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Abstract. Defeasible logic is a simple but efficient rule-based non-monotonic
logic. It has powerful implementations and shows promise tobe applied in the
areas of legal reasoning and the modelling of business rules. So far defeasible
logic has been defined only proof-theoretically. Argumentation-based semantics
have become popular in the area of logic programming. In thispaper we give an
argumentation-based semantics for defeasible logic.
Recently it has been shown that a family of approaches can be built around defea-
sible logic, in which different intuitions can be followed.In this paper we present
an argumentation-based semantics for an ambiguity propagating logic, too. Fur-
ther defeasible logics can be characterised in a similar way.

1 Introduction

Defeasible logic is a practical nonmonotonic logic. This logic, and similar logics, have
been proposed as the appropriate language for executable regulations [3], contracts [22],
and business rules [13]. Unlike other nonmonotonic approaches, defeasible logic was
designed to be easily implementable. In fact, recently verypowerful implementations
of defeasible logic became available, capable of handling 100,000s of defeasible rules
[4]. Moreover, in [2] we have shown how to “tune” defeasible logic in order to deal
with several nonmonotonic phenomena described in the literature.

Dung [9,10] presented an abstract argumentation framework, and [7] shown that
several well-known nonmonotonic reasoning systems are concrete instances of the ab-
stract framework. Although defeasible logic can be described informally in terms of
arguments, the logic has been formalized in a proof-theoretic setting in which argu-
ments play no role. In this paper we will provide an argumentation-theoretic semantics
for defeasible logic.

In addition to innovations we make in argumentation theory,the resulting
argumentation-theoretic semantics will be advantageous for defeasible logic. The logic
currently has no model theory, and the proof theory is clumsy. The semantics we pro-
vide is considerably more elegant. It will prove useful in the intended applications of
defeasible logic mentioned above, where arguments are a natural feature of the problem
domain.

This work is part of our ongoing effort to establish close connections between defea-
sible reasoning and theories of argumentation. Such connections usually lead to better
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understanding, and cross-fertilisation. Also it is worth noting that usually argumenta-
tion is studied theoretically, while not so much emphasis isplaced on implementation.
On the other hand, there are already very powerful systems ofdefeasible reasoning.
Thus our research may lead to the implementation of abstractargumentation systems
on the basis of defeasible reasoning.

This paper is structured as follows. In the next section we provide a brief introduc-
tion to defeasible logic. In this short paper there is no roomfor full details; for those we
refer the reader to [17,2]. We then provide our argumentation-theoretic semantics for
defeasible logic and an ambiguity propagating variant in Section 3.

2 Overview of Defeasible Logics

We begin by presenting the basic ingredients of defeasible logic. A defeasible theory
contains five different kinds of knowledge: facts, strict rules, defeasible rules, defeaters,
and a superiority relation. We consider only essentially propositional rules. Rules con-
taining free variables are interpreted as the set of their variable-free instances.

Factsare indisputable statements, for example, “Tweety is an emu”. In the logic,
this might be expressed asemu(tweety).

Strict rulesare rules in the classical sense: whenever the premises are indisputable
(e.g. facts) then so is the conclusion. An example of a strictrule is “Emus are birds”.
Written formally:emu(X) → bird(X).

Defeasible rulesare rules that can be defeated by contrary evidence. An example of
such a rule is “Birds typically fly”; written formally:bird(X) ⇒ flies(X). The idea is
that if we know that something is a bird, then we may conclude that it flies,unless there
is other evidence suggesting that it may not fly.

Defeatersare rules that cannot be used to draw any conclusions. Their only use is
to prevent some conclusions. In other words, they are used todefeat some defeasible
rules by producing evidence to the contrary. An example is “If an animal is heavy then
it might not be able to fly”. Formally:heavy(X) ; ¬flies(X). The main point is
that the information that an animal is heavy is not sufficientevidence to conclude that it
doesn’t fly. It is only evidence that the animalmaynot be able to fly. In other words, we
don’t wish to conclude¬flies if heavy, we simply want to prevent a conclusionflies.

Thesuperiority relationamong rules is used to define priorities among rules, that
is, where one rule may override the conclusion of another rule. For example, given the
defeasible rules

r : bird ⇒ flies
r′ : brokenWing ⇒ ¬flies

which contradict one another, no conclusive decision can bemade about whether a bird
with a broken wing can fly. But if we introduce a superiority relation > with r′ > r,
then we can indeed conclude that the bird cannot fly. The superiority relation is required
to be acyclic.

It is not possible in this short paper to give a complete formal description of the
logic. However, we hope to give enough information about thelogic to make the dis-
cussion intelligible. We refer the reader to [19,6,17,2] for more thorough treatments.
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A rule r consists of itsantecedent(or body) A(r) which is a finite set of literals, an
arrow, and itsconsequent(or head) C(r) which is a literal. Given a setR of rules, we
denote the set of all strict rules inR by Rs, the set of strict and defeasible rules inR
by Rsd, the set of defeasible rules inR by Rd, and the set of defeaters inR by Rdft.
R[q] denotes the set of rules inR with consequentq. If q is a literal,∼ q denotes the
complementary literal (ifq is a positive literalp then∼q is¬p; and ifq is¬p, then∼q
is p).

A defeasible theoryD is a triple(F, R, >) whereF is a finite set of facts,R a finite
set of rules, and> a superiority relation onR.

A conclusionof D is a tagged literal; in our original defeasible logic there are two
tags,∂ and∆, that may have positive or negative polarity (further tags for defeasible
logic variants will be introduced shortly):

+∆q which is intended to mean thatq is definitely provable inD (i.e., using only facts
and strict rules).

−∆q which is intended to mean that we have proved thatq is not definitely provable
in D.

+∂q which is intended to mean thatq is defeasibly provable inD.
−∂q which is intended to mean that we have proved thatq is not defeasibly provable

in D.

Provability is based on the concept of aderivation (or proof) in D = (F, R, >). A
derivation is a finite sequenceP = (P (1), . . . P (n)) of tagged literals satisfying four
conditions (which correspond to inference rules for each ofthe four kinds of conclu-
sion). Here we briefly state the conditions for positive defeasible conclusions [6]. The
structure of the inference rules for negative literals is the same as that for the corre-
sponding positive one, but the conditions are negated in some sense. The purpose of the
−∆ and−∂ inference rules is to establish that it is not possible to prove a correspond-
ing positive tagged literal. These rules are defined in such away that all the possibilities
for proving+∂q (for example) are explored and shown to fail before−∂q can be con-
cluded. Thus conclusions with these tags are the outcome of aconstructive proof that
the corresponding positive conclusion cannot be obtained.

In this paper we present the inference rules in a simplified form instead of the gen-
eral one. In particular we do not consider the superiority relation. In fact, in [1], we
proved that the superiority relation can be simulated in terms of the other elements of
defeasible logic, and we provide an effective translation to transform a defeasible the-
ory in an equivalent one with an empty superiority relation.The use of the simplified
conditions will make our formal considerations much simpler.

In the followingP (1..i) denotes the initial part of the sequenceP of lengthi.

+∂:
If P (i + 1) = +∂q then either
(1) +∆q ∈ P (1..i) or

(2.1) ∃r ∈ Rsd[q]∀a ∈ A(r)
+∂a ∈ P (1..i) and

(2.2) −∆ ∼q ∈ P (1..i) and
(2.3) ∀s ∈ R[∼q]

∃a ∈ A(s) : −∂a ∈ P (1..i)

−∂:
If P (i + 1) = −∂q then
(1)−∆q ∈ P (1..i) and

(2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r) :
−∂a ∈ P (1..i) or

(2.2) +∆ ∼q ∈ P (1..i) or
(2.3) ∃s ∈ R[∼q] such that

∀a ∈ A(s) : +∂a ∈ P (1..i)
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Let us work through the condition for+∂. To show thatq is provable defeasibly we
have two choices: (1) We show thatq is already definitely provable; or (2) we need to
argue using the defeasible part ofD as well. In particular, we require that there must
be a strict or defeasible rule with headq which can be applied (2.1). But now we need
to consider possible “attacks”, that is, reasoning chains in support of∼ q. To be more
specific: to proveq defeasibly we must show that∼ q is not definitely provable (2.2).
And finally (2.3), we need to show that all rules with head∼q are inapplicable.

In [2] we presented a framework for defeasible logic, where we showed how to tune
defeasible logic in order to define variants able to deal withdifferent nonmonotonic
phenomena. In particular, we proposed different ways in which conclusions can be ob-
tained. One of the properties most discussed in the literature is whether ambiguities
should be propagated or blocked. In the logic above ambiguities are blocked. In the
following we introduce an ambiguity propagating variant. The result of [1] can be eas-
ily extended to this variant; thus the appropriate inference rules will be presented in
simplified form without reference to the superiority relation.

The first step is to determine when a literal is “supported” ina defeasible theory
D. Support for a literalp (+Σp) consists of a chain of reasoning that would lead us to
concludep in the absence of conflicts. This leads to the following inference conditions:

+Σ:
If P (1 + 1) = +Σp then
(1) p ∈ F , or
(2) ∃r ∈ Rsd[p]:

∀a ∈ A(r) + Σa ∈ P (1..i)

−Σ:
If P (1 + 1) = −Σp then
(1) p /∈ F , and either
(2) ∀r ∈ Rsd[p]:

∃a ∈ A(r) − Σa ∈ P (1..i)

A literal that is defeasibly provable is supported, but a literal may be supported even
though it is not defeasibly provable. Thus support is a weaker notion than defeasible
provability.

A literal is ambiguousif there is a chain of reasoning that supports a conclusion that
p is true, and another that supports that¬p is true.

We can achieve ambiguity propagation behaviour by making a minor change to the
inference condition for+∂: instead or requiring that every attack onp be inapplicable
in the sense of−∂, now we require that the rule for∼ p be inapplicable because one
of its antecedents cannot besupported. Thus we are imposing a stronger condition for
proving a literal defeasibly. Here is the formal definition:

+∂ap:
If P (i + 1) = +∂apq then either
(1) +∆q ∈ P (1..i) or

(2.1) ∃r ∈ Rsd[q]∀a ∈ A(r) :
+∂apa ∈ P (1..i) and

(2.2) −∆ ∼q ∈ P (1..i) and
(2.3) ∀s ∈ R[∼q]

∃a ∈ A(s) : −Σa ∈ P (1..i)

−∂ap:
If P (i + 1) = −∂q then
(1)−∆q ∈ P (1..i) and

(2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r) :
−∂apa ∈ P (1..i) or

(2.2) +∆ ∼q ∈ P (1..i) or
(2.3) ∃s ∈ R[∼q] such that

∀a ∈ A(s) : +Σa ∈ P (1..i)
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3 Argumentation for Defeasible Logic

Arumentation systems usually contain the following basic elements: an underlying log-
ical language, and the definitions of: argument, conflict between arguments, and the
status of arguments. The latter elements are often used to define a consequence relation.
In what follows we present an argumentation system containing the above elements in
a way appropriate for defeasible logic.

Obviously, the underlying logical language we use is the language of defeasible
logic; however, we consider facts to be strict rules with empty bodies.

As usual arguments are defined to be proof trees (or monotonicderivations). How-
ever, defeasible logic requires a more general notion of proof tree that admits infinite
trees, so that the distinction is kept between an unrefuted,but infinite, chain of reasoning
and a refuted chain.

A proof treefor a literalp based on a set of rulesR is a (possibly infinite) tree with
nodes labelled by literals such that the root is labelled byp and for every nodeh:

– If b1, . . . , bn label the children ofh then there is a ground instance of a rule inR
with bodyb1, . . . , bn and headh.

– If, in addition,h is not the root of the tree then the rule must be a strict or defeasible
rule.

If the rule at the root of a proof tree is strict or defeasible and the proof tree is finite
we say it is asupportive proof tree. If all the rules in a proof tree are strict then we say
that it is astrict proof tree.

An argumentfor a literal p is a proof tree forp. We say that an argumentA is
finite if the proof tree associated toA is finite. An argumentA is strict if the proof tree
associated toA is strict. If an argument is not strict it isdefeasible. An argumentA for
p is asupportive argumentif the proof tree forp associated toA is supportive.

Given a defeasible theoryD, the set of arguments that can be generated fromD is
denoted byArgsD.

Defeasible logic has three kinds of rules and only two of themcan be used to sup-
port the derivation of a conclusion. Defeaters can only block derivations. Intuitively a
supportive argument is an argument from which a conclusion can be drawn.

At this stage we can characterize the definite conclusions ofdefeasible logic in
argumentation-theoretic terms.

Proposition 1. LetD be a defeasible theory andp be a literal.

– D ⊢ +∆p iff there is a strict supportive argument forp in ArgsD

– D ⊢ −∆p iff there is no (finite or infinite) strict argument forp in ArgsD

This characterization is straightforward, since strict rules are the monotonic subset of
defeasible logic.

At the same time we are ready to characterize the connection between the notion of
support in defeasible logic and the existence of arguments.

Proposition 2. LetD be a defeasible theory andp a literal.
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– D ⊢ +Σp iff there is a supportive argument forp in ArgsD.
– D ⊢ −Σp iff there is no (finite or infinite) strict or defeasible argument for p in

ArgsD.

On the hand, characterizing defeasible provability requires more definitions.
A (proper) subargumentof an argumentA is a subtree of the proof tree associated

to A.
An argumentA attacksan argumentB if a conclusion ofA is the complement of

a conclusion ofB. A set of argumentsS attacks a defeasible argumentB if there is an
argumentA in S that attacksB.

An argumentA is supportedby a set of argumentsS if every proper subargument
of A is in S.

Despite the similarity of name, this concept is not directlyrelated to support in
defeasible logic, nor to supportive arguments/proof trees. Essentially the notion of sup-
ported argument is meant to indicate when an argument may have an active role in
proving or preventing the derivation of a conclusion. The main difference between the
above notions is that infinite arguments and arguments ending with defeaters can be
supported (and thus preventing some conclusions), while supportive proof trees are fi-
nite and do not contain defeaters (cf. Proposition 2).

An argumentA is undercutby a set of argumentsS if S supports an argumentB
attacking a proper subargument ofA.

It is worth noting that the above definitions concern only defeasible arguments; for
strict arguments we stipulate that they cannot be undercut or attacked.

Example 1.We consider the defeasible theoryD consisting of the following rules:

a ⇒ p b ⇒ ¬p p ⇒ q

Let S = {a, b} be a set of arguments. The argument

A : a ⇒ p ⇒ q

is undercut byS since the argumentB : b ⇒ ¬p attacks a subargument ofA, and it is
supported byS.

That an argumentA is undercut byS means that we can show that some premises ofA
cannot be proved if we accept the arguments inS.

The heart of argumentation semantics is the notion of acceptable argument. How-
ever, different definitions are possible and they characterise different variants of defea-
sible logic. Such a notion is used as a basis to define recursively the set of justified
arguments. For the moment we leave it undefined (we shall propose later two differ-
ent definitions: the first characterises the ambiguity propagating variant of defeasible
logic – Definition 3 in Section 3.1–, and the second the ambiguity blocking variant –
Definition 5 in Section 3.2), and we proceed to define the set ofjustified arguments.

Definition 1. LetD be a defeasible theory. We defineJD
i as follows.

– JD
0 = ∅
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– JD
i+1 = {a ∈ ArgsD | a is acceptable w.r.t.JD

i }

The set ofjustified argumentsin a defeasible theoryD is JArgsD = ∪∞
i=1J

D
i .

A literal p is justifiedif it is the conclusion of a supportive argument inJArgD.

That an argumentA is justified means that it resists every reasonable refutation.
However, defeasible logic is more expressive since it is able to say when a conclusion
is demonstrably non provable (−∂, −∂ap). Briefly, that a conclusion is demonstrably
non provable means that every possible conclusive argumenthas been refuted. In the
following we show how to capture this notion in our argumentation system by assigning
the status rejected to arguments that are refuted. Roughly speaking, an argument is
rejected if it has a rejected subargument or it cannot overcome an attack from a justified
argument.

Again there are several possible definitions for the notion of rejected argument.
Similarly to what we have done for the notion of acceptable argument we leave it tem-
porarily undefined (the appropriate definitions will be given in Section 3.1 and Section
3.2).

Even in the case of rejected argument we need a recursive construction (see example
2 below for an explanation).

Definition 2. We defineRD
i as follows.

– RD
0 = ∅

– RD
i+1 = {a ∈ ArgsD | a is rejected byRD

i }

The set ofrejected argumentsin a defeasible theoryD is RArgsD = ∪∞
i=1R

D
i .

A literal p is rejectedif there is no argument inArgsD − RArgsD that ends with a
supportive rule forp.

3.1 Grounded Semantics and Ambiguity Propagation

Dung [9,10] proposed an abstract argumentation framework giving rise to several argu-
mentation semantics, in particular to a skeptical semantics (called grounded semantics)
which has been widely used to characterize several defeasible reasoning systems [10,7].

In this section we show how to modify Dung’s definition of acceptable argument in
order to suit defeasible logic.

Definition 3. An argumentA for p is acceptablew.r.t a set of argumentsS if A is finite,
and

1. A is strict, or
2. every argument attackingA is attacked byS.

As we have seen defeasible logic is more expressive, insofaras it is able to determine
when a conclusion is demonstrably non provable; thus, before proving that grounded
semantics characterises the ambiguity propagating variant of defeasible logic, we have
to define the appropriate notion of rejected argument.
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Definition 4. An argumentA is rejectedby a set of argumentsS whenA is not strict,
and either

1. a proper subargument ofA is in S, or
2. it is attacked by a supportive argument.

Using the notions of acceptable and rejected argument in definitions 1 and 2 enables
us to prove the following theorem.

Theorem 1. LetD be a defeasible theory andp be a literal.

– D ⊢ +∂app iff p is justified.
– D ⊢ −∂app iff p is rejected.

This theorem provides a characterization of defeasible provability in defeasible
logic with ambiguity propagation.

3.2 Defeasible Semantics and Ambiguity Blocking

In the previous section we gave an argumentation theoretic characterization of defeasi-
ble logic with ambiguity propagation. In this section we seehow to modify the notions
of acceptable and rejected argument in order to capture defeasible provability in defea-
sible logic with ambiguity blocking (our original defeasible logic).

Definition 5. An argumentA for p is acceptablew.r.t to a set of argumentS if A is
finite, and

1. A is strict, or
2. every argument attackingA is undercut byS.

The simple existence of a competing argument is not enough tostate that an ar-
gument is rejected. The attacking argument must be supported by the set of justified
arguments.

Definition 6. An argumentA is rejectedby sets of argumentsS andT whenA is not
strict and

1. a proper subargument ofA is in S, or
2. it is attacked by an argument supported byT .

To accommodate with the slightly different notion of rejected argument we have to
modify the second point of Definition 2 as follow

– RD
i+1 = {a ∈ ArgsD | a is rejected byRD

i andJArgsD}

Theorem 2. LetD be a defeasible theory andp be a literal.

– D ⊢ +∂p iff p is justified.
– D ⊢ −∂p iff p is rejected.
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This theorem provides a characterization of defeasible conclusions in ambiguity
blocking defeasible logic in terms of justified and rejectedargument in defeasible argu-
mentation semantics.

Governatori and Maher [11] have developed an argumentationtheoretic semantics
for ambiguity blocking defeasible logic with superiority relation. It is easy to see that the
semantics presented here is a special case of that of [11] when the superiority relation
is empty. However, as we have already alluded to, the superiority relation does not add
anything to the expressive power of the variants of defeasible logic presented in this
paper. Therefore we believe that the present semantics enables a better understanding
of the basic mechanisms of defeasible reasoning.

Example 2.The following defeasible logic theory illustrates whyRArgsD needs to be
constructed iteratively, even after all the justified literals have been identified.

There are the following rules, fori = 1, . . . , n:

true ⇒ bi

ai ⇒ ¬bi

bi−1 ⇒ ai

true ⇒ ¬ai

and the factb0.
This theory produces the following conclusions:−∂ai,−∂¬ai, +∂bi,−∂¬bi, for

i = 0, . . . , n.
For eachi, consider the following arguments:

Ai : true ⇒ ¬ai

Bi : true ⇒ bi−1 ⇒ ai ⇒ ¬bi

and their subarguments. Notice that

– each argumentAi is attacked byBi atai.
– each argumentBi is attacked byBi−1 at bi−1.

Eventually, bothAi andBi will be rejected, since neither can defeat the other, but this
cannot be done until the status ofbi−1 is determined. As noted above, this depends
on Bi−1. Thus the situation incorporates some sequentiality, where Bi−1 must be re-
solved before resolvingBi, and this suggests that a characterization ofRArgsD must
be iterative, even after all the justified literals have beenidentified.

4 Related Work

[16] proposes an abstract defeasible reasoning framework that is achieved by mapping
elements of defeasible reasoning into the default reasoning framework of [7]. While
this framework is suitable for developing new defeasible reasoning languages, it is not
appropriate for characterizing defeasible logic because:

– [7] does not address Kunen’s semantics of logic programs which provides a char-
acterization of failure-to-prove in defeasible logic [18].
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– The correctness of the mapping needs to be established if [16] is to be applied to
an existing language like defeasible logic. In fact the representation of priorities is
inappropriate for defeasible logic.

Two more systems characterized by Dung’s grounded semantics, even if developed with
different design choices and motivations, are those proposed by Simari and Loui [23]
and Prakken and Sartor [21,20]. Both are similar to the ambiguity blocking variant of
defeasible logic, but their superiority relations are different: the first is argument based
instead of rule based, while the second does not deal with teams of rules.

The abstract argumentation framework of [24] addresses both strict and defeasible
rules, but not defeaters. However, the treatment of strict rules in defeasible arguments is
different from that of defeasible logic, and there is no concept of team defeat. There are
structural similarities between the definitions of inductive warrant and warrant in [24]
andJD

i andJArgsD, but they differ in that acceptability is monotonic inS whereas the
corresponding definitions in [24] are antitone. The semantics that results is not scepti-
cal, and more related to stable semantics than Kunen semantics. The framework does
have a notion ofultimately defeated argumentsimilar to our rejected arguments, but
the definition is not iterative, possibly because the framework does not have a directly
sceptical semantics.

Among other contributions, [8] provides a sceptical argumentation theoretic seman-
tics and shows that LPwNF – which is weaker, but very similar to defeasible logic [5] –
is sound with respect to this semantics. However, both LPwNFand defeasible logic are
not complete with respect to this semantics.

5 Conclusion

Defeasible logic is a simple but efficient rule-based nonmonotonic logic. So far de-
feasible logic has been defined only proof-theoretically. In this paper we presented an
argumentation-theoretic semantics for defeasible logic and an ambiguity propagating
variant. This paper is part of our ongoing effort to establish close connections between
defeasible reasoning and theories of argumentation.
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