is restricted,

otherwise i′ is obtained from i by instantiating h(i) to a constant not occurring in i;
(v) (“Modal PB”) if the branch is not E-completed nor closed, because of comple-
mentary formulas which are not σDL-complementary, then we have to see whether a
restricted label unifying with both the labels of the complementary formulas occurs

IDEALITY AND SUBIDEALITY FROM A COMPUTATIONAL POINT OF VIEW 325

previously in the branch; if such a label exists, or can be built using already existing
labels and the unification rules, then the branch is closed; (vi) (“Label PB”) if the
branch is not E-completed nor closed, because of complementary formulas which
are not σDL-complementary and the heads of their labels, j, k, are respectively in
ΦD and ΦS , then we have to see whether there exists a restricted non reflexive label,
that, when it is d-reflexive, unifies with j and when it is s-reflexive unifies with k; if
such a label exists, or can be built using already existing labels and unification rules,
then the branch is closed; (vii) we repeat the procedure in each branch generated by
PB.

The above procedure is based on a (deterministic) procedure working for canon-
ical KEM -trees. A KEM -tree is said to be canonical if it is generated by applying
the rules of KEM in the following fixed order: first the α-, ν{i,s}- and π{i,s}-rule,
then the β-rule and PNC, and finally PB. Two interesting properties of canonical
KEM -trees are (i) that a canonical KEM -tree always terminates, since for each
formula there are a finite number of subformulas and the number of labels which
can occur in the KEM -tree for a formula A (of L) is limited by the number of
modal operators belonging to A, and (ii) that for each closed KEM -tree a closed
canonical KEM -tree exists. Proofs of termination and completeness for canonical
KEDL-trees follow by obvious modifications of the proofs given in Governatori
1995.

Remark 2. We distinguish between DL-theories, obtained by means of configura-
tions of possible worlds, and DL obtained by means of the above inference rules and
unifications. It is worth noting that labels allow us not only to manipulate formulas
in deductions but also worlds, which turns out to be very important when dealing
with theories (For a similar approach see Russo 1996).

The following are example proofs of theorems of DL.

1. F (OsA ∧ ¬A) → Ps¬A w1

2. TOsA ∧ ¬A w1

3. FPs¬A w1

4. TOsA w1

5. FA w1

6. TOsA ws
1

7. FA ws
1

8. TA S1, w
s
1

9. ×

The steps leading to the nodes (1)-(5) are straightforward. The nodes (6)-(7) come
from the application of the reflexivity rule since the world denoted by w1 is a sub-
ideal version of itself. Closure follows immediately from (7) and (8), which are
σDL-complementary (their labels σDL-unify because of (S1, w

s
1)σ

#).

326 GUIDO GOVERNATORI

1. FOiA → (OsB → (¬A → B)) w1

2. TOiA w1

3. FOsB → (¬A → B) w1

4. TOsB w1

5. F¬A → B w1

6. FA w1

7. FB w1

8. ws
1

9. wi
1

10. ×

Here the steps (8) and (9) are obtained, respectively, from (2), (6) and (4), (7) by
RR, and the closure follows from an application of LPNC.

1. F (Oi(A ∧B) ∧ Os(C ∧D)) → (A ∨ C) w1

2. TOi(A ∧B) ∧ Os(C ∧D) w1

3. FA ∨ C w1

4. TOi(A ∧B) w1

5. TOs(C ∧D) w1

6. FA w1

7. FC w1

8. TA ∧B D1, w1

9. TC ∧D S1.w1

10. TA D1, w1

11. TB D1, w1

12. TC S1.w1

13. TD S1.w1

14. T wi
1

16.×
15. F ws

1

17.×

In the left branch, closure follows from TA, (D1, w1), FA,w1 and wi
1, after we

have assumed, through the label version of PB, that w1 is an ideal version of itself,
i.e., wi

1; we replace, with respect to the left branch, all the occurrences of w1 with
wi

1 thus obtaining D1, w
i
1 and wi

1 which σDL-unify; on the other hand, in the
right branch we have TC, (S1, w1), FC,w1 and ws

1, and we can repeat the same
procedure as for the left side.

4 Final Remarks

Although a satisfactory Logical System for Law is far from being realized, we believe
that the approach we have presented may offer a few steps in the right direction. In
fact, the label tool we have developed is flexible enough to cope with several types
of modal-like notions of obligatoriness at the same time, and to study their mutual

IDEALITY AND SUBIDEALITY FROM A COMPUTATIONAL POINT OF VIEW 327

relationships through unifications. It often happens that, in a legal system, laws
prescribe opposite possibilities for the same fact according to “relevant” pieces of
evidence; for example, some legal system could prescribe a murder to be punished
unless he/she killed in self-defence. Logically this scenario is contradictory because,
in the case of self-defence, both punishment and not punishment are implied; how-
ever it is possible to solve this problem as soon as some refinement is assumed (on
this point see Artosi, Governatori and Sartor 1996). Moreover, as we have already
seen, different traits of legal reasoning might involve different kinds of logics (even
with different connectives and operators); the resulting overall logic can be embed-
ded in the so-called fibred semantics (logic) framework (Gabbay 1994; 1996), but
the label formalism here presented can be extended, straightforwardly, to deal with
it.

The preceding discussion was thus mainly aimed at showing the potential scope
of application of the method. In effect, we believe that the method we proposed to
determine the ideal/subideal status of world nicely exploits the computational and
proof-theoretical advantages offered by the modal theorem proving system KEM .
As we have argued elsewhere, this system enjoys most of the features a suitable proof
search system for modal (and in general non-classical) logics should have. In contrast
with (both clausal and non-clausal) resolution methods, and in general “translation-
based” methods (Ohlbach 1991), it works for the full modal language (thus avoiding
any preprocessing of the input formulas), and it is flexible enough to be extended to
cover any setting having a Kripke-model based semantics (this is clearly shown by
our treatment of Jones and Pörn logic DL where the rules specific for such a logic
should take care not only of the propositional and modal part but also of the struc-
ture of the labels and the relationship between labels and formulas; for example we

added another closure rule i∈Φi,i∈Φs

× which states that no world can be at the same
time an ideal and a sub-ideal version of itself; this result is achieved by determin-
ing when a deontic world is ideally (sub-ideally) reflexive (ir) by means of another
peculiar inference rule, and finally the principle of bivalence for labels). From this
perspective our method is similar to the natural deduction proof method proposed
by Russo (1996). Nevertheless, it has several advantages over most tableau/sequent
based theorem proving methods: being based on D’Agostino and Mondadori’s clas-
sical proof system KE, it eliminates the typical redundancy of the standard cut-free
methods and, thanks to its label unification scheme, it offers a simple and efficient
solution to the permutation problem which notoriously arises at the level of the usual
tableau-sequent rules for the modal operators (Fitting 1988). However, unlike, e.g.,
Wallen’s (1990) connection method, it uses a natural and easily implementable style
of proof construction, and so it appears to provide an adequate basis for combining
both efficiency and naturalness.

328 GUIDO GOVERNATORI

Notes

1. Herein with 2 we mean any modality which acts as 2, i.e., Oi and Os ; and with 3 any modality
which acts as 3, i.e., Pi and Ps.
2. The following formulation uses a generalized α, β, ν{i,s}, π{i,s} form of Smullyan-Fitting α, β, ν, π
unifying notation, see Fitting 1983.

References

Artosi, Alberto, Guido Governatori and Giovanni Sartor. 1996. ‘Towards a Computational
Treatment of Deontic Defeasibility’. In: M. Brown and J. Carmo (eds), Deontic Logic,
Agency and Normative Systems, Workshop in Computing. Berlin: Springer.

Boolos, George. 1993. The Logic of Provability. Cambridge: Cambridge University Press.
Chellas, Brian. 1981. Modal Logic: An Introduction. Cambridge: Cambridge University Press.
D’Agostino, Marcello and Marco Mondadori. 1994. ‘The Taming of the Cut’. Journal of Logic

and Computation 4: 285-319.
D’Agostino, Marcello and Dov M. Gabbay 1994. ‘A Generalization of Analytic Deduction

via Labelled Deductive Systems. Part I: Basic Substructural Logics’. Journal of Automated
Reasoning 13: 243–281.

Epstein, Richard D. 1990. The Semantic Foundations of Logic. Volume 1: Propositional Logics.
Dordrecht: Kluwer.

Fitting, Melvin. 1983. Proof Methods for Modal and Intuitionistic Logic. Dordrecht: Reidel.
Fitting, Melvin. 1988. ‘First Order Modal Tableaux’. Journal of Automated Reasoning 4: 191–

213.
Gabbay, Dov M. 1994. ‘Combining Labelled Deductive Systems’. MEDLAR II, ESPRIT

Basic Research Project 6471, Deliverable DIII.1.2-1P: 285–334.
Gabbay, Dov M. 1996. Fibred Semantics and The Weaving of Logic Part I: Modal and Intu-

itionistic Logic. Journal of Symbolic Logic 61: 1059–1121.
Governatori, Guido. 1995. ‘Labelled Tableaux for Multimodal Logics’. In: P. Baumgatner, R.

Hänhle, J. Posegga (eds.), Fourth Workshop on Theorem Proving with Analytic Tableaux and
Related Methods, Lecture Notes in Artificial Intelligence. Berlin: Springer.

Jones, Andrew J.I. 1991. ‘On the Logic of Deontic Conditionals’. Ratio Juris 4: 355–366.
Jones, Andrew J.I. and Ingmar Pörn. 1985. ‘Ideality, Sub-Ideality and Deontic Logic’. Synthese

65: 275–290.
Jones, Andrew J.I. and Ingmar Pörn. 1986. ‘ “Ought" and “Must" ’. Synthese 66: 89–93.
Kelsen, Hans. 1989. ‘Sulla logica delle norme’ (manoscritto). Materiali per una cultura

giuridica XIX: 454–468.
Ohlbach, Hans J. 1991. ‘Semantics-Based Translation Methods for Modal Logics’. Journal of

Logic and Computation 1: 691–746.
Russo, Alessandra. 1996. ‘Generalising Propositional Modal Logic Using Labelled Deductive

Systems’. In: F. Baader and K. Schulz (eds.), Frontieres of Combining Systems (FroCoS).
Dordrecht: Reidel.

Smullyan, Raymond. 1988. Forever Undecided. A Puzzle Guide to Gödel. Oxford: Oxford
University Press.

Wallen, Lincoln A. 1990. Automated Deduction in Non-Classical Logics. Cambridge, Mass.:
The MIT Press.

	Guido Governatori* IDEALITY AND SUBIDEALITY FROM A COMPUTATIONAL POINT OF VIEW

