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ABSTRACT
This paper presents an approach to develop bidding agents
that participate in multiple alternative auctions, with the
goal of obtaining an item at the lowest price. The approach
consists of a prediction method and a planning algorithm.
The prediction method exploits the history of past auctions
in order to build probability functions capturing the belief
that a bid of a given price may win a given auction. The
planning algorithm computes the lowest price, such that by
sequentially bidding in a subset of the relevant auctions,
the agent can obtain the item at that price with an accept-
able probability. The approach addresses the case where
the auctions are for substitutable items with different val-
ues. Experimental results are reported, showing that the
approach increases the payoff of their users and the welfare
of the market.

Categories and Subject Descriptors
H.4.m [Information Systems Application]: Miscellaneous;
J.m [Computer Applications]: Miscellaneous

General Terms
Algorithms

1. INTRODUCTION
Following the rapid development of online marketplaces,

trading practices such as dynamic pricing, auctions, and ex-
changes, have gained a considerable momentum across a
variety of product ranges. In this setting, the ability of
traders to rapidly gather and process market information
and to take decisions accordingly is becoming increasingly
crucial to ensure market efficiency. Specifically, the ability
of buyers to find the best deal for a trade depends on how
many offers from alternative sellers they compare. On the
other hand, the ability of sellers to maximise their revenues

∗This work was done when the author was at the School of
Information Systems, Queensland University of Technology.
†The author is also affiliated to GBST Holdings, 5 Cribb
St., Milton QLD 4064, Australia

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

depends on how many prospective buyers take their offers
into account. Hence, the automation of offer request and
comparison within a dynamic environment is a common re-
quirement for all parties.

The work reported in this paper addresses the issue of
offer comparison in online auctions. The paper describes
an approach to develop agents capable of participating in
multiple potentially overlapping auctions, with the goal of
winning exactly one of these auctions at the lowest possible
price, given the following user parameters:

M : The maximum (or limit) price that the agent can bid.

D : The deadline by which the item should be obtained.

G: The eagerness, i.e. the minimum expected probability
of obtaining the item by the deadline.

The auctions in which a bidding agent participates may
run in several auction houses. Each auction is assumed to
be for a single unit of an item, and to have a fixed dead-
line. Auctions satisfying these conditions include First-Price
Sealed-Bid (FPSB) auctions, Vickrey auctions, and fixed-
deadline English auctions with or without proxy bids1. The
approach also assumes that the bid histories of past auctions
are available. Many Web-based auction houses provide such
histories. For example, eBay provides bid histories for each
auction up to 2 weeks after its completion, while Yahoo!
does so for up to 3 months.

The approach is based on a prediction method and a plan-
ning algorithm. The prediction method exploits the history
of past auctions in order to build probability functions cap-
turing the belief that a bid of a given price may win a given
auction. These probability functions are then used by the
planning algorithm to compute the lowest price, such that
by sequentially bidding in a subset of the relevant auctions,
the agent can obtain the item at that price with a probability
above the specified eagerness. In particular, the planning al-
gorithm detects and resolves incompatibilities between auc-
tions. Two auctions with equal or similar deadlines are con-
sidered to be incompatible, since it is impossible to bid in

1In a proxy bid [7], the user bids at the current quote, and
authorises the auction house to bid on its behalf up to a
given amount. Subsequently, every time that a new bid is
placed, the auction house counter-bids on the user’s behalf
up to the authorised amount.
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one auction, wait until the outcome of this bid is known
(which could be at the end of that auction), and then bid
in the other auction. Given a set of mutually incompatible
auctions, the planning algorithm must choose one of them
to the exclusion of the others. This choice is done in a way
to maximise the winning probability of the resulting plan.

The approach takes into account the case where the auc-
tions are for substitutable items with different values (partial
substitutes [2]). The user of a bidding agent can specify a
different valuation for each of the relevant auctions, and the
agent attempts to maximise the payoff according to these
valuations. Alternatively, the user can identify a number of
attributes for comparing the auctions, and specify his/her
preferences through a multi-attribute utility function.

A series of experiments based on real datasets are re-
ported, showing that the use of the proposed approach in-
creases the individual payoff of the traders, as well as the
collective welfare of the market.

The rest of the paper is structured as follows. Section 2
describes the technical details of the approach, including
the prediction and planning methods. Section 3 describes a
proof-of-concept implementation and summarises some ex-
perimental results. Finally, section 4 discusses related work,
and section 5 draws some conclusions.

2. APPROACH
In this section, we describe the lifecycle of a probabilistic

bidding agent, as well as the underlying prediction and plan-
ning methods. We first consider the case where the agent
participates in auctions for perfectly identical items. We
then discuss how the approach handles partial substitutes.

2.1 Overview
The bidding agent operates in 4 phases: preparation, plan-

ning, execution, and revision.
In the preparation phase, the agent assists the user in

identifying a set of relevant auctions. Specifically, the user
enters the parameters of the bidding agent (maximum price,
deadline, eagerness) as well as a description of the desired
item in the form of a list of keywords. Using this descrip-
tion, the agent queries the search engines of all the auction
houses that it knows, and displays an integrated view of the
results. By browsing through this integrated view, the user
selects among all the retrieved auctions, those in which the
agent will be authorised to bid. The selected auctions form
what is subsequently called the set of relevant auctions. By
extension, the auction houses hosting the auctions in this
set form the set of relevant auction houses.

For each relevant auction house, the agent gathers the
bidding histories of every the past auction whose item de-
scription matches the list of keywords provided by the user.
These bidding histories are used by the prediction method in
order to build a function that given a bidding price, returns
the probability of winning an auction by bidding (up to)
that price. Note that the histories extracted from an auc-
tion house are only used to compute probability functions
for the auctions taking place in that auction house. Thus,
auctions running in different auction houses may have com-
pletely different probability functions.

During the preparation phase, the agent also conducts a
series of tests to estimate the average time that it takes
to execute a transaction (e.g., to place a bid or to get a
quote) in each of the auction houses in which it is likely to

bid. The time that it takes to execute a transaction in an
auction house a is stored in a variable δa. The value of this
variable is updated whenever the agent interacts with the
corresponding auction house.

In the planning phase, the bidding agent selects a set of
auctions and a bidding price r (below the user’s maximum),
such that the probability of getting the desired item by con-
sistently bidding r in each of the selected auctions is above
the eagerness factor. The resulting bidding plan, is such that
any two selected auctions a1 and a2 have end times sepa-
rated by at least δa1 + δa2. In this way, it is always possible
to bid in an auction, wait until the end of that auction to
know the outcome of the bid (by asking for a quote), and
then place a bid in the next auction.

The problem of constructing a bidding plan can be for-
mulated as follows. Given the set Aa of relevant auctions,
find:

• A set of auctions As ⊆ Aa.

• A real number r ≤ M (corresponding to a bidding
price).

such that:

• The end times of the auctions inAs are non-conflicting,
that is, for any a1 and a2 ∈ As, |endTime(a2) −
endTime(a1)| ≥ δa1 + δa2.

• The probability that at least one of the selected bids
succeeds (written φ(As, r)) is greater than or equal to
the eagerness, that is:

φ(As, r) = 1−
∏
a∈As

(1− Pa(r)) ≥ G

where Pa(r) is the probability that a bid of r will suc-
ceed in auction a ∈ As.

• The bidding price r is the lowest one fulfilling the
above two constraints.

Should there be no r fulfilling the above constraints, the
bidding agent turns back to the user requesting authorisa-
tion to raise M (the limit price) by the necessary amount.

In the execution phase, the bidding agent executes the
bidding plan by successively placing bids in each of the se-
lected auctions, until one of them is successful. In the case of
sealed-bid auctions (whether first-price or second-price) the
bidding agent simply places a bid of amount r. The same
principle applies in the case of an English auction with proxy
bids: the agent directly places a proxy bid of amount r. Fi-
nally, in the case of an English auction without proxy bids,
the agent will place a bid of amount r just before the auc-
tion closes, since last-minute bidding is an optimal strategy
in this context [10].

During the execution phase, the agent periodically searches
for new auctions matching the user’s item description, as
well as for up-to-date quotes from the auctions in the bid-
ding plan. Based on this information, the agent performs a
plan revision under either of the following circumstances:

• The user decides to insert a new auction into the rel-
evant set.

• The current quote in one of the auctions in the bid-
ding plan raises above r, in which case it is no longer
possible to bid r in that auction.



Should a plan revision be required, the agent updates the
set of relevant auctions and the bidding histories according
to any new data, and re-enters the planning phase. Once
a new bidding plan is computed, the agent returns to the
execution phase.

2.2 Prediction methods
We propose two methods that a bidding agent can use to

construct a probability function given the bidding histories
of past auctions. Both methods operate differently in the
case of FPSB, than they do in Vickrey and English auctions.
This is because in an FPSB auction, the final price of an
auction reflects the valuation of the highest bidder2, whereas
in a Vickrey or in an English auction, the final price reflects
the valuation of the second highest bidder.

2.2.1 The case of FPSB auctions
The first prediction method, namely the histogram method,

is based on the idea that at the beginning of an auction, and
assuming a zero reservation price, the probability of winning
with a bid of z, is equal to the number of times that the agent
would have won had it bid z in each of the past auctions, di-
vided by the total number of past auctions. As the auction
progresses, this probability is adjusted in such a way that
when the current quote is greater than z, the probability of
winning with a bid of z is zero.

Formally, we define the histogram of final prices of an
auction type, to be the function that maps a real number x,
to the number of past auctions of that type (same item, same
auction house) whose final price was exactly x. The final
price of an auction a with no bids and zero reservation price,
is then modelled as a random variable fpa whose probability
distribution, written P (fpa = x), is equal to the histogram of
final prices of the relevant auction type, scaled down so that
its total mass is 1. The probability of winning an auction
with a bid of z assuming a null reservation price, is given by
the cumulative version of this distribution, that is P (fpa ≤
z) =

∑
0≤x≤z P (fpa = x), for an appropriate discretisation

of the interval [0, z]. For example, if the sequence of observed
final prices is [22, 20, 25], the cumulative distribution at the
beginning of an auction is:

Pa(z) = P (fpa ≤ z) =


1 for z ≥ 25
0.66 for 22 ≤ z < 25
0.33 for 20 ≤ z < 22
0 for z < 20

In the case of an auction a with quote q > 0 (which is
determined by the reservation price and the public bids),
the probability of winning with a bid of z is:

Pa(z) = P (fpa ≤ z | fpa ≥ q)

=
P (fpa ≤ z ∧ fpa ≥ q)

P (fpa ≥ q)
=

∑
q≤x≤z P (fpa = x)∑
x≥q P (fpa = x)

In particular, Pa(z) = 0 if z < q.
The histogram method has two drawbacks. First, the

computation of the value of the cumulative distribution at a
given point, depends on the size of the set of past auctions.
Given that the bidding agent heavily uses this function, this

2In reality, the highest bid in an FPSB auction may be
slightly below the valuation of the highest bidder [12], since
it is an optimal strategy for bidders to bid below their actual
valuations by a small factor (that we neglect).

can create an overhead for large sets of past auctions. Sec-
ond, the histogram method is inapplicable if the current
quote of an auction is greater than the final price of all the
past auctions, since the denominator of the above formula is
then equal to zero. Intuitively, the histogram method is un-
able to extrapolate the probability of winning in an auction
if the current quote has never been observed in the past.

The normal method addresses these two drawbacks, al-
though it is not applicable in all cases. Assuming that the
number of past auctions is large enough (more than 50), if
the final prices of these auctions follow a normal distribu-
tion with mean µ and standard deviation σ, then the random
variable fpa can be given the normal distribution N(µ, σ).
The probability of winning with a bid z in an auction a with
no bids and zero reservation price, is then given by the value
at z of the corresponding cumulative normal distribution:

Pa(z) = P (fpa ≤ z) =
1√
2πσ

∫ z−µ
σ

−∞
e−x

2/2dx

Meanwhile, if the current quote q of an auction a is greater
than zero, the probability of winning this auction with a bid
of z is:

Pa(z) = P (fpa ≤ z | fpa ≥ q)

=
P (fpa ≤ z ∧ fpa ≥ q)

P (fpa ≥ q)
=

∫ z−µ
σ

q−µ
σ

e−x
2/2dx∫∞

q−µ
σ
e−x2/2dx

Many fast algorithms for approximating the integrals ap-
pearing in these formulae as well as their inverses are de-
scribed in [13]. The complexity of these algorithms is only
dependent on the required precision, not on the size of the
dataset from which µ and σ are derived. Hence, the normal
method can scale up to large sets of past auctions.

The normal method is able to compute a probability of
winning an auction with a given bid, even if the value of the
current quote in that auction is greater than all the final
prices of past auctions. Indeed, the domain of the normal
distribution is the whole set of real numbers, unlike discrete
distributions such as those derived from histograms.

Yet another advantage of the normal method, is that it
can be adapted to take into account data aging. If the his-
tory of past auctions covers a large period of time, one can
consider using time-weighted averages and standard devia-
tions instead of plain ones. In this way, recent observations
are given more importance than older ones.

In support of the applicability of the normal method, it
can be argued that the final prices of a set of auctions for
a given item are likely to follow a normal distribution, since
the item has a more or less well-known value, around which
most of the auctions should finish. An analysis conducted
over datasets extracted from eBay and Yahoo! (two of these
datasets are described in section 3) was performed to vali-
date this claim. The final prices of 4 histories of auctions
were tested for normality. The results were consistently pos-
itive for all prefixes of more than 50 elements of these his-
tories. The D’Agostino-Pearson normality test [5] was used
in this analysis.

2.2.2 The case of English and Vickrey auctions
In the case of FPSB auctions, the prediction methods as-

sume that the probability of winning with a given bid can be



derived from the final prices of past auctions. This is valid
since in FPSB auctions, the final price of an auction reflects
the maximum price that the highest bidder was willing to
pay, so that the final prices can be used to predict up to how
much will bidders bid in future auctions.

In a Vickrey or in an English auction, the final price of
an auction does not reflect the limit price (or valuation)
that the highest bidder was willing to pay, but rather the
limit price of the second highest bidder. If the prediction
methods described above were applied directly to a history
of final prices of Vickrey and/or English auctions, the result
would be that the bidding agent would be competing against
the second highest bidders, rather than against the highest
ones. In order to make the prediction methods previously
described applicable to Vickrey and English auctions, we
need to map a set of bidding histories of Vickrey or English
auctions, into an equivalent set of bidding histories of FPSB
auctions. This means extrapolating how much the highest
bidder was willing to pay in an auction, knowing how much
the second highest bidder (and perhaps also other lower bid-
ders) was/were willing to pay.

We propose the following extrapolation technique. First,
the bidding histories of all the past auctions are considered
in turn, and for each of them, a set of known valuations
is extracted. The highest bid in a Vickrey auction or in an
English-Proxy auction is taken as the known valuation of the
second highest bidder of that auction. The same holds in
an English auction without proxy bids, provided that there
were no last minute bids. Indeed, in the absence of last
minute bids, one can assume that the second highest bidder
had the time to outbid the highest bidder, but did not do
so because (s)he had reached his valuation. Similarly, it is
possible under some conditions to deduce the valuation of
the third highest bidder, and so for the lower bidders.

Next, the set of known valuations of all the past auctions
are merged together to yield a single set of numbers, from
which a probability distribution is built using either a his-
togram method, a normal method, or any other appropriate
statistical technique. In any case, the resulting distribution,
subsequently written Dv, takes as input a price, and returns
the probability that there is at least one bidder willing to
bid that price for the desired item.

Finally, for each auction a in the set of past auctions,
a series of random numbers are drawn according to distri-
bution Dv, until one of these numbers is greater than the
observed final price of auction a. This number is then taken
to be the valuation of the highest bidder, which would have
been the final price had the auction been FPSB. By apply-
ing this procedure to each past auction in turn, a history of
“extrapolated” final prices is built. This extrapolated his-
tory is used to build a new probability distribution using the
methods previously described in the setting of FPSB auc-
tions. In other words, an extrapolated history built from a
set of Vickrey or English auctions, is taken to be equivalent
to a history of final prices of FPSB auctions.

2.3 Planning algorithms
The decision problem that the bidding agent faces dur-

ing its planning phase (see section 2.1), is that of finding
the lowest r such that there exists a set of relevant auc-
tions As, such that φ(As, r) ≥ G. By observing that for any
auction a, the function Pa is monotonically increasing, we
deduce that φ(A, x) is also monotonically increasing on its

second argument. Hence, searching the lowest r such that
φ(As, r) ≥ G can be done through a binary search. At each
step during this search, a given r is considered. An optimi-
sation algorithm BestPlan presented below is then applied
to retrieve the subset As ⊆ Aa such that φ(As, r) is max-
imal. If the resulting φ(As, r) is between G and G + ε (ε
being the precision at which the minimal r is computed),
then the search stops. Otherwise, if φ(As, r) > G+ ε (resp.
φ(As, r) < G), a new iteration is performed with a smaller
(resp. greater) r as per the binary search principle. The
number of iterations required to minimise r is logarithmic
on the size of the range of r, which is M

ε
. At each iteration,

the algorithm BestPlan is called once. Thus, the complexity
of the planning algorithm is log(M

ε
)×complexity(BestPlan).

Given a bidding price r, the problem of retrieving the sub-
set As ⊆ Aa with maximal φ(As, r), can be mapped into a
graph optimisation problem. Each auction is mapped into a
node of a graph. The node representing auction a is labeled
with the probability of losing auction a by bidding r, that is:
1 − Pa(r). An edge is drawn between two nodes represent-
ing auctions a1 and a2 iff a1 and a2 are compatible, that is:
|endT ime(a2) − endT ime(a1)| ≥ δa2 + δa1. The edge goes
from the auction with the earliest end time to that with the
latest end time. Given this graph, the problem of retrieving
a set of mutually compatible auctions such that the prob-
ability of losing all of them (with a bid of r) is minimal,
is equivalent to the critical path problem [4]. Specifically,
the problem is that of finding the path in the graph which
minimises the product of the labels of the nodes. The clas-
sical critical path algorithm has a complexity linear on the
number of nodes plus the number of edges. In the prob-
lem at hand, the number of nodes is equal to the number of
auctions, while the number of edges is (in the worst case)
quadratic on the number of auctions. Hence, the complexity
of the resulting BestPlan algorithm is |Aa|2.

An alternative algorithm with linear complexity can be
devised in the case where all the auctions are equally reach-
able (i.e., they all have the same δa). In this situation, the
following property holds:

∀a1, a2, a3 ∈ Aa end(a3) ≥ end(a2) ≥ end(a1)

∧ a3 compatible with a2

⇒ a3 compatible with a1

Given this property, it is possible to find the best plan as
follows. The set Aa, sorted by end times, is scanned once. At
each step, the best predecessor of the currently considered
auction is incrementally computed. Specifically, the best
predecessor of the current auction is either the best prede-
cessor of the previous auction, or one of the auctions which
are compatible with the current auction and not compatible
with the previous auction. This incremental computation
takes constant time when amortised over the whole set of
iterations. For example, consider Table 1. Assuming that
δa = 1 for all auctions, the best path for this set of auctions
is the sequence [1, 2, 5, 6] and the associated probability of
winning is 1− (1− 0.8)2× (1− 0.9)2 = .9996. This path can
be found by sequentially scanning the sequence of auctions
sorted by end times. When auction 4 is reached, the choice
between bidding in auctions 2 and 3 (which are incompati-
ble) is done. Similarly, when auction 6 is reached, the choice
between auctions 4 and 5 is done. Over the whole set of it-
erations, the average time that it takes to compute the best



predecessor of an auction is equal to one operation. The
resulting linear-complexity algorithm BestPlan′ is given in
appendix A.

Table 1: Sample array of auctions with end times
and probability of winning.

Auction # 1 2 3 4 5 6
End Time 4 7 8 11 12 14
Win Probability .8 .8 .7 .8 .9 .9

2.4 The case of partial substitutes
Hitherto, we have assumed that the user values all the

auctioned items in the same way. In reality however, it is
often the case that the characteristics of the items sold in
an auction house differ from one auction to another, even
when the items belong to the same category. For example,
two auctions might both concern new mobile phones of a
given brand and model. However, in one of the auctions,
the phone is locked to a given network (e.g., AT&T), while
in the other it is unlocked. Or in one auction, the phone
comes with a 1-year warranty, while in the other there is
no warranty. As a result, the user might be willing to pay
more in one of the auctions than (s)he would in the other,
although winning any of the two auctions satisfies his/her
requirements. Two items which are considered to be sub-
stitutable by the user, but have different values, are said to
be partial substitutes. Our proposal handles partial substi-
tutes in either of two ways: through price differentiation or
through utility differentiation.

In the price differentiation approach, the user specifies a
limit price for each relevant auction. The agent uses these
limit prices to compute relative valuations between the auc-
tions. For example, if the user specifies a limit price of 100
in auction A1, and 80 in auction A2, A2 is said to have a
relative valuation of 80% with respect to A1. Consequently,
the agent will prefer bidding $70 in A1 rather than bidding
$60 in A2 (since 0.8×70 ≤ 60), but it will prefer bidding $60
in A2, rather than $80 in A1 (since 60 ≤ 0.8 × 80). More
generally, given a set of relevant auctions A1, . . . An with
limit prices M1, . . . ,Mn, the agent computes a set of propor-
tionality factors W1, . . .Wn, such that Wi = Mi

max(M1,...Mn)
.

The proportionality factor Wi of auction Ai is the relative
importance of Ai with respect to the auction(s) with the
highest limit price. During the planning phase, whenever
the algorithm BestPlan (or BestPlan′) would consider the
possibility of placing a bid of x in an auction Ai, the al-
gorithm considers instead the possibility of placing a bid of
x × Wi (line 6 of algorithm BestPlan′, appendix A). As
a result, higher bidding prices are considered for auctions
with higher limit prices. Accordingly, during the execution
phase, if the bidding price computed during the planning
phase is r, the agent places a bid of r ×Wi in auction Ai.

The utility differentiation approach is based on Multi-
Attribute Utility Theory (MAUT). Concretely, the user iden-
tifies a set of criteria for comparing auctions (e.g., price,
quality, seller’s reputation, and warranty), and specifies a
weight for each criterion (e.g., 50% for the price, 20% for
the quality, 20% for the seller’s reputation, 10% for the war-
ranty). Next, for each relevant auction and for each criterion
(except the price), the user manually or through some au-
tomated method provides a score: a rating of the auctioned

item with respect to the considered criterion. Finally, the
user specifies the limit price that (s)he is willing to bid in
any auction (called M).

Given all the scores and weights, the agent computes for
each auction Ai, a utility ex price Ui =

∑
wj × sj , where

wj denotes the weight of criterion Cj , and sj denotes the
score given to criterion Cj in auction Ai (the sum is done
over all the criteria except the price). The limit price Mi

to pay in auction Ai is defined as: Mi = M × (1 − (1 −
wp) × (Umax − Ui)), where wp is the weight given by the
user to the price (thus 1− wp is the weight given to all the
other criteria), and Umax is the maximum element in the
set {U1, . . . Un}. In particular, for an auction with maximal
utility ex price, the limit price is M . For an auction with
non-maximal utility ex price, the limit price is lower than
M by an amount proportional to the difference between the
highest valuation ex price, and the valuation ex price of that
auction. The weight given by the user to the price (i.e., wp)
acts as a gearing factor in this proportionality: the lower is
wp, the higher is the amount that will be taken off from M
to determine the limit price of an auction with non-maximal
utility.

Once the set of limit prices {M1, . . .Mn} of each auction
has been computed, the bidding agent applies the price dif-
ferentiation approach (see above).

3. EXPERIMENTS
In order to validate the benefits of the probabilistic bid-

ding approach, we conducted a series of experiments in which
a number of probabilistic bidding agents, and a number of
bidding agents implementing a simple approach, were put
together in a simulated auction market.

3.1 Elements of the experimental setup

Seed data Datasets obtained from eBay were used as a
“seed” to create virtual auctions. Specifically, two sets of
bidding histories were collected. The first dataset contained
300 auctions for new PalmVx PDAs over the period 17 June
2001 – 15 July 2001. The second dataset contained 100
auctions for new Nokia 8260 cellular phones over the period
13 June 2001 – 31 July 2001. The choice of the datasets was
motivated by the high number of overlapping auctions that
they contained.

Local Bidder A local bidder is a simple agent that simu-
lates the presence of an ordinary bidder within an auction.
The bidding agent is assigned a limit price. The agent places
a (proxy) bid at this price at some point during its lifecycle.
The limit price of a local bidder is generated randomly based
on the seed data. Specifically, the average and standard de-
viation of the final prices of the auctions in the seed data
are used to build a random number generator with a normal
distribution, and this generator is used to assign limit prices
to the local bidders.

Probabilistic Bidder An agent implementing the approach
proposed in this paper. A probabilistic bidder has a limit
price, an eagerness, and a deadline. The normal prediction
method and the optimised planning algorithm were used.
All items were considered to be identical (no partial sub-
stitutes). We estimate that simulating a marketplace with
partial substitutes is a subject for a separate work.



Virtual Auction House A software providing the func-
tionality of an online auction house such as creating an
auction, placing a bid, obtaining a quote, or obtaining the
history of past auctions. All these functionalities were en-
capsulated in a Java package designed to work as an RMI
server.

Virtual Auctions A virtual auction runs within an auc-
tion house. In the experiments, there was a one-to-one cor-
respondence between a “real” auction recorded in the seed
data, and a virtual auction. The period of time during which
a virtual auction ran was obtained by scaling down and off-
setting the period of time during which the corresponding
“real” auction occurred. All virtual auctions were English
with proxy bidding.

Simulation A simulation is set of virtual auctions in which
local bidders and probabilistic bidders compete to obtain
a given type of item. A simulation involves the following
steps:

1. The creation of a virtual auction house and a number
of virtual auctions. Each virtual auction is generated
from a real auction as recorded in a dataset.

2. The creation of a number of local bidders for each auc-
tion.

3. The creation of a number of probabilistic bidders in the
middle of the simulation. The percentage of auctions
that are allowed to complete before creating a given
probabilistic bidder is called the agent’s creation time.

Accordingly, the main parameters of a simulation are:

• dataset: the seed data.

• numLocals: number of local bidders competing in each
auction.

In addition, each probabilistic bidding agent in a simula-
tion is given the following parameters:

• limitPrice: the agent’s limit price.

• eagerness: the agent’s eagerness

• creationTime: the agent’s creation time. The agent
will start bidding as soon as possible after its creation
time, and until the end of the simulation (which acts
as its deadline).

Simulation Bundle a group of simulations with identical
parameters. The number of simulations composing a bun-
dle is given by the parameters numSims. In addition to
this parameter, a simulation bundle has exactly the same
parameters as a single simulation.

3.2 Claims, experiments, and results

Claim 1 The percentage of times that a probabilistic bidder
succeeds to obtain an item is equal to its eagerness.

To validate this claim, we conducted an experiment con-
sisting of 14 simulation bundles: each one designed to mea-
sure the percentage of wins of one probabilistic bidder with a
given eagerness. The eagerness was varied between 30% and
95% at steps of 5%. The other parameters of the simulation
bundles were: –numSims 50 –dataset PalmVx –numLocals

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Probabilistic Bidders’ Eagerness

P
ro

b
ab

ili
st

ic
 B

id
d

er
s’

 W
in

 F
re

q
u

en
cy

 

Figure 1: Results of the experiments for claim 1.
Each point denotes the percentage of times that the
probabilistic bidder won in a simulation bundle. The
straight line is the linear regression of the plotted
points.

3 –limitPrice 300 –creationTime 0.5. The limit price of the
probabilistic bidders was 10 standard deviations above the
average winning price, so that there was little risk that the
agent failed due to an insufficient limit price.

The expected result was that the percentage of wins is
equal to the eagerness. The linear regression of the exper-
imental results supports the claim (Figure 1): it shows an
almost perfect correlation between an increase in eagerness
and an increase in the percentage of wins.

Interestingly, the fact that the bidding histories of English
auctions are adjusted before being used to compute a prob-
ability function (see section 2.2.2), plays a crucial role in
ensuring that the percentage of wins is equal to the eager-
ness. We conducted the same experiment as above without
adjusting the bidding histories. The result was that the per-
centage of wins was consistently lower than the eagerness,
meaning that the expectations of the user were not fulfilled.

We also conducted experiments to observe the correlation
between the average winning price of the probabilistic bid-
der and its eagerness. The results of these experiments are
shown in the following table. These results show a linear
increase of the price paid by the probabilistic bidder as the
eagerness is increased.

Eagerness Winning price Eagerness Winning price

30% $211.22 65% $212.42
35% $211.46 70% $213.17
40% $211.15 75% $213.53
45% $211.50 80% $213.38
50% $212.31 85% $213.84
55% $212.86 90% $214.39
60% $212.65 95% $215.48

Claim 2 Probabilistic bidders pay less than local bidders, es-
pecially in competitive environments. In other words, prob-
abilistic bidders increase the payoff of their users.

To validate this claim, we conducted an experiment con-
sisting of 7 simulation bundles: each testing the performance
of one probabilistic bidder competing against local bidders
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Figure 2: Results of the experiments for claim 2. Each pair of columns show the average price paid per
simulation bundle. The left columns correspond to the probabilistic bidders’ average winning price; the right
columns correspond to the local bidders’ average winning price.

in an increasingly competitive market. The number of local
bidders per auction was varied from 2 to 8. The parame-
ters passed to the simulations included: –dataset PalmVx
–numSims 50 –eagerness 0.9 –creationTime 0.5.

The expected results were (i) that the increasing compe-
tition raises the average final price of the auctions, and (ii)
that despite the increased competition the probabilistic bid-
der tends to keep its bidding price as low as possible. The
actual experimental results (Figure 2) clearly match these
expectations. Other experiments with different eagerness
yielded similar results.

Claim 3 The welfare of the market increases with the num-
ber of probabilistic bidders.

The market welfare is defined as the welfare of the bidders
plus the welfare of the sellers. The welfare of a seller is the
difference between the price at which (s)he sells an item, and
his/her reservation price. The welfare of a bidder (whether
probabilistic or local) is the difference between his/her limit
price, and the price actually paid. If a bidder does not win
any auction, it does not contribute to the market welfare.
A similar remark applied for sellers.

This claim was validated through an experiment consist-
ing of 11 simulation bundles with increasing numbers of
probabilistic bidders. Each time that a probabilistic bidder
was added, one local bidder was removed. The parameters
passed to this set of simulations included: –dataset PalmVx
–numSims 30 –numLocals 3 –eagerness 0.9 –creationTime
0.5. The limit prices of the probabilistic bidders were set
in the same way as those of the winning local bidders (see
section 3.1). The market welfare was measured at the end
of each bundle.

The expected result was that the market welfare will in-
crease as more probabilistic bidders are introduced. The
results of the experiment (Figure 3) validate the claim by
showing an increase of the market welfare as new probabilis-
tic bidders are introduced. When adding 10 probabilistic
bidders into a market containing 900 local bidders, the wel-

fare increased by 2.35%. Other experiments with different
eagerness yielded similar results.

The increase of the market welfare can be explained by ob-
serving that when a local bidder with a low valuation wins
an auction as an effect of chance, it contributes less to the
overall welfare than a probabilistic bidder with a higher val-
uation would do if it won the same auction. In other words,
the fact that the probabilistic bidder bids in many auctions
and bids at a price lower than its valuation, makes it likely to
contribute to an increase in the overall welfare by “stealing”
auctions that will otherwise go to bidders with low valua-
tions. This also has a positive effect on the welfare of the
sellers, who get slightly better prices for their items than
they would in the absence of probabilistic bidders. Still, it
is true that the above results are not fully conclusive, since
they are dependent on the way the market is constructed.
Testing the approach in other kinds of simulated (and real)
markets would be an interesting continuation to the experi-
mental work reported here. In particular, further tests need
to be conducted to determine to what extent the increase
of the welfare is due to the probabilistic nature of the ap-
proach, and to what extent it is due to its systematic nature
(i.e., the fact that probabilistic bidders bid in many auctions
instead of just one).

4. RELATED WORK
Preist et al. [11] propose an algorithm for agents that par-

ticipate in simultaneous multi-unit English auctions with the
goal of obtaining N units of an item. In this algorithm, the
agent starts by placing bids in the auctions with the lowest
price. Each time that some of these bids are beaten, the
agent replaces them with a new set of bids with the lowest
incremental price. In this way, the agent holds N bids at
any time. The authors tackle the case where auctions have
different deadlines by introducing a probabilistic decision-
making model that determines when an agent should bid in
an auction which is about to close, instead of bidding in an
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Figure 3: Results of the experiments for claim 3. Each point represents the market welfare for one simulation
bundle. The straight line represents the linear regression on these points.

auction that closes later. Preist et al.’s approach differs from
ours in at least 3 ways. First, we consider single-unit auc-
tions instead of multi-unit auctions. Second, in [11] there is
no equivalent of the concept of eagerness. Instead, the agent
tries to maximise its chances of winning by systematically
replacing lost bids with new ones at a higher price. As a re-
sult, the agent does not optimise the bidding price as much
as the user’s attitude toward the risk of not obtaining the
item would allow. Finally, [11] does not consider the case of
partial substitutes.

Anthony et al. [1] explore an approach to design agents
for bidding in English, Dutch, and Vickrey auctions. Bid-
ding agents base their decisions upon 4 parameters: (i) the
user’s deadline, (ii) the number of auctions, (iii) the user’s
desire to bargain, and (iv) the user’s desperateness for ob-
taining the item. For each parameter, the authors present
a bidding tactic: a formula which determines how much to
bid as a function of the parameter’s value. A strategy is
obtained by combining these 4 tactics based on a set of rel-
ative weights provided by the user. Instead of considering
maximal bidding plans as in our approach, the agents in [1]
locally decide where to bid next. Thus, an agent may be-
have desperately even if the user expressed a preference for
a gradual behaviour. Indeed, if the agent places a bid in an
auction whose end time is far, and if this bid is rejected at
the last moment, the agent may be forced to place desper-
ate bids to meet the user’s deadline. Meanwhile, bidding in
a series of auctions with earlier end times, before bidding
in the auction with a later one, would allow the agent to
increase its desperateness gradually. Another advantage of
our approach over that of [1], is that the user can specify
the desired probability of winning (eagerness), whereas in
[1], the user has to tune the values and weights of the “des-
perateness” and the “desire to bargain”, in order to express
his/her eagerness. Finally, our approach takes into account
partial substitutes, whereas [1] does not.

Byde [3] describes a dynamic programming approach to
design algorithms for agents that participate in multiple En-
glish auctions. This approach can be instantiated to capture
both greedy and optimal strategies (in terms of expected re-

turns). Unfortunately, the algorithm implementing the opti-
mal strategy is computationally intractable, making it inap-
plicable to sets of relevant auctions with more than a dozen
elements. In addition, the proposed strategies are not ap-
plicable to English auctions with fixed deadlines. The auc-
tions considered in [3] are round-based : the quote is raised
at each round by the auctioneer, and the bidders indicate
synchronously whether they stay in the auction or not. This
type of English auction is considered in Bansal & Garg [2],
where it is proven that a simple truth-telling strategy leads
to Nash equilibrium.

Garcia et al [8] consider the issue of designing strate-
gies based on fuzzy heuristics for agents bidding in series
of Dutch auctions occurring in strict sequence (no simul-
taneity). In addition to the fact that [8] deals with Duth
auctions whereas our approach deals with English, FPSB
and Vickrey auctions, our proposal differs from that of [8]
in that it considers overlapping auctions with potentially
partial substitutes.

The first Trading Agent Competition (TAC) [9] involved
agents competing to buy goods in an online marketplace.
The scenario of the competition involved a set of simulta-
neously terminating auctions for hotel rooms, in which the
agents bid to obtain rooms that they had to package with
flight and entertainment tickets in such a way as to maximise
a set of utility functions. This scenario differs from ours, in
that the auctions all terminate simultaneously, whereas our
approach handles auctions which possibly overlap, but do
not necessarily terminate at the same time. In addition,
our approach is applicable to different auction protocols,
whereas in the TAC, all the auctions for hotel rooms were
of the same type (English auctions without proxy bidding).
Finally, in our approach we do not deal with packaging items
into bundles, whereas in the TAC this was a central issue.

The present paper improves and extends [6], where we
proposed to combine a probabilistic model with a planning
algorithm to address the issue of bidding in multiple auc-
tions. However, in [6] the algorithm BestPlan is not opti-
mised, the case of partial substitutes is not considered, and
no experimental results are reported.



5. CONCLUSION
We presented an approach to develop bidding agents that

participate in a number of single-unit auctions, with the goal
of winning exactly one of them at the lowest price, with a
given level of probability (eagerness), and before a deadline.
A bidding agent’s behaviour is based on a prediction method
and a planning algorithm. The prediction method estimates
the probability of winning an auction with a given bid. The
planning algorithm determines where and how much to bid,
in such a way as to ensure that the probability of winning
an auction is above the eagerness. We described two pre-
diction methods: one for small datasets, and the other for
larger datasets exhibiting a normal distribution. Similarly,
we presented two planning algorithms: a quadratic one (in
terms of the number of relevant auctions) that works in all
cases, and a linear one that only applies when all the auc-
tion houses are equally reachable in terms of communication
time. We also proposed two approaches to deal with par-
tial substitutes: one based on differentiated pricing (each
item is given a different limit price), and one based on dif-
ferentiated utilities (each item is given a different score with
respect to a set of weighted criteria). Finally, through an
experimentation, we validated the feasibility and the cor-
rectness of the approach, and we evaluated its benefits both
to the individual bidders that use it, and to the market as
a whole.

In the proposed approach, an agent bids the same amount
in every auction in which it participates, unless a plan revi-
sion occurs during the course of the execution phase. An al-
ternative approach worth investigating is to allow the agent
to bid a different price in each auction, even when no plan
revision is required. For example, the agent could start bid-
ding a low price and gradually increase the price as the user’s
deadline approaches. In this way, the agent can potentially
obtain the item for an unusually low price. However, this
makes the decision problem of the planning phase consider-
ably more complex. Indeed, the algorithm would then need
to consider entire sets of possible bidding prices, instead of
considering a single bidding price.

As a future work, we plan to extend the proposed ap-
proach to cater for users wishing to obtain several units of
an item (instead of one unit) in a set of multi-unit auctions
(instead of single-unit). The challenge is to take into account
the variability of offer and demand in such environments.
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APPENDIX

A. LINEAR BEST PLAN COMPUTATION
The following algorithm computes the best set of auctions

in which to bid, given a bidding price r. It assumes that the
time that it takes to get a quote or place a bid (written δa)
is the same across all auctions. Auctions are represented as
integers.

Algorithm 1. BestPlan′

Input

numAuctions: integer /* (positive) number of auctions */
end: array [1 .. numAuctions] of integer
/* end(i) = end time of auction i;
∀i ∀j, 0 ≤ j < i < numAuctions ⇒ end(i) ≥ end(j) */

r: integer /* the price to bid in each auction */
P1, P2, . . . , PnumAuctions : Probability functions



δ: integer /* time required to know the outcome of an
auction and then bid in another auction */

Local variables

current: integer /* between 1 and numAuctions + 1 */
latest: integer /* between 0 and numAuctions - 1 */
best, i : integer /* between 0 and numAuctions */
path : list of integers
Pred: array [1 .. numAuctions] of integer
/* Pred(i) = best predecessor of auction i */
Prob: array [0 .. numAuctions] of float
/* Prob(i) = Probability of losing when taking the best

path leading to i */

Output

- a list of integers between 1 and numAuctions
/*the best plan */

- a float /* probability of winning one auction */

Procedure

1. current := 1; /* current auction */
2. latest := 0; /* latest auction compatible with

current auction */
3. best := 0; /* auction compatible with current one

having the lowest value for Prob */
4. Prob(best) := 1.0;
5. repeat

/* Invariants at this point:
- for all 0 < i < current, Prob(i) and Pred(i)

are already initialised
- latest > 0 ⇒ latest is compatible with current
- best > 0 ⇒ best is compatible with current */

6. Prob(current) := (1 - Pi(r)) * Prob(best);
7. Pred(current) := best;
8. current++;
9. while end(current) - end(latest + 1) ≥ δ
10. do latest++;
11. if Prob(latest) ≤ Prob(best)

then best := latest fi
12. od
13. until current > numAuctions;

/* Since the auctions between latest+1 and
numAuctions have no successors, the best
path ends with an auction within the range
[latest + 1, numAuctions]; the best auction
within this range is computed as follows: */

14. best := latest + 1;
15. for i := latest + 2 to numAuctions
16. do if Prob(i) ≤ Prob(best) then best := i fi
17. od;

/* construction of the best path */
18. path := [];
19. i := best;
20. while i 6= 0
21. do path := path + [i];
22. i := Pred(i)
23. od;
24. output(path, 1 - Prob(best))

The complexity of algorithm BestPlan′ is linear in terms of
the number of auctions. The repeat-until loop is performed
as many times as there are auctions (numAuctions). The
while-loop inside the repeat-until will not have more than
numAuctions - 1 iterations overall: it typically performs
zero or one iteration for each iteration of the repeat-until.
It should be noted though, that the algorithm assumes the
list of auctions to be sorted on their end times. Also, this
analysis does not take into account the complexity of the
invocations to the probability functions Pi(r) – line 6 of the
algorithm.


