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Abstract. Defeasible logic is a simple but efficient rule-based nomatonic
logic. It has powerful implementations and shows promisbeapplied in the
areas of legal reasoning and the modelling of business.r8ledar defeasible
logic has been defined only proof-theoretically. Argumgambased semantics
have become popular in the area of logic programming. Inghger we give an
argumentation-based semantics for defeasible logic.

Recently it has been shown that a family of approaches canit@tound defea-
sible logic, in which different intuitions can be followeld. this paper we present
an argumentation-based semantics for an ambiguity préipgdagic, too. Fur-
ther defeasible logics can be characterised in a similar way

1 Introduction

Defeasible logic is a practical nonmonotonic logic. Thigitg and similar logics, have
been proposed as the appropriate language for executghlatiens|[8], contract§[22],
and business rule51113]. Unlike other nonmonotonic apgrescdefeasible logic was
designed to be easily implementable. In fact, recently pemyerful implementations
of defeasible logic became available, capable of handld@d00s of defeasible rules
[4). Moreover, in [2] we have shown how to “tune” defeasibdgit in order to deal
with several nonmonotonic phenomena described in thatiles.

Dung [910] presented an abstract argumentation frameveort [/] shown that
several well-known nonmonotonic reasoning systems areretaminstances of the ab-
stract framework. Although defeasible logic can be desctilmformally in terms of
arguments, the logic has been formalized in a proof-th&osetting in which argu-
ments play no role. In this paper we will provide an arguminatheoretic semantics
for defeasible logic.

In addition to innovations we make in argumentation thedhg resulting
argumentation-theoretic semantics will be advantagemusdfeasible logic. The logic
currently has no model theory, and the proof theory is clufibg semantics we pro-
vide is considerably more elegant. It will prove useful ie ihtended applications of
defeasible logic mentioned above, where arguments araieahfgature of the problem
domain.

This work is part of our ongoing effort to establish closemections between defea-
sible reasoning and theories of argumentation. Such ctionsasually lead to better
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understanding, and cross-fertilisation. Also it is wortiting that usually argumenta-
tion is studied theoretically, while not so much emphasigdased on implementation.
On the other hand, there are already very powerful systentefgfasible reasoning.
Thus our research may lead to the implementation of absdrgatmentation systems
on the basis of defeasible reasoning.

This paper is structured as follows. In the next section vewipe a brief introduc-
tion to defeasible logic. In this short paper there is no rdonfull details; for those we
refer the reader td_[1[4,2]. We then provide our argumemati@oretic semantics for
defeasible logic and an ambiguity propagating variant ictiSa[3.

2 Overview of Defeasible Logics

We begin by presenting the basic ingredients of defeasilgfie.l A defeasible theory
contains five different kinds of knowledge: facts, strides) defeasible rules, defeaters,
and a superiority relation. We consider only essentialbyppsitional rules. Rules con-
taining free variables are interpreted as the set of theiabke-free instances.

Factsare indisputable statements, for example, “Tweety is an’emuhe logic,
this might be expressed asiu(tweety).

Strict rulesare rules in the classical sense: whenever the premisesdisputable
(e.g. facts) then so is the conclusion. An example of a stuiet is “Emus are birds”.
Written formally:emu(X) — bird(X).

Defeasible rulesire rules that can be defeated by contrary evidence. An deasfip
such arule is “Birds typically fly”; written formallybird(X) = flies(X). The ideais
that if we know that something is a bird, then we may conclbe¢it flies,unless there
is other evidence suggesting that it may nat fly

Defeatersare rules that cannot be used to draw any conclusions. Thiiuse is
to prevent some conclusions. In other words, they are usddfeat some defeasible
rules by producing evidence to the contrary. An examplefiarilanimal is heavy then
it might not be able to fly”. Formallyheavy(X) ~ —flies(X). The main point is
that the information that an animal is heavy is not sufficentlence to conclude that it
doesn'tfly. Itis only evidence that the aninmahynot be able to fly. In other words, we
don’twish to conclude- flies if heavy, we simply want to prevent a conclusigiies.

The superiority relationamong rules is used to define priorities among rules, that
is, where one rule may override the conclusion of anothex. febr example, given the
defeasible rules

7 bird = flies
r’ : brokenWing = —flies

which contradict one another, no conclusive decision camége about whether a bird
with a broken wing can fly. But if we introduce a superiorityateon > with ' > r,
then we can indeed conclude that the bird cannot fly. The mrjigrelation is required
to be acyclic.

It is not possible in this short paper to give a complete fdrdescription of the
logic. However, we hope to give enough information aboutltiggc to make the dis-
cussion intelligible. We refer the reader [0 1B,6,17,2]rfeore thorough treatments.
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A rule r consists of iteantecedenfor body) A(r) which is a finite set of literals, an
arrow, and itsconsequentor head C(r) which is a literal. Given a seR of rules, we
denote the set of all strict rules iR by Ry, the set of strict and defeasible rulesin
by R.q, the set of defeasible rules R by R4, and the set of defeaters i by Rgy+.
R|[q] denotes the set of rules iR with consequeny. If ¢ is a literal,~ ¢ denotes the
complementary literal (if; is a positive literap then~ ¢ is —p; and ifq is —p, then~ ¢
is p).

A defeasible theory is a triple(F, R, >) whereF' is a finite set of factsR a finite
set of rules, and- a superiority relation ork.

A conclusionof D is a tagged literal; in our original defeasible logic there &vo
tags,0 and A, that may have positive or negative polarity (further tagsdefeasible
logic variants will be introduced shortly):

+Aq which is intended to mean thais definitely provable irD (i.e., using only facts
and strict rules).

—Aq which is intended to mean that we have proved thiatnot definitely provable
in D.

+0q which is intended to mean thais defeasibly provable ib.

—0dq which is intended to mean that we have proved thistnot defeasibly provable
in D.

Provability is based on the concept ofdarivation (or proof) in D = (F,R,>). A
derivation is a finite sequende = (P(1),... P(n)) of tagged literals satisfying four
conditions (which correspond to inference rules for eactheffour kinds of conclu-
sion). Here we briefly state the conditions for positive defble conclusions [6]. The
structure of the inference rules for negative literals is $ame as that for the corre-
sponding positive one, but the conditions are negated ires@nse. The purpose of the
—A and—9 inference rules is to establish that it is not possible tover@correspond-
ing positive tagged literal. These rules are defined in suehyathat all the possibilities
for proving+9q (for example) are explored and shown to fail befei@q can be con-
cluded. Thus conclusions with these tags are the outcomeonfstructive proof that
the corresponding positive conclusion cannot be obtained.

In this paper we present the inference rules in a simplifiechfimstead of the gen-
eral one. In particular we do not consider the superioritgtien. In fact, in [1], we
proved that the superiority relation can be simulated imteof the other elements of
defeasible logic, and we provide an effective translatotransform a defeasible the-
ory in an equivalent one with an empty superiority relatibhe use of the simplified
conditions will make our formal considerations much simple

In the following P(1..7) denotes the initial part of the sequené®f lengthi.

+0. —0:
If P(i+ 1) = +0q then either If P(1 +1) = —9dqthen
(1)4+Aqg € P(1..9) or (1) —Aq € P(1..4) and
(2.1) Ir € Rsq[g]Va € A(r) (2.1) Vr € Rsqlq] 3a € A(r) :
+da € P(1..i) and —0a € P(1..3) or
(2.2) —A ~qe P(1..i) and (2.2) +A ~qe P(1..4) or
(2.3) Vs € R[~(] (2.3) 3s € R[~¢q] such that

Ja € A(s): —0a € P(1..7) Va € A(s) : +0a € P(1..49)
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Let us work through the condition ferd. To show thay is provable defeasibly we
have two choices: (1) We show thais already definitely provable; or (2) we need to
argue using the defeasible part©fas well. In particular, we require that there must
be a strict or defeasible rule with headvhich can be applied (2.1). But now we need
to consider possible “attacks”, that is, reasoning chairsupport of~ ¢. To be more
specific: to provey; defeasibly we must show that ¢ is not definitely provable (2.2).
And finally (2.3), we need to show that all rules with head are inapplicable.

In [2] we presented a framework for defeasible logic, wheeesiwowed how to tune
defeasible logic in order to define variants able to deal wifferent nonmonotonic
phenomena. In particular, we proposed different ways irctvisbnclusions can be ob-
tained. One of the properties most discussed in the literatuwhether ambiguities
should be propagated or blocked. In the logic above amléguitre blocked. In the
following we introduce an ambiguity propagating variarnteTresult of[1] can be eas-
ily extended to this variant; thus the appropriate infeeendes will be presented in
simplified form without reference to the superiority redeti

The first step is to determine when a literal is “supportedaidefeasible theory
D. Support for a literap (+X'p) consists of a chain of reasoning that would lead us to
concludep in the absence of conflicts. This leads to the following iafere conditions:

+X -2
If P(1+1)=+Xpthen If P(14+1)=—Xpthen
Q)pe F,or (1) p ¢ F, and either
(2) dr e de[p]l (2) Vr € de[p]l
Va € A(r) + Ya € P(1..9) Jda € A(r) — Ya € P(1..1)

A literal that is defeasibly provable is supported, buterit may be supported even
though it is not defeasibly provable. Thus support is a weakdéion than defeasible
provability.

A literal is ambiguousf there is a chain of reasoning that supports a conclusian th
p is true, and another that supports thatis true.

We can achieve ambiguity propagation behaviour by makingn@nchange to the
inference condition for-9: instead or requiring that every attack pie inapplicable
in the sense of-0, now we require that the rule fer p be inapplicable because one
of its antecedents cannot bapported Thus we are imposing a stronger condition for
proving a literal defeasibly. Here is the formal definition:

+0ap: —Op:
If P(i + 1) = +0,pq then either If P(i +1) = —0qthen
(1)+Aqg € P(1..49) or (1) —Aq € P(1..4) and
(2.1) 3r € Rsqlg]Va € A(r) : (2.1) ¥r € Rsqlq] Ja € A(r) :
+0qpa € P(1..7) and —0qpa € P(1..7) OF
(2.2) —A~qge P(1..i) and (2.2) +A ~qge P(1..4) or
(2.3) Vs € R[~q] (2.3) Js € R[~¢q] such that

Ja € A(s) : —Xa € P(1..0) Va € A(s) : +Xa € P(1..49)
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3 Argumentation for Defeasible Logic

Arumentation systems usually contain the following baorents: an underlying log-
ical language, and the definitions of: argument, confliciMeen arguments, and the
status of arguments. The latter elements are often usedite@@consequence relation.
In what follows we present an argumentation system comtgitiie above elements in
a way appropriate for defeasible logic.

Obviously, the underlying logical language we use is theylage of defeasible
logic; however, we consider facts to be strict rules with gnfqodies.

As usual arguments are defined to be proof trees (or monadenications). How-
ever, defeasible logic requires a more general notion abfaree that admits infinite
trees, so that the distinction is kept between an unrefbtednfinite, chain of reasoning
and a refuted chain.

A proof treefor a literalp based on a set of rulds is a (possibly infinite) tree with
nodes labelled by literals such that the root is labelleg bpd for every nodé:

— If b1,...,0b, label the children of: then there is a ground instance of a ruleiin
with bodybs, . .., b, and head.

— If, in addition,  is not the root of the tree then the rule must be a strict oraiide
rule.

If the rule at the root of a proof tree is strict or defeasibid ¢he proof tree is finite
we say it is asupportive proof treelf all the rules in a proof tree are strict then we say
that it is astrict proof tree

An argumentfor a literal p is a proof tree forp. We say that an argument is
finite if the proof tree associated t s finite. An argument is strict if the proof tree
associated tal is strict. If an argument is not strict it tefeasible An argumentA for
p is asupportive argumerif the proof tree forp associated tal is supportive.

Given a defeasible theor®, the set of arguments that can be generated ffbia
denoted byArgsp.

Defeasible logic has three kinds of rules and only two of ttoaim be used to sup-
port the derivation of a conclusion. Defeaters can only bblderivations. Intuitively a
supportive argument is an argument from which a conclusaorbe drawn.

At this stage we can characterize the definite conclusiordetéasible logic in
argumentation-theoretic terms.

Proposition 1. Let D be a defeasible theory andbe a literal.

— D+ +Apiff there is a strict supportive argument fprin Argsp
— D+ —Apiff there is no (finite or infinite) strict argument ferin Argsp

This characterization is straightforward, since stridesuare the monotonic subset of
defeasible logic.

At the same time we are ready to characterize the connectiwvelen the notion of
support in defeasible logic and the existence of arguments.

Proposition 2. Let D be a defeasible theory anda literal.
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— D+ +Xpiff there is a supportive argument fprin Argsp.
— D + —Xpiff there is no (finite or infinite) strict or defeasible argent forp in
Argsp.

On the hand, characterizing defeasible provability respimore definitions.

A (proper) subargumerdf an argumentl is a subtree of the proof tree associated
to A.

An argumentA attacksan argumenf3 if a conclusion of4 is the complement of
a conclusion ofB. A set of arguments’ attacks a defeasible argumésif there is an
argumentd in S that attacks3.

An argumentA is supportedby a set of arguments if every proper subargument
of Aisin S.

Despite the similarity of name, this concept is not directated to support in
defeasible logic, nor to supportive arguments/proof tressentially the notion of sup-
ported argument is meant to indicate when an argument mag &a\active role in
proving or preventing the derivation of a conclusion. Themuhfference between the
above notions is that infinite arguments and arguments gnalith defeaters can be
supported (and thus preventing some conclusions), whidpative proof trees are fi-
nite and do not contain defeaters (cf. Proposifibn 2).

An argument4 is undercutby a set of argumentS if S supports an argumeiit
attacking a proper subargument4f

It is worth noting that the above definitions concern onlyedaible arguments; for
strict arguments we stipulate that they cannot be underaittacked.

Example 1.We consider the defeasible thedtyconsisting of the following rules:
a=7p b= —p p=q
LetS = {a,b} be a set of arguments. The argument
A: a=>p=q

is undercut byS since the argumer : b = —p attacks a subargument df, and it is
supported bys.

That an argumend is undercut byS means that we can show that some premises$ of
cannot be proved if we accept the argumentS.in

The heart of argumentation semantics is the notion of aabé&pargument. How-
ever, different definitions are possible and they charegelifferent variants of defea-
sible logic. Such a notion is used as a basis to define reelydive set of justified
arguments. For the moment we leave it undefined (we shallgsfater two differ-
ent definitions: the first characterises the ambiguity pgagiag variant of defeasible
logic — Definition[3 in Sectiofi:3]11—, and the second the amibidilocking variant —
Definition[d in Sectiol-3]2), and we proceed to define the sptabified arguments.

Definition 1. Let D be a defeasible theory. We defifg as follows.
—JP =0
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- JB, ={a € Argsp | ais acceptable w.rt/”}
The set ofustified argumenti a defeasible theorp is J Args? = ux, JP.

A literal p is justifiedif it is the conclusion of a supportive argumentinlrg”.

That an argumen# is justified means that it resists every reasonable refutati
However, defeasible logic is more expressive since it is &dbkay when a conclusion
is demonstrably non provable-Q, —0,,). Briefly, that a conclusion is demonstrably
non provable means that every possible conclusive arguhznbeen refuted. In the
following we show how to capture this notion in our arguméintasystem by assigning
the status rejected to arguments that are refuted. Rouglelgking, an argument is
rejected if it has a rejected subargument or it cannot oveecan attack from a justified
argument.

Again there are several possible definitions for the notibregected argument.
Similarly to what we have done for the notion of acceptabfgiarent we leave it tem-
porarily undefined (the appropriate definitions will be give Sectiod 311 and Section
B.32).

Even in the case of rejected argument we need a recursivegctisn (see example
B below for an explanation).

Definition 2. We defingk??” as follows.

— ROD =10
— RE, ={a € Argsp | ais rejected byrRP}

The set ofrejected arguments a defeasible theorp is RArgs? = U, RP.

A literal p is rejectedif there is no argument imlrgsp — RArgs” that ends with a
supportive rule fop.

3.1 Grounded Semantics and Ambiguity Propagation

Dung [9110] proposed an abstract argumentation framewigikgyrise to several argu-
mentation semantics, in particular to a skeptical semaftlled grounded semantics)
which has been widely used to characterize several defeasdsoning systems [[L0D,7].

In this section we show how to modify Dung’s definition of aotable argument in
order to suit defeasible logic.

Definition 3. An argumentA for p is acceptablev.r.t a set of arguments if A is finite,
and

1. Ais strict, or
2. every argument attacking is attacked bys.

As we have seen defeasible logic is more expressive, inasfiris able to determine
when a conclusion is demonstrably non provable; thus, bgfooving that grounded
semantics characterises the ambiguity propagating asfatefeasible logic, we have
to define the appropriate notion of rejected argument.
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Definition 4. An argument is rejectedoy a set of argumentS whenA is not strict,
and either

1. aproper subargument ofisin .S, or
2. itis attacked by a supportive argument.

Using the notions of acceptable and rejected argument inidefisl] andR enables
us to prove the following theorem.

Theorem 1. Let D be a defeasible theory andbe a literal.

— D F +0q,p iff p is justified.
— D —0q,p iff p is rejected.

This theorem provides a characterization of defeasibleginitity in defeasible
logic with ambiguity propagation.

3.2 Defeasible Semantics and Ambiguity Blocking

In the previous section we gave an argumentation theoreticacterization of defeasi-
ble logic with ambiguity propagation. In this section we seg to modify the notions
of acceptable and rejected argument in order to capturasibie provability in defea-
sible logic with ambiguity blocking (our original defeakfiogic).

Definition 5. An argumentA for p is acceptablev.r.t to a set of argument if A is
finite, and

1. Ais strict, or
2. every argument attacking is undercut bys.

The simple existence of a competing argument is not enougtate that an ar-
gument is rejected. The attacking argument must be supmpbytéhe set of justified
arguments.

Definition 6. An argumentA is rejectedby sets of arguments andT whenA is not
strict and

1. aproper subargument ofisin .S, or
2. itis attacked by an argument supportediy

To accommaodate with the slightly different notion of regtargument we have to
modify the second point of Definitidd 2 as follow

- RP, ={a € Argsp | ais rejected byR? andJArgs"}
Theorem 2. Let D be a defeasible theory andbe a literal.

— D+ +0p iff pis justified.
— D+ —0piff pis rejected.
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This theorem provides a characterization of defeasiblelosions in ambiguity
blocking defeasible logic in terms of justified and rejeciegument in defeasible argu-
mentation semantics.

Governatori and MahelT11] have developed an argumenttt@oretic semantics
for ambiguity blocking defeasible logic with superioriglation. It is easy to see that the
semantics presented here is a special case of thatlof [11] thleesuperiority relation
is empty. However, as we have already alluded to, the sujitgrielation does not add
anything to the expressive power of the variants of deféasilgic presented in this
paper. Therefore we believe that the present semanticdesnatbetter understanding
of the basic mechanisms of defeasible reasoning.

Example 2.The following defeasible logic theory illustrates wiyirgs” needs to be
constructed iteratively, even after all the justified btisrhave been identified.
There are the following rules, far=1, ..., n:

true = b;
a; = —b;
bi—1 = a;
true = —a;

and the facby.

This theory produces the following conclusionsda;, —9—-a;, +0b;, —0—b;, for
1=0,...,n.

For eachi, consider the following arguments:

A; - true = —a;
B; :true=5b;,_1 = a; = —b;

and their subarguments. Notice that

— each argumerd,; is attacked byB; ata;.
— each argumen; is attacked by3; _; atb; ;.

Eventually, bothA; and B; will be rejected, since neither can defeat the other, bat thi
cannot be done until the status igf ; is determined. As noted above, this depends
on B;_1. Thus the situation incorporates some sequentiality, &/fgr; must be re-
solved before resolving;, and this suggests that a characterizatio®dfrgs” must

be iterative, even after all the justified literals have bigemtified.

4 Related Work

[16] proposes an abstract defeasible reasoning frameWwathkg achieved by mapping
elements of defeasible reasoning into the default reagdinamework of [7]. While
this framework is suitable for developing new defeasiblesoming languages, it is not
appropriate for characterizing defeasible logic because:

— [I7] does not address Kunen’s semantics of logic programstwpiovides a char-
acterization of failure-to-prove in defeasible lodic][18]
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— The correctness of the mapping needs to be establishied]if1® be applied to
an existing language like defeasible logic. In fact the @spntation of priorities is
inappropriate for defeasible logic.

Two more systems characterized by Dung’s grounded sensaatien if developed with
different design choices and motivations, are those pgbby Simari and Loui[23]
and Prakken and Sartdr [21]20]. Both are similar to the amityidplocking variant of
defeasible logic, but their superiority relations areatiént: the first is argument based
instead of rule based, while the second does not deal withged rules.

The abstract argumentation framework|ofi[24] addressds iatt and defeasible
rules, but not defeaters. However, the treatment of stiesrin defeasible arguments is
different from that of defeasible logic, and there is no aptof team defeat. There are
structural similarities between the definitions of induetivarrant and warrant in_[24]
andJP andJ Argsp, but they differ in that acceptability is monotonic$twhereas the
corresponding definitions i [24] are antitone. The senaarttiat results is not scepti-
cal, and more related to stable semantics than Kunen sersafitie framework does
have a notion ofiltimately defeated argumesimilar to our rejected arguments, but
the definition is not iterative, possibly because the fraoréwloes not have a directly
sceptical semantics.

Among other contributiong,[8] provides a sceptical argotaton theoretic seman-
tics and shows that LPwWNF — which is weaker, but very simbatdefeasible logid [5] —
is sound with respect to this semantics. However, both LPahd-defeasible logic are
not complete with respect to this semantics.

5 Conclusion

Defeasible logic is a simple but efficient rule-based nonotonic logic. So far de-
feasible logic has been defined only proof-theoreticatiythis paper we presented an
argumentation-theoretic semantics for defeasible logit @& ambiguity propagating
variant. This paper is part of our ongoing effort to estdbtitose connections between
defeasible reasoning and theories of argumentation.
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