
63

Towards the Application of Association Rules
for Defeasible Rule Discovery
Guido Governatori

Cooperative Information Systems
Research Centre,

Queensland University of Technology,
Brisbane, Queensland, Australia

g.governatori@qut.edu.au

Andrew Stranieri
Donald Berman Laboratory for

Information Technology and Law,
La Trobe University,

Bundoora, Victoria, Australia
stranier@cs.latrobe.edu.au

Abstract. In this paper we investigate the feasibility of Knowledge Discovery from
Databases (KDD) in order to facilitate the discovery of defeasible rules that represent
the ratio decidendi underpinning legal decision making. Moreover we will argue in
favour of Defeasible Logic as an appropriate formal system in which the extracted
principles should be encoded.

1 Introduction

One of the main and most controversial issues in the legal domain is the identification of the
ratio decidendi. In other words, given a collection of similar cases we want to determine the
principles (rules) leading to the adjudication of the cases. On the other hand the defeasibil-
ity of normative reasoning is a very well established phenomenon, so the rules (principles)
extracted from the cases should be defeasible and we have to identify the appropriate non-
monotonic reasoning mechanism.

The central aim of this paper is to demonstrate that the field of knowledge discovery from
databases (KDD) can be applied to facilitate the discovery of defeasible rules that represent
the ratio decidendi underpinning legal decision making. According to [13] KDD techniques
can be grouped into four categories;

• Classification. The aim of classification techniques is to group data into predefined cate-
gories such as ‘pro-plaintiff’ or ‘pro-defendant’. KDD classification techniques have been
applied to law by [33], [32], [35], [20] and [5].

• Clustering. The aim of clustering techniques is to analyze data in order to group the data
meaningfully. Clustering techniques have been applied to the law by [29], [27], [19], [31],
[8], [34], [24] and [10].

• Series Analysis. The aim of series analysis to discover sequences within the data. Very
few studies have been performed that analyze sequences of data in law. The study by [28]
is an exception.
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• Association. The objective of association techniques is to discover ways in which data
elements are associated with other data elements. For example, an association between
the gender of litigants and the outcome of their cases may surprise analysts and stimulate
hypotheses to explain the phenomena. Association techniques have not been applied to
law to the same extent as classification and clustering techniques. [30] have illustrated
that association rule generators can highlight interesting associations in a small dataset in
family law. In that study, the Apriori algorithm advanced by [1] was applied to suggest
hypotheses for future investigation. The present study differs in that it applies association
rules generated directly from data to facilitate the discovery of defeasible rules.

One of the main applications of the KDD process is the discovery of rules (principles)
from a set of relevant cases. It is indeed customary in Common Law to examine precedents in
order to extract the ratio decidendi, and very often the principles leading to the adjudication
can be expressed as a set of defeasible rules. However, it is seldom the case that precedents
consist only of facts; more often the facts are supplemented by some principles. In some cases
the explicitly listed principles are not enough to justify the conclusions. Thus the proposed
methodology can be used to identify hidden principles.

In this study we represent legal reasoning using defeasible logic. First of all Defeasible
Logic has been developed by Nute [25, 26] over several years with a particular concern about
computational efficiency (indeed, its efficiency is linear cf. [22]) and ease of implementation
(nowadays several implementations exist [9, 23] and some of them can deal with theories
consisting of over 100,000 propositional rules [23]). In [3] it was shown that Defeasible
logic is flexible enough to deal with several intuitions of non-monotonic reasoning, and it
has been applied to legal reasoning [4] and legal negotiation [16]. Moreover various variants
of Defeasible Logic have been characterised in terms of argumentation semantics [17, 18];
thus it is possible to establish correspondences with other non-monotonic systems for legal
reasoning.

Defeasible rules are sourced from regulations, statutes, precedents and expert heuristics.
This is a very manually intensive task that involves skilled knowledge engineers and experts.
As a consequence, the knowledge acquisition phase is typically extensive. The objective of
the present study is to apply KDD so as to automatically suggest plausible defeasible rules.
This will facilitate knowledge engineer-expert interaction and lead to the development of
improved knowledge bases in less time.

Often, in the knowledge acquisition phase, the focus is not on the discovery of rules. The
principles are known, but we have to identify the most appropriate rules for the case at hand,
especially when the rules are conflicting. In such cases we have to establish a preference
order among available rules. KDD techniques explored in this study can help to identify rule
preferences.

Another benefit in the application of KDD to facilitate the generation of defeasible rules
involves the validation of decision making practice against explicitly given normative codes.
Both precedents and statutes are frequently subject to opposite interpretations; thus a method
to determine rules from cases can be used to see whether an interpretation corresponds to
actual legal practice. Finally the same approach can be applied to the measure the degree of
legal efficacy.
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[21] describes the application of KDD in the form of inductive logic programming (ILP)
to learning in two settings, predictive and descriptive. The aim of an ILP approach for pre-
dictive discovery is to induce a theory that explains positive and negative examples and back-
ground knowledge. This has been applied to learning default rules by [12]. The descriptive
setting usually includes only positive examples and relaxes the strict notion of explanation.
This enables ILP to be applied to describe patterns in a dataset that meet criteria such as as-
sociativity by enhancing algorithms for generating association rules [11]. Although ILP has
been applied to discover default rules and also to enhance the discovery of association rules,
ILP is not used in this study. Instead, association rules that are discovered using conventional
algorithms are applied to help identify plausible groups of defeasible rules.

The KDD technique known as Association Rules is described in the next section of this
paper. Following that, Defeasible Logic is described. In the subsequent section the application
of association rules to facilitate the identification of useful defeasible rules will be discussed
with examples from a hypothetical data set constructed for the purpose.

2 Association Rules

An association rule identifies a link between two or more attributes in a dataset. A famous, yet
unsubstantiated example of an association rule that is generated from a supermarket database
of purchases is:

Nappies → Beer (Support = 30%, Confidence = 75%)

The support represents the number of times Nappies and Beer are purchased together as a
proportion of the total transactions. The support for Nappies and Beer is the proportion of
itemsets (Nappies, Beer) in the dataset, i.e., frequency(Nappies ,Beer)/n where an itemset
is a group of items such as (Nappies, Beer) within a transaction.

The confidence is interpreted as the percentage of transactions where Beer is purchased
given that Nappies are purchased. For example, of the 10 transactions four involved Nappies
and, of those 3 also purchased Beer then the confidence is 75%. The confidence of a rule
A → B is the conditional probability that a transaction contains B given that it contains A
and is calculated asSupport(A ∪B)/Support(A)

An association rule is drawn directly from data. It is not a generalization from the data but
merely identifies an association between the purchase of features. As such, association rules
are typically used to identify patterns in data-sets that can be used to suggest hypotheses.

Difficulties in the generation of association rules in large datasets involve the combina-
torial explosion in the number of rules to be assessed. For example, if a database has only 2
boolean attributesA, B then the support of 6 itemsets representing the following rules need
to be calculated:

A →; A → B; A → A; B →; B → A; B → B;

If the the database has 3 boolean attributes the support of 25 itemsets need to be calculated. In
a real world database containing many multi-valued attributes, and large numbers of records,
the support calculations become extremely demanding of memory and processor resources.

[1] first described the Apriori algorithm for discovering association rules from large
databases. This algorithm reduced the computational complexity by avoiding the exploration
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of all rules. This was achieved by inviting the user to specify threshold confidence and sup-
port values. If a ruleA, B → D did not meet the threshold values then the Apriori algorithm
avoids an analysis of the ruleA, B, C → D and all other rules that haveA, B in the an-
tecedent.

The application of association rules to facilitate the discovery of defeasible rules advanced
in this paper, relies on the calculation of a support for every itemset in a database. For the trials
performed in this study, the Apriori implementation by Christian Borgelt (http://www.cs.uni-
magdeburg.de/∼borgelt) was used with the support and confidence thresholds set to 0. This
did not present a resource problem because the data set was small. However, for the method
advanced here to scale to large datasets an approach that can generate the support of all
itemsets in real time must be adopted. Fortunately, [15] has recently advanced brute force
algorithms that are tractable in large datasets.

3 Defeasible Logic

In this section we describe Defeasible Logic formally following the presentation of [6]. De-
feasible logic is a sceptical formalism, meaning that it does not support contradictory con-
clusions. Instead it seeks to resolve differences. In cases where there is some support for
concludingA but also support for concludingnot A (¬A), the logic does not conclude either
of them (thus the name “sceptical”). If the support forA has priority over the support for¬A
thenA would be concluded. Sceptical reasoning, in general, is appropriate for the study of
normative reasoning.

A set of norms (rules) will be represented as a defeasible theory. A defeasible theory, i.e.,
a knowledge base in Defeasible Logic, consists of five different kinds of knowledge: facts,
strict rules, defeasible rules, defeaters, and a superiority relation defined over the rules.

Factsdenote simple pieces of information that are deemed to be true regardless of other
knowledge items. A typical fact is that John is a minor:minor(John).

Briefly, strict and defeasible rules are represented, respectively, by expressions of the
form A1, . . . , An → B andA1, . . . , An ⇒ B, whereA1, . . . , An is a possibly empty set of
prerequisites andB is the conclusion of the rule.

Strict rulesare rules in the classical sense: whenever the premises of a rule are given,
we are allowed to apply the rule and get a conclusion. When the premises are indisputable
(e.g., facts) then so is the conclusion. An example of a strict rule is “every minor is a person”.
Written formally:minor(X) → person(X).

Defeasible rulesare rules that can be defeated by contrary evidence. An example of such
a rule is “every person has the capacity to perform legal acts to the extent that the law does
not provide otherwise”; written formally:person(X) ⇒ hasLegalCapacity(X).

The idea is that if we know that someone is a person, then we may conclude that he/she
has legal capacity,unless there is other evidence suggesting that he/she has not.

Defeatersare a special kind of rules. They are used to prevent conclusions not to support
them. For example:WeakEvidence  ¬guilty This rule states that if pieces of evidence are
assessed as weak, then they can prevent the derivation of a “guilty” verdict; on the other hand
they cannot be used to support a “not guilty” conclusion.

Thesuperiority relationamong rules is used to define priorities among rules, that is, where
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one rule may override the conclusion of another rule. For example, given the defeasible rules

r : person(X) ⇒ hasLegalCapacity(X)
r′ : minor(X) ⇒ ¬hasLegalCapacity(X)

which contradict one another, no conclusive decision can be made about whether a minor has
legal capacity. But if we introduce a superiority relation> with r′ > r, then we can indeed
conclude that the minor does not have legal capacity.

It turns out that we only need to define the superiority relation over rules with contradic-
tory conclusions. Also notice that a cycle in the superiority relation is counter-intuitive from
the knowledge representation perspective. In the above example, it makes no sense to have
both r > r′ andr′ > r. Consequently, the defeasible logic we discuss requires an acyclic
superiority relation.

Now we present formally defeasible logics. Arule r consists of itsantecedents(or body)
A(r) which is a finite set of literals, an arrow, and itsconsequent(or head) C(r) which is
a literal. There are three kinds of arrows,→, ⇒ and which correspond, respectively, to
strict rules, defeasible rules and defeaters. Where the body of a rule is empty or consists of
one formula only, set notation may be omitted in examples.

Given a setR of rules, we denote the set of all strict rules inR by Rs, the set of strict and
defeasible rules inR by Rsd, the set of defeasible rules inR by Rd, and the set of defeaters
in R by Rdft. R[q] denotes the set of rules inR with consequentq.

A defeasible theoryD is a structureD = (F, R, >) whereF is a finite set of facts,R is a
finite set of rules,> is a binary relation overR.

A conclusionof D is a tagged literal, where a tag is either∂ or ∆, that may have positive
or negative polarity.

+∆q which is intended to mean thatq is definitely provable inD (i.e., using only strict rules).

−∆q which is intended to mean that we have proved thatq is not definitely provable inD.

+∂q which is intended to mean thatq is defeasibly provable inD.

−∂q which is intended to mean that we have proved thatq is not defeasibly provable inD.

Basically a conclusionB is supported if there is a rule whose conclusion isB, the prereq-
uisites are either supported or given in the case at hand, and a stronger rule whose conclusion
is not B has prerequisites that fail to be supported.

Provability is based on the concept of aderivation(or proof) in D = R. A derivation is
a finite sequenceP = (P (1), . . . , P (n)) of tagged literals satisfying four conditions (which
correspond to inference rules for each of the four kinds of conclusion). In the following
P (1..i) denotes the initial part of the sequenceP of lengthi.

+∆:
If P (i + 1) = +∆q then

∃r ∈ Rs[q]
∀a ∈ A(r) : +∆a ∈ P (1..i)

−∆:
If P (i + 1) = −∆q then

∀r ∈ Rs[q]
∃a ∈ A(r) : −∆a ∈ P (1..i)
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The definition of∆ describes just forward chaining of strict rules. For a literalq to be
definitely provable we need to find a strict rule with headq, of which all antecedents have
been definitely proved previously. And to establish thatq cannot be proven definitely we must
establish that for every strict rule with headq there is at least one antecedent which has been
shown to be non-provable.

Now we turn to the more complex case of defeasible provability. Before giving its formal
definition we provide the idea behind such a notion. A defeasible proof of a literalp consists
of three phases. In the first phase either a strict or defeasible rule is put forth in order to support
a conclusionp; then we consider an attack on this conclusion using the rules for its negation
¬p. The attack fails if each rule for¬p is either discarded (it is possible to prove that part
of the antecedent is not defeasibly provable) or if we can provide a stronger counterattack,
that is, if there is an applicable strict or defeasible rule stronger than the rule attackingp. It is
worth noting that defeaters cannot be used in the last phase.

+∂:
If P (i + 1) = +∂q then either
+∆q ∈ P (1..i) or

(1) ∃r ∈ Rsd[q]∀a ∈ A(r) : +∂a ∈ P (1..i)
and

(2)−∆∼q ∈ P (1..i) and
(3) ∀s ∈ R[∼q] either

(a)∃a ∈ A(s) : −∂a ∈ P (1..i) or
(b)∃t ∈ Rsd[q] such that
∀a ∈ A(t) : +∂a ∈ P (1..i) andt > s.

−∂:
If P (i + 1) = −∂q then
−∆q ∈ P (1..i) and

(1) ∀r ∈ Rsd[q] ∃a ∈ A(r) : −∂a ∈ P (1..i)
or

(2) +∆∼q ∈ P (1..i) or
(3) ∃s ∈ R[∼q] such that

(a)∀a ∈ A(s) : +∂a ∈ P (1..i) and
(b)∀t ∈ Rsd[q] either
∃a ∈ A(t) : −∂a ∈ P (1..i) or t 6> s.

Let us work through the condition for+∂, an analogous explanation holds for−∂. To show
that q is provable defeasibly we have two choices: (1) We show thatq is already definitely
provable; or (2) we need to argue using the defeasible part ofD as well. In particular, we
require that there must be a strict or defeasible rule with headq which can be applied (2.1).
But now we need to consider possible “attacks”, that is, reasoning chains in support of a
complementary ofq. To be more specific: to proveq defeasibly we must show that every
complementary literal is not definitely provable (2.2). Also (2.3) we must consider the set of
all rules for∼q which are not known to be inapplicable (note that here we consider defeaters,
too, whereas they could not be used to support the conclusionq; this is in line with the
motivation of defeaters. Essentially each such rules attacks the conclusionq. For q to be
provable, each such rules must be counterattacked by a rulet with headq with the following
properties: (i)t must be applicable at this point, and (ii)t must be stronger thans. Thus each
attack on the conclusionq must be counterattacked by a stronger rule.

It is worth noting that defeaters can be simulated in term of the other elements of Defea-
sible Logic [2], thus we can consider theories without defeaters.

To explain the mechanism of defeasible derivations –showing at the same time the ap-
propriateness of Defeasible Logic for normative reasoning– we consider rule 162 of the Aus-
tralian Civil Aviation Regulations 1988: “When two aircraft are on converging headings at
approximately the same height, the aircraft that has the other on its right shall give way,
except that (a) power-driven heavier-than-air aircraft shall give way to airships, gliders and
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balloons;. . .” This norm can be represented in defeasible logic as follows:

r1 : ¬rightOfWay(Y ,X ) ⇒ rightOfWay(X ,Y )
r2 : onTheRightOf (X ,Y ) ⇒ rightOfWay(X ,Y )

The first rule states that, given two aircraft, if one of the aircraft does not have right of way
then the other aircraft does, while the second states that the aircraftX has right of way over
the aircraftY if X is on the right ofY ;

r3 : powerDriven(X ),¬powerDriven(Y ) ⇒ ¬rightOfWay(X ,Y )

The idea of the above rules is that a power-driven aircraft does not have right of way over a
non-power-driven one.

r4 : balloon(X ) → ¬powerDriven(X )
r5 : glider(X ) → ¬powerDriven(X )

r4 andr5 classify balloons and gliders as non-power-driven aircraft and

r6 : ⇒ powerDriven(X )

assumes aircraft to be power-driven unless further information is given. The superiority rela-
tion is determined as follows:r3 > r2 becauser3 is an exception tor2. By specificityr4 > r6

andr5 > r6. Moreoverr1 > r3.
Let us examine the following cases: 1) two aircraft of the same type (power-driven, non-

power-driven) are converging 2) a power-driven aircraft and a non-power-driven aircraft are
converging. In the first case we can applyr2 since the prerequisites ofr3 do not hold and we
cannot prove the antecedent ofr1. In the second case we can applyr3 given that both of the
two prerequisites hold, and after the conclusion ofr3 has been established we can applyr1 to
derive that the non-power-driven aircraft has the right of way over the power-drive one.

It is worth noting that in this example all the rules have been drawn from the same nor-
mative code, and the superiority relation is explicitly given. However, the first is not a serious
limitation in so far as it is possible to merge several codes in the same defeasible theory;
for the second [7] proposed a variant of Defeasible Logic where the superiority relation is
computed dynamically according to some principles encoded as defeasible rules.

4 Identifying Defeasible Rule Sets using Association Rules

Association rules automatically generated from a dataset can facilitate the discovery of strict
rules, defeasible rules and rule preferences. We must assume that the data set is a high quality
set in that there are no missing values and all values present are correctly recorded (i.e., no
noise). The extent to which these assumptions can be violated is left to future research.

In order to illustrate the application of association rules to the discovery of defeasible
rule, we adopt a hypothetical sample dataset that relates to the aircraft example illustrated in
the previous section. Table 1 represents three records from 36 situations that were regarded
as plausible recordings of air traffic data. For example, Case 1 illustrates a situation in which
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Case Right of way Y power driven X power driven position x Type y Type
1 rightOfWayX yPowerDriven xPowerDriven X on right Xairship Yairship
2 rightOfWayY yPowerDriven xPowerDriven Y on right Xairship Yairship
3 rightOfWayX yPowerDriven -xPowerDriven X on right Xglider Yairship

Table 1: Sample data for aircraft data set

Itemset Attribute Attribute Attribute Support
1. X on right 0.49
2. X on right ¬ yPowerDriven 0.22
3. rightOfWayX X on right 0.405
4. rightOfWayX X on right ¬ yPowerDriven 0.135
5. ¬ yPowerDriven X on right rightOfWayX 0

Table 2: Sample itemsets for aircraft data set

aircraftX was granted right of way overY . In that situation bothX andY were power driven
andX was on the right ofY .

As discussed above, association rules are typically deployed to suggest hypotheses with
datasets so large that the generation of all possible rules is not normally feasible in real time.
Instead, a threshold level of support and confidence are set by the user, so that only those rules
that exceed the thresholds are sought. However, for the purposes of this study, the confidence
and support thresholds are set to 0 in order to generate all itemsets.

Table 2 illustrates a sample of the 1057 itemsets with up to four antecedent and one
consequent attribute (rightOfWay) generated from the aircraft dataset. Itemset 1 in that table
indicates that 49% of records in the set included the attribute Xon right; Itemset 4 reflects
that 13.5% of records contains the itemset triplet (rightOfWayX, Xon right, -yPowerDriven).

Recall that the confidence of a rule is the conditional probability that the consequent will
occur given the antecedent has been observed. The confidence of the ruleA ⇒ B is

Support(A, B)

Support(A).

Table 3 lists two rules along with their confidence, support and a measure called interest.
According to [14] the “interestingness” of a rule refers to the degree to which a discovered

pattern is of interest to the user. The interest metric aims to highlight those rules that are more
interesting than others. Various metrics have been advanced but a conventional metric for the
calculation of interest for the ruleA → B is the

Support(A, B)

Support(A) ∗ Support(B)
.

Although the mere generation of association rules may arguably be a useful tool for the
engagement of a domain expert in the process of eliciting defeasible rules, the sheer number
of rules generated mitigates against this. A closer analysis of the itemsets and rules may go
some way toward facilitating the automatic generation of strict and defeasible rules from
association rules.
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Rule Rule Confidence Support Interest
ar1. X on right ⇒ rightOfWayX 0.68 0.405 1.15
ar2. X on right,−yPowerDriven ⇒ ¬rightOfWayX 0.62 0.135 1.63

Table 3: Sample rules from aircraft data set

For the association ruleA → B generated from a non-noisy data-set, to be interpreted
as a Strict rule in defeasible reasoning, we assume the confidence of the rule to be 100%.
Every timeA is observedB is also observed. For example, itemsets(A,¬B), (A, C,¬B),
are not present in the data-set. We assume the closed world assumption and conclude that
these itemsets do not exist because their presence could represent exceptions to theA → B
rule and render it defeasible.

For the association ruleA → B generated from a non-noisy data-set, to be interpreted as
a defeasible rule the confidence of the ruleA → B is greater than 0 but less than 100%. On
some occasions thatA is also observed,B is observed and on others¬B is observed.

There are typically many rules with a confidence between 0 and 100 so additional effort is
required in order to identify rules that may be considered meaningful in a defeasible rule set.
To identify plausible defeasible rules we look for groups of rules that represent the following
situations: Simple Exceptions; Separate Vs. Aggregate rules; General Vs. Specific rules; and
Apparent irrelevance.

A simple exception occurs when a rule is an exception to a base rule that results in the
opposite conclusion. Consider two defeasible rules,ar3 : A ⇒ P andar4 : A, B ⇒ ¬P .
ar4 is an exception toar3 becauseA is associated withP unless in the presence ofB,
it is associated with¬P . The necessary conditions for this situation to be identified using
association rules are:

• the support for the itemsets(A, P ), and(A, B,¬P ) is greater than 0. This indicates that
there the rulesA ⇒ P andA, B ⇒ ¬P are represented in the dataset

• the support for the itemset(A, B, P ) should be 0. This confirms thatA, in the presence
of B never leads toP .

The rules illustrated in Table 3 meet the criteria of a simple exception group. The rulear1 in
that table is taken to be the base rule andar2 is the exception.

If these conditions are met we identify the base rule and determine a rule preference using
the “interestingness” metric where the exception rule has a higher preference than the rule.
In the example abovear1 is the base rule so the preference relation isar1 < ar2.

A variant of simple exception, refers to the situation where there is a clear defeasible rule
say,ar5 : A ⇒ P and many different exceptions such asar6 : A, B ⇒ ¬P , ar7 : A, C ⇒
¬P , ar8 : A, D ⇒ ¬P . Each single exception has a very limited distribution. The necessary
conditions above still apply to identify these rules as a group with a base rule and several
exceptions.

The procedure for identifying rule pairs (or groups) that meet simple exception criteria
is currently performed using a brute force approach on the small hypothetical dataset. This
procedure is cumbersome in that any defeasible rule (i.e., those that correspond to association



72 G. Governatori and A. Stranieri

rules with a confidence between 0 and 100) could be a base rule in an exception group.
Therefore, rules that may be exceptions to the base candidate must be sought according to
the criteria above. This task explodes combinatorially with large numbers of candidate rules.
Future research aims to develop more effective mechanisms than brute force that can be
applied to large datasets in real time.

Another situation that association rules can help to automatically identify involves sepa-
rate and aggregate rules. In this situationA andB are, independently, sufficient reasons for
P , but, very often they occur simultaneously. In this case we want to conclude that there are
two rules forP , i.e.,A ⇒ P andB ⇒ P instead ofA, B ⇒ P . We identify this situation
from the support of itemsets as follows:

Support(A, P ) ∗ Support(B, P )

Support(A, B, P )
> t

wheret is the aggregate threshold defined by an user.
The next situation addressed involves general vs specific rules. Consider two defeasible

rules,ar8 : A ⇒ P andar9 : A, B ⇒ P . Rule ar9 is more specific thanar8 because
it applies to fewer cases thanar8 does. However, in some contexts the more specific (and
complex) defeasible rule is preferred and in others the more general (and simpler) rule is
preferred. Here again, we include a user defined minimum threshold support for the general
rule. If the minimum support is reached then the rule with the highest confidence is selected.
For example, the rulear10 : X on right ⇒ rightOfWayX has a support of 40.5% and
confidence 83% the rulear11 : X on right and¬yPowerDriven ⇒ rightOfWayX has a
support of 13.5% and confidence 62%. If the minimum support for a general rule is set by
the user to less than 40% thenar10 is preferred because the confidence ofar10 is greater
than that forar11. However, if the minimum support is greater than 40.5% the general rule
does not reach the minimum support for general rules andar11 is selected. A preference for
a more general rule over a specific rule underpins the situation we call Apparent irrelevance.

Let us suppose thatA alone is not a sufficient reason forD, but together withB it is: the
general rulear12 : A ⇒ D does not prevail over the more specific rulear13 : A, B ⇒ D.
At the same timeC alone is not enough to conclude¬D, but ¬D follows from B andC
together:ar13 : C, B ⇒ ¬D prevails overar14 : C ⇒ ¬D.

The use of association rules to facilitate the discovery of defeasible rules is limited in a
number of ways. If the antecedent and consequent are not in the same record in the dataset
then no association rule corresponding to the desired defeasible rule can be found. For exam-
pler1 above cannot be discovered by association rules because the antecedent and consequent
are not separate attributes in the sample dataset:

r1 : ¬rightOfWay(Y ,X ) ⇒ rightOfWay(X ,Y )
r2 : onTheRightOf (X ,Y ) ⇒ rightOfWay(X ,Y )

r3 : powerDriven(X ),¬powerDriven(Y ) ⇒ ¬rightOfWay(X ,Y )

r4 : balloon(X ) → ¬powerDriven(X )
r5 : glider(X ) → ¬powerDriven(X )
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The defeasible rulesr2, r3, r4, r5 and r6 were discovered with confidence levels of 68%,
35%, 100%, 100% and 32%. The rulesr4 andr5 were discovered as strict rules because their
confidence is 100%.

Preference relations identified as appropriate for the aircraft defeasible rules do not seem
to be readily derived in a general way from confidence, interest or support measures. This
illustrates a further limitation. In addition, the application of any KDD technique including
association rules is limited by the coverage of the dataset. Currently, datasets that represent
key attributes of the ratio decidendi of human decision making do not readily exist in the legal
domain. However, as case management systems become prevalent in Courts across many
jurisdictions this is likely to change.

5 Conclusion

In this paper we have noted that although considerable research has been done in the appli-
cation of Knowledge discovery from database (KDD) techniques to law, the majority of at-
tempts have focused on classification and clustering KDD studies. Few applications of KDD
have applied association rules to discover potentially interesting patterns from a dataset.

Metrics of confidence, support and interest that association rule algorithms calculate are
suited to the task of discovering patterns from a dataset that suggest appropriate rules for
the Defeasible Logic formalism. This non-monotonic logic has been shown to have elegant
properties that make it very suitable for practical application in modelling legal reasoning.

Strict rules can be discovered by a direct application of the confidence metric. Defea-
sible rules can similarly be identified. However, typically too many plausible rules emerge.
The number of candidate rules can be reduced by applying support, confidence and interest
metrics to the discovery of known types of Defeasible rule groupings. The ones explored in
the present study include simple exceptions, separate Vs. aggregate rules, general Vs. spe-
cific rules and apparent irrelevance. Future research is aimed at identifying additional rule
groupings.

Future research is also aimed at the development of a search algorithm that can scan a set
of candidate Defeasible rules more effectively than the brute force method adopted in this toy
dataset. Once this is achieved a more rigorous empirical trial can be performed to evaluate
the approach advanced here.
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