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Modeling Dissociation-Vibration Coupling with the
Macroscopic Chemistry Method

Charles R. Lilley
�

and Michael N. Macrossan
�

�
Centre for Hypersonics, School of Engineering, The University of Queensland, Brisbane, 4072, Australia

Abstract. We test the recently developed macroscopic approach to modeling chemistry in DSMC, by simulating the flow
of rarefied dissociating nitrogen over a blunt cylinder. In this macroscopic method, chemical reactions are decoupled from
the collision routine. Molecules are chosen to undergo dissociation at each time step, after the collisions are calculated. The
required number of reaction events is calculated from macroscopic reaction rate expressions with macroscopic information
taken from the time-averaged cell properties. One advantage of this method is that “state-of-the-art” macroscopic information
about reaction rates can be used directly in DSMC in the same way as in continuum codes. Hybrid Navier-Stokes/DSMC
codes can therefore easily use the same chemical models in both rarefied and continuum flow regions. Here we show that the
macroscopic method can capture dissociation-vibration (DV) coupling, which is an important effect in vibrationally cold blunt
body flows because it results in increased surface heat fluxes. We use the macroscopic method with Park’s two-temperature
rate model, often used in continuum studies, to capture DV coupling in DSMC. This produces a flowfield in reasonable
agreement with that calculated using the conventional collision-based threshold line dissociation model.

INTRODUCTION

In the hypersonic flow of rarefied gas over a blunt body, gas molecules generally have insufficient collisions to
achieve local equilibrium conditions before being swept downstream. The shock layer is characterized by different
kinetic temperatures of translation Ttr, rotation Trot and vibration Tvib. Ttr rises rapidly through the shock layer, and
is closely followed by Trot, because translation-rotation energy exchange requires relatively few collisions. Many
collisions are needed to transfer energy to the vibrational mode, so Tvib is typically much lower than both Ttr and
Trot. Collision-induced dissociation of diatomic gas molecules occurs preferentially from higher vibrational energy
levels, a phenomenon we call dissociation-vibration (DV) coupling. In vibrationally cold flows, DV coupling reduces
the dissociation rate relative to that expected for a gas at thermal equilibrium. For blunt bodies in rarefied hypersonic
flow, the delay in dissociation increases the heat transfer rate Q̇ relative to that for a flow without DV coupling.

Rarefied gas flows are usually simulated with the direct simulation Monte Carlo (DSMC) method [1]. Many models
have been proposed to simulate chemical reactions with the DSMC method. In most, a reaction probability PR is
calculated at the time of collision. A reaction is performed if PR

� R f , where R f is a uniformly distributed random
fraction between 0 and 1. Here such collision-based chemistry procedures are called conventional chemistry models.
Several conventional models have been developed specifically to capture DV coupling, as summarized by Wadsworth
and Wysong [2] and Wysong et al. [3].

Recently, Lilley and Macrossan [4] proposed the macroscopic chemistry method for DSMC calculations, in which
collisions and chemical reactions are decoupled. Unlike conventional collision-based chemistry models, reactions are
performed after the collision routine. As an example of the versatility of the macroscopic method, we show that it
can capture the expected effects of DV coupling, by using Park’s two-temperature rate model [5]. We have used the
hypersonic flow of rarefied dissociating nitrogen over an axisymmetric blunt cylinder as a test case. To demonstrate
more fully that the macroscopic method can accurately capture DV coupling, we compare it to the conventional
collision-based threshold line dissociation (TLD) model which has been adapted for the DSMC method by Boyd [6].
We calculated the equilibrium dissociation rates realized by the TLD model with a Monte Carlo sampling procedure,
and then used these rates in the macroscopic method with Park’s two-temperature model to capture DV coupling. We
show that the resulting flowfield is similar to that calculated with the TLD model.
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THE MACROSCOPIC CHEMISTRY METHOD

The fundamental premise of the macroscopic method [4] is that chemical reactions are infrequent events, and provided
that the macroscopic reaction rate is maintained, the details of reaction events have a minimal influence on the flowfield
properties of engineering interest. The number of reaction events performed in each cell is based on the number
required to maintain the macroscopic reaction rate. Lilley and Macrossan [4] developed the macroscopic method for a
symmetrical diatomic gas, in which dissociation proceeds via the two reactions

Reaction 1: A2
� A � A � A � A and Reaction 2: A2

� A2 � A � A � A2 �
which have the respective rates k �1 and k �2 . The number of reaction events required in a cell during a time step ∆t is

∆NA2

�	��
 N̄A � 2 � N̄A2  α̇∆t �
where N̄i is the time-averaged number of species i particles in the cell. Here, α̇ is calculated using

α̇ � ρ̄ � 1 � ᾱ ��� k �1 ᾱ � k �2 � 1 � ᾱ � � 2 � ��� N �
where � N is the molar mass of atomic nitrogen in kg/kmol. This expression considers dissociation events only and
ignores recombination. ᾱ is calculated using ᾱ � N̄A ��� N̄A

� 2N̄A2 � . Here k �1 and k �2 are calculated from local kinetic
temperatures, but it is important to note that they can be any function of the local macroscopic conditions.

For each dissociation event, a single diatom is selected from the cell, and is dissociated into two atoms. The internal
energy of the dissociating diatom is manifested as the relative translational energy of the atoms. Each dissociation
event requires an amount of energy εd � kΘd where Θd is the characteristic dissociation temperature. To account for
this dissociation energy, the thermal velocities of all particles in the cell are adjusted. This involves calculating a factor

Ψ ��� 1 � ∆E � Etr � 1 � 2
where ∆E � � ∆NA2

εd and Etr is the total translational thermal energy in the cell. The j velocity components v j of
each particle are then adjusted according to v � j � Ψv j

� v̄ j � 1 � Ψ � .
A selection rule must be applied to select dissociating diatoms. Here we consider two possible options. Lilley and

Macrossan [4] selected dissociating diatoms with the probability Ps � εint � � εint � max, where the internal energy εint �
εrot

� εvib is the sum of rotational and vibrational energies for a diatom, and � εint � max is the maximum instantaneous
internal energy in the cell. This selection method was used to approximate the selection of dissociating diatoms in the
conventional total collision energy (TCE) chemistry model [7]. Here we call this method A. This selection method is
applied to randomly selected diatoms, which are then dissociated if Ps

� R f . This is an acceptance-rejection procedure
that continues until the required number of diatoms have been dissociated for the cell.

For diatoms with DV coupling, the dissociation probability should depend primarily on the vibrational energy.
Diatoms in higher vibrational energy levels should be more likely to dissociate. To account for this, a second selection
method, called method B, could be Ps � � 0 � 5 � qvib � � qd. Here, qvib is the vibrational energy level for harmonic
oscillators and qd is the level immediately below the dissociation limit. The 0.5 added to qvib accounts for the ground
state energy and removes difficulties that occur when qvib � 0. For nitrogen qd � 33.

BLUNT CYLINDER CALCULATIONS

Fig. 1 shows the blunt cylinder simulation geometry and freestream conditions. We used the VHS nitrogen model
from Lilley and Macrossan [4]. Borgnakke-Larsen procedures [8] were used for internal energy exchange. Multiple
relaxation events were prohibited, and constant exchange probabilities of 0.3 and 0.01 were used for rotation and
vibration respectively. The logic of Gimelshein et al. [9] was used to select inelastic collisions. The time step ∆t was
3 � 743 � 10 � 7 s, and the sampling interval was 7∆t. Cell-based weighting factors were used, and at steady state, the
mean number of particles per cell was � 20. A hot wall at 1000 K with diffuse reflection was used. Atom recombination
was ignored. Using the VHS mean free path [1] and cylinder diameter 2rc, the Knudsen number Kn was about 0.026.
A continuum breakdown parameter B  KnM∞ was about 0.9. Both Kn and B show that rarefied effects are important
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FIGURE 1. Blunt cylinder simulation geometry and freestream conditions. Cylinder radius rc ! 0 " 5 m. The domain contained
rectangular regions R1 and R4 and radial regions R2 and R3. The small radial region R3 contained only one cell, and extended to a
distance rc # 100 from the cylinder edge. R1 contained $ 180 % 200 & cells in the $ z % r & directions with a geometric progression in cell
sizes in the z direction, increasing away from the cylinder. The ratio of z dimensions for adjacent cells, denoted fz, was 1.0152. R2
contained 80 cells in the radial direction and 40 in the angular direction. The ratio of radial dimensions for adjacent cells was 1.01.
R4 contained $ 80 % 80 & cells in the $ z % r & directions, with fz ! fr ! 1 " 01.

TABLE 1. Surface flux results for blunt cylinder calculations. MCM = macroscopic chemistry method.

Chemistry model CD CH Chemistry model CD CH

Kewley and Hornung rates: TLD rates:
Conventional TCE model 1.771 0.232 Conventional TLD model 1.787 0.162
MCM, k 'Arr ( Tkin ) , method A 1.771 0.234 MCM, k 'Arr ( Tkin ) , method A 1.793 0.143
MCM, k '2T ( Ttr+rot * Tvib * 0 " 7 ) , method A 1.770 0.258 MCM, k '2T ( Ttr+rot * Tvib * 0 " 9 ) , method A 1.787 0.155
MCM, k '2T ( Ttr+rot * Tvib * 0 " 7 ) , method B 1.771 0.261 MCM, k '2T ( Ttr+rot * Tvib * 0 " 9 ) , method B 1.787 0.159
MCM, k '2T ( Ttr+rot * Tvib * 0 " 5 ) , method A 1.771 0.277
MCM, k '2T ( Ttr+rot * Tvib * 0 " 5 ) , method B 1.772 0.277 No chemistry 1.771 0.289

for this flow, and that thermal non-equilibrium conditions are expected in the flowfield.
The blunt cylinder flowfield was first calculated without chemistry, and then with chemistry in the absence of

DV coupling. To calculate reacting flow without DV coupling, both the macroscopic method and the conventional
collision-based TCE chemistry model [7] were used, with the dissociation rates of Kewley and Hornung [10]. These
dissociation rates are in the Arrhenius form k �Arr � T �+� C � T � Θd � η exp � � Θd � T � � For nitrogen Θd � 113200 K. For
reactions 1 and 2 in nitrogen, Kewley and Hornung [10] give

k �1 � 1 � 97 � 1010 , T
Θd - � 2 . 5

exp , � Θd
T - m3

kmol / s and k �2 � 4 � 71 � 108 , T
Θd - � 3 . 5

exp , � Θd
T - m3

kmol / s �
The macroscopic method simply used these rates with the overall kinetic temperature Tkin [4], calculated in each cell
from time-averaged samples, instead of T . In the TCE calculations, the procedure of Haas [11] was used to distribute
energy amongst the various modes after reaction events. The drag coefficients CD and heat transfer coefficients
CH � 2Q̇ �0� ρu3

∞ � for these calculations are shown in Table 1. There is good agreement between the surface fluxes
for the macroscopic and TCE methods. There was also good agreement between the entire flowfields. Lilley and
Macrossan [4] reported similar results, and it seems that the macroscopic method can accurately capture the flowfield
of dissociating nitrogen, relative to that predicted by the TCE model.

In continuum calculations, Park’s empirical two-temperature rate model [5] is often used to capture DV coupling. In
this model, an effective temperature Te  � Tvib � Ttr+rot � 1 � s Ttr+rot replaces T in the Arrhenius equation, to give the two-
temperature dissociation rate k �2T � Ttr+rot � Tvib � s � . Under non-equilibrium conditions, the vibrational kinetic temperature
Tvib and the combined kinetic temperature of translation and rotation Ttr+rot [4] are used. Lilley and Macrossan [4] used
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FIGURE 2. Stagnation streamline profiles for blunt cylinder calculations with TLD rates. The density profiles were almost
identical, so are not shown here. MCM = macroscopic chemistry method.

this two-temperature model in the macroscopic method to simulate dissociating nitrogen flow downstream of a strong
shock. It was shown that the macroscopic method with the two-temperature model and s � 0 � 5 can capture the expected
delay in dissociation more accurately than the single-temperature Arrhenius rate kArr � Tkin � .

We used Park’s two-temperature model with the rates of Kewley and Hornung [10] to capture DV coupling for the
blunt cylinder flow. We tested both particle selection methods, with s � 0 � 5 and s � 0 � 7. The CD and CH values are
shown in Table 1. It seems that the macroscopic method with Park’s two-temperature model can capture the expected
DV coupling behavior, in that dissociation rates decrease and CH increases relative to the cases without DV coupling.
Also, CH decreases with increasing s. In these cases, the different particle selection methods had little effect on the
flowfield or surface fluxes.

To confirm that the macroscopic method can capture DV coupling with acceptable accuracy, comparison with a
flowfield computed with a conventional collision-based DSMC chemistry model, formulated specifically to include DV
coupling, is required. Here we have chosen the TLD model for the comparison, which was proposed by Macheret and
Rich [12, 13] for diatomic gases in which Tvib 1 Ttr+rot. The TLD model is based on the premise that dissociation can
occur only when the relative translational energy of colliding molecules εg exceeds some threshold energy εF which
depends on the vibrational energy. Boyd [6] adapted the TLD model for conventional DSMC chemistry calculations.
Distinctly different forms of εF and dissociation probability P �R apply for low and high vibrational levels. Boyd [6] and
Wadsworth and Wysong [2] give details of the DSMC implementation of the TLD model. We used Boyd’s formulation
here. The TLD model was used to calculate the blunt cylinder flowfield, and the resulting coefficients CD and CH are
included in Table 1. Stagnation streamline profiles of Ttr � T∞, Trot � T∞, Tvib � T∞ and α are shown in Fig. 2.

The macroscopic dissociation rates realized by the TLD model are required to test the macroscopic method. We
obtained these with a Monte Carlo technique that involved sampling collision energies from theoretical equilibrium
distributions, and then using these sampled energies to calculate P �R . The equilibrium distribution of reduced energy
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FIGURE 3. Calculated macroscopic TLD rates compared to fitted rates and the published rates of Byron [15] and Kewley
and Hornung [10]. (a) Reaction 1: k '1 2 2 " 0 % 1012 $ T # 122000 &43 1 5 1 exp $76 122000 # T & m3/kmol/s. (b) Reaction 2: k '2 2 1 " 0 %
1012 $ T # 122000 & 3 1 5 3 exp $76 122000 # T & m3/kmol/s.

in collisions between VHS molecules, denoted ε̃g  εg � � kT � , is given by the gamma distribution

f � ε̃g �8� ε̃1 � υ
g exp � � ε̃g � � Γ � 2 � υ �9�

The Cheng-Feast algorithm [14] was used to sample ε̃g efficiently. We used the VHS parameters υ , µr and Tr
from Ref. [4]. Rotational energy was sampled using εrot � � ln � R f � kT and the harmonic oscillator energy level
using qvib �;: � ln � R f � T � Θvib < . Following Wadsworth and Wysong [2], the vibrational energy was then given by
εvib �=� 0 � 5 � qvib � kΘvib to include the ground state vibrational energy. For nitrogen Θvib � 3390 K. These sampled
energies were then used to calculate the TLD dissociation probability P �R . In N2

� N collisions the diatom was tested
for dissociation, and in N2

� N2 collisions the first diatom only was tested for dissociation. A reaction event was
counted when P �R � R f . At a given temperature, the dissociation rate k �>� T � is then obtained from

k � � T �8��? P �R @BA Ξ
fs

, T
Tr - 1 � 2 � υ � NR

Ncolls
A Ξ

fs

, T
Tr - 1 � 2 � υ

where ? P �R @ is the mean dissociation probability, Ncolls is the number of collision energies sampled, NR is the number
of collisions resulting in a reaction event. The symmetry factor fs is two for like particles and unity otherwise andA � 6 � 02 � 1026 � kmol is Avogadro’s number. The constant

Ξ  15
2

kTr � µr� 2 � υ �9� 3 � υ �
includes the VHS parameters of the collision pair. Monte Carlo sampling continued until 105 reaction events occurred
for each temperature considered. The resulting rates are shown in Fig. 3. These rates differ from those computed by
Boyd [6], which may be due to the use of different VHS parameters.

The TLD expressions for P �R have singularities at certain energies [6, 2, 3], giving P �R � 1. In such cases, a single
dissociation event only is performed in most DSMC codes. In the Monte Carlo sampling performed here to determine
the TLD rates, the fraction of events with P �R � 1 often exceeded 50%. The existence of singularities is an important
limitation of the TLD model [3].

The macroscopic method was used to simulate the blunt cylinder flowfield with the fitted TLD rates from Fig. 3.
The effects of DV coupling were captured with Park’s two-temperature model [5]. Here s � 0 � 9 was used, which was
found by running test simulations with various s values. The CD and CH results are shown in Table 1, and stagnation
streamline profiles are shown in Fig. 2. The agreement between the results obtained using the TLD and macroscopic
methods is generally reasonable. The profiles shown in Fig. 2 indicate that particle selection method A is slightly
better than method B, which contrasts with the behavior expected for DV coupling. Further investigations are required
to determine the best selection method. The similar results obtained for the two different selection methods confirm
the original premise of the macroscopic method, in that the details of reaction processes are relatively unimportant.
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DISCUSSION AND CONCLUSIONS

For the hypersonic flow of dissociating nitrogen over a blunt cylinder, the results presented here show that the
macroscopic method can capture the expected effects DV coupling, in that dissociation rates are reduced and heat
transfer rates are increased, relative to flowfields calculated without DV coupling. Furthermore, it has been shown that
the macroscopic method can give a flowfield similar to that calculated using the conventional collision-based TLD
model, which was formulated specifically to capture DV coupling.

The most important advantage of the macroscopic method is that it can use any macroscopic rate expressions, which
can be any function of the local macroscopic conditions. This allows DSMC chemistry calculations to be performed
using rates for which no conventional collision-based DSMC chemistry model may be available. The large amount of
literature on reaction rates used in continuum studies can therefore be applied directly in DSMC chemistry calculations.
This permits hybrid codes, which use continuum solvers in near-equilibrium regions and the DSMC method in non-
equilibrium regions, to use the same chemistry models throughout the entire simulation domain.

The form of α̇ used here accounted for dissociation events only. Lilley and Macrossan [4] used a form that also
accounted for recombination events. This meant that the macroscopic method considered net reactions only, so that no
reactions were performed where chemical equilibrium existed. This avoids the detailed balancing problems that can
be an issue when using conventional DSMC chemistry models. In this sense, the macroscopic method is similar to
continuum solvers, which also consider net reactions and for which detailed balancing is not an issue.

As noted above for the TLD model, conventional DSMC chemistry models often suffer from singularities where
P �R � 1. In such cases, only a single reaction event is usually performed, so these singularities certainly result in reduced
reaction rates relative to the expected rates. However, there may be more subtle effects introduced by the singularities
which are not immediately obvious. The macroscopic method does not suffer from numerical instabilities.
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