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Abstract

Recently there has been increased interest in logic programming-based de-
fault reasoning approaches which are not using negation-as-failure in their ob-
ject language. Instead, default reasoning is modelled by rules and a priority
relation among them.

Historically the first logic in this class was Defeasible Logic. In this paper
we will study its relationship to other approaches which also rely on the idea of
using logic rules and priorities. In particular we will study sceptical LPwNF,
courteous logic programs, and priority logic.

1 Introduction

Recently there has been increased interest in modelling default reasoning by means
of rules without negation as failure, and a priority relation. In fact [16] argues that
the concept of priority is more basic than the concept of a default.

Defeasible Logic [11, 12] is an early approach to sceptical nonmonotonic reason-
ing [1] which was based on rules without negation as failure, plus a priority relation.
In fact it has an implementation as a straightforward extension of Prolog [5].

LPwNF (Logic Programming without Negation as Failure) is a recent approach,
introduced in [6]. It supports both credulous and sceptical reasoning, unlike defea-
sible logic, and has an argumentation-theoretic characterisation.

The main contribution of this paper is to compare defeasible logic with sceptical
LPwNF. We discuss how the two approaches differ. The main difference is that
LPwNF does not take into account teams of rules [7] supporting a conclusion, but
rather views rules individually. By doing so, LPwNF fails to draw desirable con-
clusions that defeasible logic can, as we show in this paper. On the other hand,
defeasible logic can prove everything that sceptical LPwNF can.

Also we compare defeasible logic with courteous logic programs [7] and priority
logic [16, 17]. Finally we point out at an earlier result which establishes a relationship
between defeasible logic and inheritance networks.
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2 Defeasible Logic

In this paper we restrict attention to propositional defeasible logic, and assume that
the reader is familiar with the notation and basic notions of propositional logic. If
q is a literal, ∼q denotes the complementary literal (if q is a positive literal p then
∼q is ¬p; and if q is ¬p, then ∼q is p).

A rule r consists of its antecedent A(r) (written on the left; A(r) may be omitted
if it is the empty set) which is a finite set of literals, an arrow, and its consequent (or
head) C(r) which is a literal. In writing rules we omit set notation for antecedents.
There are three kinds of rules: Strict rules are denoted by A → p and represent
indisputable conclusions (“Emus are birds”); defeasible rules are denoted by A⇒ p
and represent conclusions that can be defeated by contrary evidence (“Birds usually
fly”); and defeaters are denoted by A ; p and represent knowledge which might
prevent the conclusion ¬p from being drawn without directly supporting the con-
clusion p (“Heavy animals may not fly”). Given a set R of rules, we denote the set
of all strict rules in R by Rs, and the set of strict and defeasible rules in R by Rsd.
R[q] denotes the set of rules in R with consequent q.

In the following we use the formalization of [4]. A superiority relation on R is
an acyclic relation > on R (that is, the transitive closure of > is irreflexive), and is
used to represent priority information among rules. A defeasible theory T is a triple
(F,R, >) where F is a finite set of literals (called facts), R a finite set of rules, and
> a superiority relation on R.

A conclusion of T is a tagged literal and can have one of the following four forms:

• +∆q, which is intended to mean that q is definitely provable in T .

• −∆q, which is intended to mean that we have proved that q is not definitely
provable in T .

• +∂q, which is intended to mean that q is defeasibly provable in T .

• −∂q which is intended to mean that we have proved that q is not defeasibly
provable in T .

A derivation (or proof) in T = (F,R, >) is a finite sequence P = (P (1), . . . P (n)) of
tagged literals satisfying the following conditions (P (1..i) denotes the initial part of
the sequence P of length i):

+∆:If P (i + 1) = +∆q then either
q ∈ F or
∃r ∈ Rs[q] ∀a ∈ A(r) : +∆a ∈ P (1..i)

−∆: If P (i + 1) = −∆q then
q 6∈ F and
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∀r ∈ Rs[q] ∃a ∈ A(r) : −∆a ∈ P (1..i)

+∂: If P (i + 1) = +∂q then either
(1) +∆q ∈ P (1..i) or
(2) ∃r ∈ Rsd[q] such that

(2.1) ∀a ∈ A(r) : +∂a ∈ P (1..i) and
(2.2) −∆ ∼q ∈ P (1..i) and
(2.3) ∀s ∈ R[∼q], either

(2.3.1) ∃a ∈ A(s) : −∂a ∈ P (1..i) or
(2.3.2) ∃t ∈ Rsd[q] such that
∀a ∈ A(t) : +∂a ∈ P (1..i) and t > s

−∂: If P (i + 1) = −∂q then
(1) −∆q ∈ P (1..i) and
(2) (2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r) : −∂a ∈ P (1..i) or

(2.2) +∆ ∼q ∈ P (1..i) or
(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀a ∈ A(s) : +∂a ∈ P (1..i) and
(2.3.2) ∀t ∈ Rsd[q] either
∃a ∈ A(t) : −∂a ∈ P (1..i) or t 6> s

The elements of a derivation are called lines of the derivation. We say that a tagged
literal L is provable (or derivable) in T = (F,R, >), denoted T ` L, iff there is a
derivation in T such that L is a line of a proof P .

Even though the definition seems complicated, it follows ideas which are intu-
itively appealing. For an explanation of this definition see [10].

In the remainder of this paper we will only need to consider defeasible rules and
a superiority relation; facts, strict rules and defeaters will not be necessary.

3 LPwNF

In LPwNF [6], a logic program consist of a set of rules of the form p ← q1, . . . , qn,
where p, q1, . . . , qn are literals, and an irreflexive and transitive priority relation >
among rules.

[6] introduced a proof theory and a corresponding argumentation framework.
The main idea of LPwNF is the following: In order to prove a literal q, a type A
derivation must be found which proves q. One part of this derivation is a top-level
proof of q in the sense of logic programming (SLD-resolution). But additionally
every attack on this argument must be counterattacked. Attacks are generated in
type B derivations. For an A derivation to succeed all B derivations must fail.

In general, a rule r in a type B derivation can attack a rule r′ in a type A
derivation if they have complementary heads, and r is not weaker than r′, that
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is, r′ 6> r. On the other hand, a rule r in a type A derivation can attack a rule
r′ in a type B derivation if they have complementary heads, and r > r′. This
reflects the notion of scepticism: it should be easier to attack a positive argument
than to counterattack (i.e. attack the attacker). For example, consider the following
program from [6]:

r1 : fly(X)← bird(X) r5 : bird(X)← penguin(X)
r2 : ¬fly(X)← penguin(X) r6 : bird(tweety)←
r3 : penguin(X)← walkslikepeng(X) r7 : walkslikepeng(tweety)←
r4 : ¬penguin(X)← ¬flatfeet(X) r8 : ¬flatfeet(tweety)←
r2 > r1

r4 > r3

Here it is possible to prove fly(tweety). Firstly there is a standard SLD refutation
(A derivation) of ← fly(tweety) via the rules r1 and r6. Additionally we need to
consider all possible attacks on this refutation. In our case, r1 can be attacked by
r2. Thus we start a B derivation with goal ← ¬fly(tweety) (with first rule r2), and
have to show that this proof fails. This happens because the rule r3 is successfully
counterattacked by r4. There are no other attacks on the original derivation. The
following figure illustrates how the reasoning proceeds.

argument attack counter-attack
(A derivation) (B derivation) (A derivation)

← fly(tweety) ← ¬ fly(tweety)

r1 r2

← bird(tweety) ← penguin(tweety) ← ¬ penguin(tweety)

r6 r3 r4

2 ← walkslikepeng(tweety) ← ¬ flatfeet(tweety)

r7 r8

2 2

Below we give the formal definition. LPwNF can support either credulous or
sceptical reasoning. Since in this paper we are interested in a comparison with
defeasible logic, we will restrict ourselves to the sceptical case (as we have already
done so far in this section). Also, our presentation is slightly simpler than that of
[6]. The reason is that in their paper, Dimopoulos and Kakas showed the soundness
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of their proof theory w.r.t. an argumentation framework, and they had to make the
definition of derivations more complicated to collect the appropriate rules which are
used to build an appropriate argument. This is not our concern here, so we just
focus on the derivation of formulae.

A type A derivation from (G1, r) to Gn, r) is a sequence ((G1, r), (G2, r), . . . , (Gn, r),
where r is a rule, and each Gi has the form ← q, Q, where q is the selected literal
and Q a sequence of literals. For Gi, i ≥ 1, if there is a rule ri such that either

1. i = 1, ri > r, ri resolves with Gi on q, and there is a type B derivation from
({←∼q}, ri) to (∅, ri), or

2. i > 1, ri resolves with Gi on q, and there is a type B derivation from

({←∼q}, ri) to (∅, ri)

then Gi+1 is the resolvent of ri with Gi.

A type B derivation from (F1, r) to (Fn, r) is a sequence (F1, r), (F2, r), . . . , (Fn, r),
where every Fi is of the form Fi = {← q, Q} ∪ F ′

i , q the selected literal, and Fi+1 is
constructed from Fi as follows:

1. For i = 1, F1 must have the form ← q. Let R be the set of rules ri which
resolve with ← q, and which satisfy the condition ri 6< r. Let C be the set of
resolvents of ← q with the rules in R. If [] 6∈ C then F2 = C; otherwise there
is no F2.

2. For i > 1, let R be the set of rules ri which resolve with ← q, Q on q. Let R′

be the subset of R containing all rules ri such that there is no A derivation
from (←∼ q, ri) to ([], ri). Let C be the set of all resolvents of the rules in
R′ with the rule ← q, Q, by resolving on q. If [] 6∈ C then Fi+1 = C ∪ F ′

i ;
otherwise there is no Fi+1.

4 A Comparison of LPwNF and Defeasible Logic

Given a logic program without negation as failure P , let T (P ) be the defeasible
theory containing the same rules as P , written as defeasible rules, and the same
superiority relation. In other words, rules in LPwNF are represented as defeasible
rules in defeasible logic.

First we show that every conclusion provable in LPwNF can be derived in defea-
sible logic. The proof goes by induction on the length of a derivation and is found
in the full version of this paper.

Theorem 4.1 Let q be a literal which can be sceptically proven in the logic program
without negation as failure P , that is, there is a type A derivation from (← q, r) to
([], r) for some rule r. Then T (P ) ` +∂q.
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However the reverse is not true. The reason is that LPwNF argues on the basis
of individual rules, whereas defeasible logic argues on the basis of teams of rules with
the same head. The difference can be illustrated by the following simple example.

r1 : monotreme(X)⇒ mammal(X) monotreme(platypus)
r2 : hasFur(X)⇒ mammal(X) hasFur(platypus)
r3 : laysEggs(X)⇒ ¬mammal(X) laysEggs(platypus)
r4 : hasBill(X)⇒ ¬mammal(X) hasBill(platypus)
r1 > r3

r2 > r4

Intuitively we conclude that platypus is a mammal because for every reason against
this conclusion (r3 and r4) there is a stronger reason for mammal(platypus) (r1 and
r2 respectively). It is easy to see that +∂mammal(platypus) is indeed provable in
defeasible logic: there is a rule in support of mammal(platypus), and every rule for
¬mammal(platypus) is overridden by a rule for mammal(platypus).

On the other hand, the corresponding logic program without negation as failure
is unable to prove mammal(platypus): If we start with r1, trying to build an A
derivation, then we must counter the attack r4 (which is not inferior to r1) used in
a B derivation. But LPwNF does not allow counterattacks on r4 by another rule
with head mammal(platypus), but only by an attack on the body of r4. The latter
is impossible in our case (there is no rule matching ¬hasBill(platypus)). Thus the
attack via r4 succeeds and the proof of mammal(platypus) via r1 fails. Similarly,
the proof of mammal(platypus) via r2 fails, due to an attack via rule r3. Thus
mammal(platypus) cannot be proven.

It is instructive that even if LPwNF is modified to allow counterattacks on the
same literal on which a rule r attacks a type A derivation, still we would not get the
desired conclusion in the example above. With this modification, r1 is attacked by r4,
which is counterattacked by r2, which is attacked by r3, which is counterattacked by
r1, which is attacked by r4 etc. Defeasible logic breaks this cycle by recognising that
any rule attacking the argument can be “trumped” by a superior rule supporting
the argument. This difference illustrates once again the absence of the idea of a
team of rules in LPwNF.

Our analysis so far has shown that defeasible logic is stronger than LPwNF
because it allows attacks to be counterattacked by different rules. But note that a
counterattacking rule needs to be stronger than the attacking rule. Thus it is not
surprising that if the priority relation is empty, both approaches coincide.

Theorem 4.2 Let P be a logic program without negation as failure with empty
priority relation. Then a literal q can be sceptically proven in P iff T (P ) ` +∂q.
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5 Other Approaches

5.1 Courteous Logic Programs

Courteous logic programs [7] share some basic ideas of defeasible logic. In particular,
the approach is logic programming based, implements sceptical reasoning, and is
based on competing teams of rules, and a priority relation. It imposes a total
stratification on the logic program by demanding that the atom dependency graph
be acyclic. This ensures that each stratum contains only rules with head p or ¬p.
An answer set is built gradually, stratum by stratum.

Compared to defeasible logic, courteous logic programs are more specialized in
the following respects: (i) The atom dependency graph of a courteous logic program
must be acyclic. This condition is central in the courteous logic program framework,
but is not necessary in defeasible logic; (ii) Defeasible logic distinguishes between
strict and defeasible conclusions, courteous logic programs do not. Thus defeasible
logic is more fine-grained; (iii) Defeasible logic has the concept of a defeater, cour-
teous logic programs do not. Thus defeasible logic offers a greater flexibility in the
expression of information.

On the other hand, there seems to be a major difference between the two ap-
proaches, in that courteous logic programs may use negation as failure. However,
a courteous logic program with negation as failure C can be modularly translated
into a program C ′ without negation as failure: Every rule

r : L← L1 ∧ . . . ∧ Ln ∧ fail M1 ∧ . . . ∧ fail Mk

can be replaced by the rules:

r : L← L1 ∧ . . . ∧ Ln ∧ pr

pr ←
¬pr ←M1

. . .

¬pr ←Mk

where pr is a new propositional atom. If we restrict attention to the language of C,
the programs C and C ′ have the same answer set.

Thus, without loss of generality we may assume that a courteous logic program
C does not use negation as failure. The corresponding defeasible theory df(C) is
obtained by representing every rule in C ′ by an equivalent defeasible rule, and by
using the same priority relation as C.

Theorem 5.1 Let C be a courteous logic program. A literal q is in the answer set
of C iff df(C) ` +∂q.
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5.2 Priority Logic

Priority logic [16, 17] is a knowledge representation language where a theory consists
of logic programming-like rules, and a priority relation among them. The meaning
of the priority relation is that once a rule r is included in an argument, all rules
inferior to r are automatically blocked from being included in the same argument.
The semantics of priority logic is based on the notion of a stable argument for the
credulous case, and the well-founded argument for the sceptical case.

Priority logic is a general framework with many instantiations (based on so-
called extensibility functions), and supports both credulous and sceptical reasoning.
To allow a fair comparison to defeasible logic, one has to impose the following re-
strictions: (i) We will only consider defeasible rules in the sense of defeasible logic.
That is, we will not distinguish between strict and defeasible rules, and we will
restrict attention to rules in which only propositional literals occur (but not more
general formulae, as in priority logic). Also, there will be no defeaters. (ii) The
priority/superiority relation will only be defined on pairs of rules with complemen-
tary heads. (iii) We will consider the two basic instantiations of priority logic, as
determined by the extensibility functions R1 and R2 (see [16, 17] for details). (iv)
We will compare defeasible logic to the sceptical interpretation of priority logic.

Under these conditions, the difference between defeasible logic and priority logic
is highlighted by the following example:

r1 : quaker ← r5 : footballfan← republican
r2 : republican← r6 : antimilitary ← pacifist
r3 : pacifist← quaker r7 : ¬antimilitary ← footballfan
r4 : ¬pacifist← republican
The priority relation is empty.

(Obviously in defeasible logic we consider r1-r7 to be defeasible rules.) In priority
logic, if we use the extensibility relation R1, then the well-founded argument is the
set of all rules, and therefore inconsistent. On the other hand, in the defeasible
logic version T of the priority logic program, T 6` +∂pacifist, so the approaches are
different.

And if we use the extensibility relation R2, then priority logic does not allow
one to prove ¬antimilitary. But defeasible logic can prove +∂¬antimilitary. The
difference is caused by the fact that defeasible logic does not propagate ambiguity,
as extension-based formalisms like priority logic do (for a discussion of this issue see
[14]).

5.3 Inheritance Networks

Nonmonotonic inheritance networks [13, 9] were an early nonmonotonic reasoning
approach which had powerful implementations, even though they lacked declarativ-
ity. Moreover they are based on the use of rules and an implicit notion of priority
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among rules. In [3] it was shown that inheritance networks as defined in [8] can be
represented in defeasible logic. We outline the translation below.

A nonmonotonic inheritance network consists of a set of objects, a set of prop-
erties, and a set of arcs which is acyclic. Below is a list of the possible kinds of arcs,
where a is an object, and p and q are properties (we use a variation of syntax to be
consistent with this paper):

a⇒ p, meaning that a has the property p.

a 6⇒ p, meaning that a does not have property p.

p⇒ q, meaning that an object with property p typically has property q.

p 6⇒ q, meaning that an object with property p typically does not have
property q.

A nonmonotonic inheritance network N is naturally translated into a defeasible
theory T (N):

For every arc a⇒ p in N include the fact p(a) in T (N).

For every a 6⇒ p in N include the fact ¬p(a) in T (N).

For every path a ⇒ . . . ⇒ p ⇒ q in N include the rule p(a) ⇒ q(a) in
T (N).

For every path a⇒ . . .⇒ p 6⇒ q in N include the rule p(a)⇒ ¬q(a) in
T (N).

We have omitted the definition of the superiority relation which simulates specificity
in the inheritance networks of [8]. The complicated definition is found in [3]. That
paper also proposes a way of compiling specificity into the definition of a derivation,
which can be used to make the translation of a nonmonotonic inheritance network
into a defeasible theory modular.

Result 5.2 Let N be a nonmonotonic inheritance network. Then we may construct
a defeasible theory T (N), such that for every literal q, q is supported by N iff T (N) `
+∂q.

6 Conclusion

We have looked at the relationship between four logic programming-based for-
malisms that employ a priority relation among rules and take a sceptical approach
to inference. Three, defeasible logic, LPwNF and courteous logic programs, be-
long to the same “school” of conservative reasoning in the classification of [15],
while priority logic takes a fundamentally different approach, which is evident in
its propagation of ambiguity. In addition, we showed that a class of nonmonotonic
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inheritance networks can be simulated by defeasible logic, so it belongs, too, to the
school of conservative reasoning, even though it is not a logical formalism.

Of the four formalisms in the conservative reasoning school, defeasible logic is
the most powerful. It is able to draw more conclusions (from the same rules) than
LPwNF can, principally because it argues on the basis of teams of rules. Courteous
logic programs also employ teams of rules, but the approach is severely restricted
in that the atom dependency graph is required to be acyclic. In addition, of course,
defeasible logic makes a distinction between definite knowledge (obtained by facts
and strict rules) and defeasible knowledge, and admits the use of defeaters.

The results of this paper indicate that defeasible logic deserves more attention.
In other papers [2, 10] we have studied the logic as a formal system, including
representation results, properties of the inference relation, and semantics.
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