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Abstract

This thesis is aimed at exploring issues relating to power system security analy-

sis particularly arising under an open access deregulated environment. Numerical

methods and computation algorithms locating the critical security condition points

and visualizing the security hyperplane in the parameter space are proposed.

The power industry is undergoing changes leading to restructuring and privatizing

in many countries. This restructuring consists in changing the power industry from

a regulated and vertically integrated form into regional, competitive and function-

ally separate entities. This is done with the prospect of increasing e�ciency by

better management and better usage of existing equipment and lower price of elec-

tricity to all types of customers while maintaining a reliable system. As a result of

deregulation and restructuring, power suppliers will increasingly try to deliver more

energy to customers using existing system facilities, thereby putting the system un-

der heavy stress. Accordingly, many technical and economic issues have arisen, for

example, all or some of transient instability, aperiodic and oscillatory instability,

insu�cient reactive power supply, and even voltage collapse problems may coexist.

This situation introduces the requirement for comprehensive analytical tools to as-

sess the system security conditions, as well as to provide optimal control strategies

to overcome these problems.

There are computational techniques for assessing the power system stability criti-

cal conditions in given loading directions, but it is not enough to just have a few

critical points in the parameter space to formulate an optimal control to avoid

insecurity. A boundary or hyperplane containing all such critical and subcritical

security condition points will provide a comprehensive understanding of the power

system operational situation and therefore can be used to provide a global opti-

mal control action to enhance the system security. With the security boundary or

hyperplane available, the system operators can place the power system inside the

security boundaries, away from instability, and enhance its security in an optimal

way.

Based on proper power system modeling, a general method is proposed to locate

the power system small signal stability characteristic points, which include load

ow feasibility points, aperiodic and oscillatory stability points, minimum and max-
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imum damping points. Numerical methods for tracing the power system bifurca-

tion boundaries are proposed to overcome nonconvexity and provide an e�cient

parameter continuation approach to trace stability boundaries of interest. A �-

plane method for visualizing the power system load ow feasibility and bifurcation

boundaries is proposed. The optimization problem de�ned by assessing the minimal

distance from an operating point to the boundaries is considered. In particular, em-

phasis is placed on computing all locally minimal and the global minimum distances.

Due to the complexity of any power system, traditional optimization techniques

sometimes fail to locate the global optimal solutions which are essential to power

system security analysis. However, genetic algorithms, due to their robustness and

loose problem pre-requisites, are shown to ful�ll the task rather satisfactorily.

Finally, a toolbox is described which incorporates all these proposed techniques, and

is being developed for power system stability assessment and enhancement analysis.
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14 Chapter 1. Introduction

1.1 Open Access and Power System Stability

Nowadays, power systems are undergoing dramatic changes leading to deregulation

and open access. Under this situation, the traditional centralized power system gen-

eration, transmission and distribution decision making processes are being changed

into decentralized form with more feedback and modi�cation from the market. Un-

der the deregulated power market, the power producers will tend to send more

electricity to the users using existing transmission system facilities.

One of the most important planning and control issues, for competitive and deregu-

lated open-access power grids, is maximization of contractual energy transfers from

the power producers to consumers over long electrical distances in increasingly com-

plicated networks (due to more interconnection) [77]. These power transfers are

subject to limitations of di�erent sorts including the thermal limits for all trans-

mission facilities, restrictions on voltage levels and frequency, power ow feasibility

constraints, and stability boundaries. They determine whether it is possible to ac-

commodate a contractual power transfer in view of signi�cant deviations of load

demands and power inputs so characteristic of the open-access power grids [77].

The transmission limits must be de�ned and taken into account by the pool opera-

tor in power ow planning and control as well as by consumers and producers and

in their private bilateral and multilateral trades [148].

Power systems are large nonlinear systems with rich dynamics which may lead to in-

stability under certain conditions. With the load demands increasing rapidly, mod-

ern power grids are becoming more and more stressed. This has already resulted in

many stability problems caused by such reasons as high (real) power transfer and/or

insu�cient reactive power supply. The voltage collapses which have occurred re-

cently have again drawn much attention to the issue of stability security margins

in power systems [2]. The small signal stability margins in particular are highly

dependent upon such system features as load ow feasibility boundaries, minimum

and maximum damping conditions, saddle node and Hopf bifurcations, and limit

induced bifurcations. Unfortunately, it is very di�cult to say in advance which of

these features will make a decisive contribution to instability. Also it is a feature of

stressed systems that traditional problems of angle, voltage and oscillatory insta-

bility can coexist so that all need to be considered together. Despite the progress

achieved recently, the existing approaches deal with these (physical and mathemat-
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ical) features independently - see [42, 107] for example- and additional attempts

are needed to get a more comprehensive view on the small-signal stability problem.

Before introducing the speci�c techniques involved, we look at the fundamentals of

power system stability issues with which the thesis will deal.

A power system is said to be stable if it has the property that it retains a state of

equilibrium under normal operating conditions and regains an acceptable state of

equilibrium after being subjected to a disturbance [95]. Small signal (or small dis-

turbance) stability is usually regarded as the ability of the power system to maintain

synchronism under small disturbances. Such disturbances occur continually on the

system because of small variations in loads and generation. The disturbances are

considered su�ciently small for linearization of system equations to be permissible

for the purpose of analysis. Physically, instability is usually thought of in two forms:

� Steady increase in generator rotor angle and/or decrease of voltages;

� Oscillations of increasing amplitude due to lack of su�cient damping.

In dynamical terms, instability is traditionally viewed in terms of angles and fre-

quency. Small signal analysis using linear techniques, eigenvalue analysis, provides

valuable information about the inherent dynamic characteristics of the power sys-

tem and assists in its design. In terms of eigenvalue analysis, the system is said to

be stable if all eigenvalues of the system Jacobian have negative real parts. Other-

wise, the system may be expected to undergo either instability of di�erent kinds or

oscillatory behavior.

Since small signal stability is based on a linearized model of the system around its

equilibrium operation points, formulation of the problem is very important. The for-

mulation of the state equations for small signal analysis involves the development of

linearized equations about an operating point and elimination of all variables other

than the state variables. The need to allow for the representation of extensive trans-

mission networks, loads, a variety of excitation systems and prime mover models,

HVDC links, and Static VAR Compensators (SVCs) requires a systematic proce-

dure for treating the wide range of devices [95]. Modeling of these power system

devices can be found in [8, 9, 38, 78, 120].

Among all small signal stability issues, voltage stability has been of particular in-

terest lately. Voltage stability is the ability of a power system to maintain steady
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acceptable voltages at all buses in the system under normal operating conditions

and after being subjected to a disturbance. Also, voltage stability has been de�ned

as the ability of a system to maintain voltage such that load demand increase is

met by increase in power [31, 76, 115]. Traditional theory implies that a system is

voltage stable if voltage sensitivity is positive for every bus voltage. Small signal (or

small-disturbance) voltage stability is concerned with a system's voltage dynamics

following small perturbations.

The aim of this thesis is to explore the techniques capable of �nding the region

in which the system is small signal stable allowing simultaneously for all kinds of

(small signal) instability. This region is used to de�ne the so called system security

boundaries which allow for appropriate operating margins.

The tendency to higher system stress increases the probability of problems caused

by small signal instability. Advanced techniques, which are aimed at solving these

problems, are required, so as to ensure maximum pro�ts for the utilities by supplying

more electricity while keeping the system reasonably stable.

1.2 State of Art of Power System Stability and

Numerical Methods

In this section, we give a brief overview of some existing approaches dealing with

power system small signal stability problems. This is useful background for Chap-

ters 3, 4 and 5.

1.2.1 Terms and De�nitions

We �rst clarify the terms and de�nitions in the area of power system stability. As

mentioned above, small signal stability belongs to the family of power system sta-

bility properties, which generally refer to the ability of a power system to remain

in a state of equilibrium under normal operating conditions, and to regain an ac-

ceptable state of equilibrium after a disturbance [95]. There are many de�nitions

in this area; at the time of writing, there is an e�ort to achieve standardization by

IEEE and CIGRE. For purposes of this thesis, the book by Kundur [95] gives a
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complete presentation. According to this reference, small signal stability (or small

disturbance stability) is the ability of the power system to maintain synchronism

under small disturbances. The power system small signal stability problem is han-

dled by linearized analysis because the disturbance is small enough. Although, it

is commonly in terms of angle stability, here we use it in the general sense of any

relevant variables.

In papers by Hill et al. [64, 65] it is emphasized that power system stability refers to

both static and dynamic concepts, and the stability issue generally includes system,

angle and voltage stability respectively. The proposals on stability were made as

follows:

� Static properties, where algebraic models and quasi-static disturbances are

studied, be de�ned separately;

� Steady state stability refers to stability of a power system in steady state,

except for the inuence of small disturbances which may be slow or random;

� Stability as a general mathematical term refers to where di�erential equations

(and possible algebraic equations) and time-varying disturbances are studied;

The authors of [64, 65] indicated that more attention should be paid to broader

concepts of system stability than speci�c de�nitions for angle and voltage stability.

Also, in many respects, angle stability and voltage stability are used more as a time-

scale decoupling than a variable decoupling. Angle stability is normally considered

as a short term phenomenon, while voltage stability is a long term one because

slower devices are involved. In situations where no obvious angle/voltage decoupling

is involved, it would be more appropriate to talk of system stability in terms of short

term or long term behavior [65].

From a static point of view, voltages are described in terms of their level and sen-

sitivity. The voltages are viable if they all lie in their accepted operating ranges.

Another important concept is voltage regularity which demands that the bus volt-

ages have appropriate sensitivity to reactive demand. These voltage sensitivity dV
dQd

is acceptable if 0 > dV
dQd

� �R, where R > 0. Assuming independent consistent

power loads, this sensitivity becomes in�nite when the operating point approaches

the so-called Point of Collapse (PoC) [25]. More speci�cally, the de�nition says: a
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power system is at a locally voltage regular operating point if (i) for any PQ bus,

�Qj > 0 gives �Vj > 0; ii) for any PV bus, �Ej > 0 gives �Qj > 0. Moreover, the

system is at a voltage regular operating point if, in addition to being locally regular,

the system satis�es �V � 0 for any �Q � 0 and any �E � 0 gives �V � 0.

While considering dynamic concepts where the variation is fast relative to the system

dynamics, the quasi-static assumption is not valid any more. Several important

de�nitions are given below [64, 65]:

� A power system at a given operating state, and subject to a given large dis-

turbance is large disturbance stable if the system approaches post-disturbance

equilibrium values. Note that acceptable behavior in practice could also in-

clude holding synchronism for several swings until stabilizer damping arrives

and/or a maximum voltage dip criterion is reached.

� A power system at a given operating state is small disturbance voltage stable

if, following any small disturbance, its voltages are identical or close to the

pre-disturbance values.

� A power system undergoes voltage collapse if, at a given operating point and

subject to a given disturbance, the voltage is unstable or the post-disturbance

equilibrium values are non-viable.

These de�nitions require precise mathematical interpretation before embarking on

analysis.

According to Kundur [95], power system stability can be categorized into the fol-

lowing families:

� Angle stability, which is the ability to maintain synchronism and torque bal-

ance of synchronous machines in the power system.

{ Small signal stability

� Non-oscillatory Instability

� Oscillatory Instability

{ Transient Stability, which is the ability of power system to maintain

synchronism when subjected to a large disturbance. It will result in
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large excursion of generator angle and is a�ected by nonlinear power-

angle relationship. The period of interest is limited up to 10 seconds.

� Voltage stability, which is the ability of the power system to maintain steady

acceptable voltage at all buses in the system under normal operating condi-

tions and after disturbances. Or in other words, the system voltages approach

post-disturbance equilibrium values both at a given operating condition and

after being subjected to given disturbances [64]. It is mainly a problem of

keeping reactive power balance, even though active power balance is also im-

portant in this case. Industrial practices to judge voltage stability include

analysis of Q-V curves [95, 114, 115] and modal analysis [53].

{ Large disturbance voltage stability, which is caused by large disturbances

including system faults, loss of generation, circuit contingencies, system

switching events, dynamics of ULTC, loads, etc. It requires coordination

of protection and controls, and usually lasts about several seconds to

several minutes. Long term dynamic simulation is necessary for analysis.

{ Small disturbance voltage stability indicates the situation that, for a

power system, the system voltages recover to the value close to or the

same as the original value before disturbance at a given operating con-

dition [64]. This kind of instability is usually caused by slow changes in

system loads. Static analysis techniques are used for analytical purposes.

� Mid-term stability, which is caused by severe upsets, large voltage and fre-

quency excursions, and involves fast and slow dynamics. The period of time-

of-interest usually lasts up to several minutes.

� Long-term stability, which is also a result of severe upsets and large voltage

and frequency excursions. It involves slow dynamics, and will last up to tens

of minutes for study purposes.

� Voltage Collapse, stands for the situation that for a given operating point, the

system voltage is unstable or the post disturbance values are nonviable after

a given disturbance [64].

There are also many other concepts concerning the classi�cation of power system

stability problems [39].
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1.2.2 Numerical Methods for Power System Stability Anal-

ysis

Now, let us take a look at the general techniques for analyzing power system stability

problems.

Static and Dynamic Point of View of Stability

Based on the de�nitions of the stability problem, there are two approaches, namely,

the static approach and dynamic approach. To start with numerical methods deal-

ing with these stability problems, it is necessary to give a general model for the

power system including all its dynamics as well as algebraic constraints. Generally,

a power system with all its static and dynamic aspects can be described by the

following form of di�erential and algebraic equations (DAEs):

_x = f(x; z; u; p) (1.1)

0 = g(x; z; u; p) (1.2)

where x is the vector of state variables such as machine angles, dynamic load vari-

ables; z is the vector of remaining system variables without dynamic consideration;

u is vector of system controls, and p is the vector of system parameters. In the se-

quel, we sometimes use � to denote a parameter which may be varied slowly. (The

assumption is that this variation is slow enough such that the system behavior can

retain its equilibrium conditions.) In the following analysis, variable � may be cho-

sen as a bifurcation variable with the meaning that when � slowly approaches some

speci�c value, the system undergoes dramatic changes in its states, corresponding

to the occurrence of bifurcations. As a special case, where there are no algebraic

equations or controls to be selected, the above system can be simpli�ed into the

form:

_x = f(x; �) (1.3)

0 = g(x; �) (1.4)

Usually, the di�erential equations describe the system dynamics and the algebraic

equations represent the system load ow equations.
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Static stability deals with static properties corresponding to properties of angle and

voltage changes for certain small parametric changes. Speci�c illustrations are the

Q� V and E � Q variation relationships given in the de�nitions set by Hill et al.

[65]. A comprehensive approach for static stability analysis can be developed in load

ow studies by evaluating Jacobian sensitivities [68, 133]. To study this property

in detail, the general form load ow equations are given as:

f(�; V ; p) = 0 active power balance (1.5)

g(�; V ; p) = 0 reactive power balance (1.6)

where � and V stand for dependent angles and voltages, and p consists of the

variable parameters, e.g. p = (E; P;Q) [E is the vector of controllable voltages.]

The load ow Jacobian is:

J =

2
4 F� Fv

G� Gv

3
5 (1.7)

where F� denotes the derivative
@f
@�

and similarly for the other terms Fv, G� and Gv.

The following form can be easily derived [68]:

G�
vdV = dQ�G�F

�1
� dP �G�

l dE (1.8)

where � denotes the Schur complement:

G�
v = GV �G�F

�1
� FvG

�
l = Gl �G�F

�1
� Fl (1.9)

When considering the angle and voltage stability together, regularity should be

checked with entries of J�1. There are two major concepts regarding the stability,

i.e. the Points of Maximum Loadability (PML), where dV=DQ or dV=dP becomes

in�nite; and Points of Collapse (PoC) where dVj=dpk becomes unbounded as �pk

tends to zero. Analytical study of PoC and PML corresponds to the singularity

of load ow Jacobians. PoC and PML are two di�erent concepts, however they

could refer to the same point depending on the power ow and steady-state models

used. PoC was �rst proposed by F. Alvarado and was �rst associated with another

important stability concept, saddle node bifurcation point, by C.A. Canizares. It

can be shown that, if detFa 6= 0, since detJ = detF�detG
�
v, then detJ = 0 corre-

sponds to detG�
v = 0. This approach measures proximity to the PoC as the system

stability limit. However, if detGv 6= 0, since detJ = detGvdetF
�
� , then singularity
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of J corresponds to the singularity of F �
� , which indicates a break down in active

power and angle stability.

Dynamic analysis of power system stability considers time-varying disturbances

where the variation is fast relative to the system dynamics. In such cases, the quasi-

static assumption is no longer valid. Small and large disturbance stability (steady-

state or transient stability) are the major cases of dynamic analysis. De�nitions

of small and large disturbance stability given above are used. As compared with

the analytical static view, the dynamic view of system voltage stability, especially

allowing for voltage collapse, also includes the possibility that voltages may not

stay near equilibrium values. Analytically, the voltage collapse analysis involves

two steps, including both static and dynamic point of views [65]:

(1). Determine the post-disturbance equilibrium by power ow calculations. If none

exist or they are voltage non-viable, then collapse has occurred [traditional static

view].

(2). Determine the region of attraction for any voltage viable equilibria. If the

disturbed state lies in this region, then collapse is avoided. Otherwise, collapse may

occur [dynamic part of the de�nition].

In step (2), because of the conservative nature of the nonlinear analysis, the stability

regions are only estimated. So, simulation is needed to check if collapse is to occur

if the disturbed state lies outside the estimated region.

The key idea from these two points of view is that a system may be well behaved

in a static sense, but unstable in a dynamic sense, and vice versa.

Numerical Methods

There are many numerical methods for power system stability analysis based on

the concepts introduced above. Basically, a power system when subjected to a slow

parametric variation may undergo an instability caused by a bifurcation (including

reaching the PoC). For small signal stability analysis, the system equation is �rst

linearized and then studied for its stability property. It is convenient to change the

general model of a power system into the form below:

_x = f(x; z; �) (1.10)

0 = g(x; z; �) (1.11)
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The system can be linearized around an equilibrium point which is the solution of

the system: 0 = f(x; z; �) and 0 = g(x; z; �). The linearized system takes the form:

� _x = Fx�x + Fz�z (1.12)

0 = Gx�x +Gz�z (1.13)

Eigenvalues of the linearized system provide the time domain characteristics of a

system mode. The following eigenvalue characteristics provide the analytical basis

for this approach:

� Real eigenvalues represent non-oscillatory modes; a negative one corresponds

to decaying mode, while a positive one relates to aperiodic instability;

� Complex eigenvalues are associated with system oscillatory modes; the pair of

complex eigenvalues with negative real parts indicate a decreasing oscillatory

behavior, and those with positive real parts result in an increasing oscillatory

behavior.

Other eigenproperties such as eigenvectors and participation factors also provide

useful information about the system stability analysis [7, 11, 12, 13, 17, 18, 95, 111,

136, 146]. See Appendices for detailed eigenanalysis techniques. Upon obtaining

the linearized system equations, and therefore the Jacobian or state matrix, eigen-

analysis techniques can be used to explore the small signal stability of the system

under consideration. In particular, it is valuable to study movement of modes as

parameters � vary.

Numerical methods revealing the system stability properties are aimed to locate

conditions where eigenvalues of the system Jacobian correspond to special stability

issues. These numerical methods can be applied to �nd PoC points, aperiodic and

oscillatory instability points.

The relationship between system stability and eigenvalues as well as numerical meth-

ods needed will be summarized in the following chapters. Here only a brief general

description is given, as follows:

(1) PoC calculation is aimed at locating the points where the power ow Jacobian

is singular by the following equation [21, 25, 26, 142]

f(x; �) = 0 (1.14)
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g(x; �) = 0 (1.15)

J tlf(x; �)l = 0 (1.16)

jjljj = 1 (1.17)

where l is the left eigenvector corresponding to a zero eigenvalue of the load ow

Jacobian matrix, Jlf . The �rst two equations ensure that the solution points are

equilibrium points. The last equation merely ensures a nontrivial solution of (1.16).

(2) Aperiodic and oscillatory stability condition (saddle node and Hopf bifurca-

tion, see de�nitions in the following chapter) calculation: [21, 25, 26, 42, 142]

f(x; �) = 0 (1.18)

g(x; �) = 0 (1.19)

~J t(x; �)l0 + !l00 = 0 (1.20)

~J t(x; �)l00 � !l0 = 0 (1.21)

jjljj = 1 (1.22)

where ! is the imaginary part of a system eigenvalue; l0 and l00 are real and imaginary

parts of the corresponding left eigenvector l; ~J stands for the state matrix obtained

from the linearized model. Note that aperiodic instability, or saddle node bifurcation

happens when the imaginary part of the critical eigenvalue is zero, i.e., ! = 0;

oscillatory instability or Hopf bifurcation happens when ! 6= 0.

These formulations are useful for determining load ow feasibility and various sta-

bility boundaries and their dependence on parameters �.

1.3 Aims of The Thesis

This thesis is aimed at giving a comprehensive framework to analyze small signal

stability conditions together with numerical methods for special tasks.

As seen from Section 1.2 of this chapter, there are already many approaches to

the small signal stability issue. However, each of these is generally focused on one

aspect of the stability problem.

It would be helpful to have a comprehensive approach, which could consider such

properties of the power system as saddle node and Hopf bifurcations, load ow feasi-
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bility boundaries, minimum and maximum damping conditions, singularity induced

bifurcations, and limit induced bifurcations within one framework.

Moreover, besides locating particular critical instability conditions, visualization of

the hypersurface containing all such instability condition points will provide more

understanding of the system security and help develop optimal control strategies to

enhance the power system secure operation. We aim to develop techniques to allow

more exible viewing of stability surfaces.

These numerical methods are to locate the stability conditions not only in a given

parametric variation direction, but also those conditions from di�erent view points

in the whole parameter space, so as to enable visualization of the security boundaries

de�ned by di�erent stability related characteristic points.

Special techniques dealing with computational di�culties will be also considered.

One idea is to exploit the special structure of power system equations in order to

reduce computation. Another to be attempted is use of genetic algorithms to carry

out the complex optimization.

1.4 Contributions and Structure of the Thesis

The techniques proposed in the thesis are based on modal analysis, optimization

techniques, knowledge of bifurcations, quadratic programming approaches, and

other basic knowledge on power system computation and control, such as load ow

computation and power system modeling. The major contributions of the thesis

can be categorized as:

� High order numerical method and eigenvalue sensitivity approach to locate

the critical stability conditions;

� Techniques for tracing the aperiodic and oscillatory stability boundaries;

� A �-plane method to locate and visualize the load ow feasibility boundaries

in a chosen cut plane of the parameter space;

� A general method capable of locating all small signal stability characteristic

points in one parametric variation direction;
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� Genetic algorithms improvement and their application in small signal stabil-

ity analysis, including location of the critical as well as subcritical stability

characteristic points, and searching for optimal system planning results.

� A software toolbox which incorporates these techniques into a modern security

assessment package.

The structure of the thesis is as follows:

Chapter 1. Introduction of power system stability, which includes terms and de�-

nitions of stability problems, and basic numerical approaches to solve such problems.

Also aims, contributions, and structure of thesis is given in this chapter.

Chapter 2. Power system modeling and bifurcation analysis are reviewed. This

chapter forms the foundation for further analysis. The power system models used

through out the thesis and several important stability related bifurcations are dis-

cussed.

Chapter 3. Methods to reveal the critical stability conditions of power systems

are addressed. These methods include a review of traditional approaches, initial

value approximation techniques, and a comprehensive general method which anal-

yses saddle node, Hopf bifurcations, load ow feasibility boundaries, minimum and

maximum damping points within the one formulation.

Chapter 4. Techniques for the visualization of the critical conditions within pa-

rameter spaces are studied. A review of current state of art approaches as well as a

new �-plane method for visualizing the stability boundaries in a chosen parameter

space are addressed.

Chapter 5. Genetic algorithms are proposed to overcome solution di�culties as-

sociated with most traditional optimization and searching techniques. Their novel

application in small signal stability as well as system planning are also proposed.

Chapter 6. A computer software package - power system small signal stability

toolbox - is discussed. This toolbox incorporates all the algorithms and techniques

involved from the thesis, and is aimed to assess as well as provide information for

optimal global control of the power system for better system security.

Chapter 7. This chapter gives concluding remarks on the thesis, as well as

prospects for further development.
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Appendices. Matrix analysis fundamentals, numerical methods in optimization,

and proof of quadratic system properties are given in Appendices A-C.

The results of this thesis have been partially presented already in publications. A

list of publications arising from the thesis is given in Appendix D at the end of the

thesis.
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2.1 Introduction

Power system small signal stability analysis relies heavily on proper modeling tech-

niques. Power systems are large interconnected systems, which consist of generation

units, transmission grids, distribution systems, and consumption units. There are

numerous dynamics associated with the system which may a�ect the system small

signal stability and other kinds of stability problems. The small signal stability

technique analyzes the system stability by studying the linearized models of the

system dynamics. Load ow computation, state matrix and/or system Jacobian

formulation and eigenanalysis are among the common tasks required by small sig-

nal stability studies. The traditional aim is to investigate system electro-mechanical

oscillatory behavior.

Di�erent approaches to system modeling lead to di�erent analytical results and ac-

curacy. Improper models may result in over-estimated stability margins, which can

be disastrous to system operation control. Redundant models will increase compu-

tation costs largely, and could be impractical for industrial application. To study

the problem of modeling, all components of the power system should be considered

for their performance. Based on the stability study requirements, di�erent mod-

eling schemes for the same device will have to be used. For example, three kinds

of models of a system/device are necessary to study the power system long term,

midterm and transient stabilities.

The power system is modeled as a set of nonlinear di�erential and algebraic equa-

tions. For small signal stability analysis, all the models developed will be linearized

around equilibrium points. Under such conditions, the system nonlinearity is be-

ing considered as close to linear. The linearized model also include linearized load

models for interactive studies.

Traditional system modeling is based on generators and their controls, as well as

the transmission system components. Load modeling has received more and more

attention for stability analysis purposes. In this chapter, these detailed modeling

issues will be discussed. Also a review of the bifurcation analysis interpretation of

stability problems will be given.
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2.2 Generator Modeling

A power system is composed of generators, generator control systems including exci-

tation control, automatic voltage regulators, PSS, transmission lines, transformers,

HVDC links, reactive power compensate devices, newly developed FACTS devices,

and loads of di�erent kinds. Every piece of equipment has its own dynamic prop-

erties, that may need to be modeled for a stability study. In order to study small

signal stability, the generator system modeling is �rstly reviewed.

2.2.1 Synchronous Machine Model

Generally, the well established Parks model for the synchronous machine is used in

system analysis. However, some modi�cations of the original Park's model can be

employed to simplify the model for stability analysis.

Throughout this thesis, the following two types of generator models are used, i.e.,

one-axis and two-axis model [6, 121, 129]. Equations of the one axis synchronous

machine model, where the damping coil and equation entries of _�d and _�q are

ignored, become

� 0do _E 0
q = EFD � [E 0

q � (xd � x0d)Id (2.1)

E 0
d = Vd + x0qIq + rId (2.2)

� _! = TM � [E 0
qIq � (Lq � L0d)IdIq]�D! (2.3)

_� = ! � 1 (2.4)

For analysis of large scale power systems, often only the angle-speed equation (2.4),

voltage/potential equations, and the swing equation (2.3) are considered.

Equations of the two axis synchronous machine model, where the e�ects of transient

resistance are considered and the sub-transient e�ects are neglected, has the form

� 0qo _E
0
d = �E 0

d � (xq � x0q)Iq (2.5)

E 0
d = Ed + (xq � x0q)Iq (2.6)

� 0do _E
0
q = EFD � E 0

q + (xd � x0d)Id (2.7)

� _! = TM �D! � [IdE
0
d + IqE

0
q � (L0q � L0d)IdIq] (2.8)

_� = ! � 1 (2.9)
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The notations for the above equations are

Ed, Eq - EMF of the d-axis and q-axis respectively, p.u.

E 0
d, E

0
q - transient EMF of the d-axis and q-axis respectively, p.u.

EFD - equivalent EMF in the excitation coil, p.u.

Vd - d-axis voltage, p.u.

� - generator power angle, rad.

! - generator rotor speed, rad./s.

Id, Iq - d-axis and q-axis current respectively, p.u.

r - resistance, p.u.

xd, xq - d-axis and q-axis synchronous reactance respectively, p.u.

x0d, x
0
q - d-axis and q-axis transient reactance respectively, p.u.

x00q - q-axis subtransient reactance, p.u.

Lq - q-axis synchronous inductance, p.u.

L0d, L
0
q - d-axis and q-axis synchronous inductance respectively, p.u.

� = 2H=!s, where H is inertia constant, p.u. and !s is the synchronous generator

rotor speed in rad/s. � 0do, �
0
qo - d-axis and q-axis open circuit time constant

D - damping coe�cient, p.u.

TM - mechanical torque, p.u.

The equivalent circuit for the two axis machine model is given in Figure 2.1 [6].
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Figure 2.1: Two-Axis Model of the Synchronous Machine
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2.2.2 Excitation System Modeling

The basic model of an exciter is provided by the state variable chosen as the exciter

output voltage or generator �eld EMF, EFD in the equation [131],

TE
dEFD

dt
= �(KE + SE(EFD))EFD + VR (2.10)

where the value of exciter constant related to self-excited �eld, KE depends on the

type of DC generator used, SE(EFD) is the saturation function, and VR is the scaled

voltage regulator output.

The steady state modeling given by [6] extends the above model to include both

dynamics of EFD, VR, and some internal state variables of the exciter. A simpli�ed

linear model of a synchronous machine with excitation system is given as well.

Other excitation system models for large scale power system stability studies can

be found in [73]. In general, the whole excitation control system includes:

� Power System Stabilizer

� Excitation system stabilizer

� (Automatic) Voltage Regulator

� Terminal voltage transducer and load compensator

The whole control system contributes to enhancement of generator and power sys-

tem from the point of view of excitation control. Models of these components will

be discussed in the following sections as needed.

2.2.3 PSS and AVR Models

Conventionally, the AVR is a �rst order lag controller and the PSS is a �xed struc-

ture controller with a gain in series with lead-lag networks. A PSS generates stabiliz-

ing signals to modulate the reference of the AVR [97]. For control study purposes,

the PSS and AVR model transfer functions are given as: KAV R(s) = Kv

Tvs+1
and

KPSS(s) = Ks(
T1s+1
T2s+1

)n.
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A simple excitation system with a voltage regulator model represented by an am-

pli�er and feedback rate dynamics is given by [72, 131] as,

TF
dRf

dt
= �Rf +

KF

TF
EFD

TA
dVR
dt

= �VR +KAVin

= �VR +KARf �
KAKF

TF
EFD +KA(Vref � Vt)

V min
R � VR � V max

R

where Rf is rate of feedback, Vin is the ampli�er input voltage, TA is the ampli�er

time constant, KA is the ampli�er gain, Vref is the voltage regulator reference voltage

(determined to satisfy initial conditions), TF is the stabilizer time constant, and

V min
R , V max

R is voltage regulator output voltage lower and upper limit respectively.

Several types of AVR-PSS system, and a new co-ordinated AVR-PSS type design

method are given in [97].

The basic models for AVR and PSS can be found in the literature, [6, 14, 15, 73,

95, 123, 131]. Detailed nomenclature relating to excitation systems can be found in

[73].

2.3 Load Modeling

Power system loads play a large role in power system dynamics and stability behav-

ior. Many serious power system instability problem like voltage collapses are caused

by load behavior [112]. Even in steady-state, load dynamic characteristics can have

great impact on system behavior. For example, a disturbance such as starting an

induction motor can introduce signi�cant voltage drop locally and even cause pro-

tection equipment to operate to prevent system instability. In such operation, the

induction motor dynamics should be added to the usual ones for the system, and

should be considered for small signal stability analysis. There are many studies

concerning the inuence of motor dynamics on system stability [20, 33, 82, 118]. It

is shown for instance that system damping is highly dependent on load parameters.

For study of the stability problem, good load modeling is a key issue; poorly modeled

load dynamics will give misleading information for system analysis and operation,
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but it is di�cult in practice to get adequate data. There are many well established

modeling methods and relatively new methods have been given in the literature

[20, 22, 33, 64, 74, 82, 117, 118, 130, 131]. There are generally two approaches

to describe the load models, i.e., input-output modeling and state modeling [64].

Depending on the recovery characteristics of the load after a voltage step, speci�c

load models are the exponential load model [64, 68] or an adaptive recovery load

model [149].

The concept of generic load modeling was introduced in [64] as a general purpose

nonlinear dynamic structure which represents the aggregate e�ect of all loads con-

nected to the bus. Traditionally, the load is modeled in a static model as functions

of bus voltages and frequency. This static load model has been used for years for

load ow calculations. To capture the dynamics needed for stability analysis, espe-

cially in small signal stability study, more detailed load models describing not only

the static behavior but the transient behavior of load were put forward. These kind

of models naturally are called dynamic load models.

There are two ways to obtain aggregation in load models. One is to survey the

customer loads in a detailed load model, including the relevant parts of the network

and carry out system reduction. Then, a simple load model can be chosen so that

it has similar load characteristics to the detailed load model. Another approach is

to choose a load model structure and identify its parameters from measurements.

2.3.1 Static Load Modeling

Static load models are expressed as algebraic functions of the bus voltage and

frequency. The traditionally used power system static load model consists of an

exponential form like P = P0(
V
V0
)� and Q = Q0(

V
V0
)� for real and reactive load

respectively. Depending on the values of � and �, the model represents constant

power (� or � = 0), constant current (� or � = 1), and constant impedance (� or

� = 2) respectively. The value usually taken for � is in the range of 0.5 to 1.8, and

the range for � is usually between 1.5 and 6 [95]. Another widely used static load

model is the polynomial model as given below:

P = P0[p1(
V

V0
)2 + p2

V

V0
+ p3]
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Q = Q0[q1(
V

V0
)2 + q2

V

V0
jq3]

where included in this model are constant impedance, constant current and constant

power components [95].

However, besides bus voltages, system frequency variation is also considered in more

general static load modeling. As a function of bus voltage and frequency, the model

takes the general form:

P = Fp(P; V;�f) (2.11)

Q = Fq(Q; V;�f) (2.12)

where P and Q are power system real and reactive load powers, V and f are bus

voltage and frequency respectively, and � denotes a small variation of associated

variables.

The static load models listed above may produce computational problems at low

voltage level. In some computer software analytical packages, the static load model

at certain low voltages will be treated as constant impedance.

2.3.2 Dynamic Load Modeling

In power system stability analysis, it is necessary to pay attention to the response of

load components. Load dynamic aspects should be considered for stability analysis

of today's power systems in cases of voltage stability, inter-area oscillations, long-

term stability analysis, and small signal stability analysis. A considerable portion

of the load dynamics usually comes from derivatives of bus voltage, load powers

and system frequency. Some dynamics also take into consideration the system

frequency variations. The source of these dynamics come from induction motor

start-up/speed modulations, extinction and restart of discharge lamps under certain

conditions, operation of power system control devices like protective relays, tap

change transformers, exible AC transmission devices. A composite load model

representation is shown in Figure 2.2.

Consider the power system load response after a voltage disturbance; after the

system voltage returns to a stable post disturbance level, the magnitude of the

particular load power will recover to a new state following di�erent recovery char-

acteristic curves. The general load response is given in Figure 2.3 [64]. from which
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Figure 2.2: Example of Mixed Load

it can be seen that:

� Load drop immediately after the voltage step drop;

� After the sudden drop, if no voltage collapse, the load begins to recover to a

post disturbance state;

� The trajectory of load recovery can be di�erent depending on the load dynamic

characteristics;

� Finally, the load will retain a stable level which is di�erent from the predis-

turbance one.

To formulate the load model in a general form, the state model is given in [64], as

having the general form

_x = f(x; V ) (2.13)

Pd = gp(x; V ) (2.14)

Qd = gq(x; V ) (2.15)

where x is a vector of state variables. For example, x can be the slips of induction

motor. f and g describe the dynamic and static aspects of the load model. This

model can be used in voltage stability studies. The input output (I-O) version of

this general load model can take the form as given in the equations below [64]:

_P + fp(Pd; V ) = gp(Pd; V ) _V (2.16)

_Q + fq(Qd; V ) = gq(Qd; V ) _V (2.17)
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Figure 2.3: General Load Response

The general model steady state property is de�ned by _P = 0, _Q = 0, and _V = 0,

i.e. fp(Pd; V ) = 0 or fq(Qd; V ) = 0. The transient property is given by the function

gq(Qd; V ). A higher order I-O version load model has been used to examine power

system load oscillatory stability problems [127]. In order to formulate a load model

suitable for control and stability studies, the I-O form can be converted to the state

variable form. The state need not have direct physical meaning, and the model

equations therefore represent an aggregate load of the system.

Based on the recovery properties of load models, speci�c models are considered.

The exponential recovery load model -see Figure 2.4- takes the I-O form

Tp _Pd + Pd = Ps(V ) + TpPt(V ) _V (2.18)

(2.19)

where Tp is the recovery time constant de�ning the load response after a voltage step

change, Pd is the power demand, and Ps, Pt de�ne steady state and transient load

behavior respectively. For this model, if we de�ne the transient load characteristic
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Figure 2.4: Exponential Recovery Load Model Recovery Characteristics

by Pt(V ) =
R V
0 pt(t)dt + Const: and compose a state variable xp as xp = Pd � Pt,

then the state form model can be derived as:

Tp _xp = �xp + Ps(V )� Pt(V ) (2.20)

where the formulation for Ps and Pt can take an exponential form such as: Ps(V ) =

P0(
V
V0
)�s and Pt(V ) = P0(

V
V0
)�t. V0 is the nominal bus voltage and P0 is the corre-

sponding load power. Similar formulation applies to reactive load power modeling.

The range of value for the constants �s, �t and Tp depends on di�erent types of load

to be studied. For induction motor dominated loads such as industrial, air condi-

tioning systems, or a metal smelter, the time constant Tp is in the range of up to one

second. For some control devices, such as tap changers Tp can be several minutes.

For heating loads, Tp can be in the units of hours, while the voltage index constant

�s and �t can be within 0 to 2 and 1 to 1.25 respectively [64, 74, 84, 117, 118]. For

a control property viewpoint, the block diagram of the exponential recovery load

can be easily derived as follows.

For small signal stability analysis, the model needs to be linearized around some



40 Chapter 2. Power System Modeling and Bifurcation Analysis

1

.

T s + 1
V P+

+

Σ
p

P ( )t

d.P ( ) - P (  )s t .

Figure 2.5: Exponential Recovery Load Model Block Diagram

operational points, so that afterwards, the load model can be included in the system

linearized dynamic equations to help build the state matrix or Jacobian for eige-

nanalysis. The linearization results in the following equations for the exponential

recovery load model:

Tp� _xp = ��xp +
P0

V0
(�s � �t)�V

�xp = Pd � Pt(V )

After simpli�cations of the above equations, the linearized model is:

�Pd =
P0

V0
�s

�t
�s
Tps+ 1

Tps+ 1
�V

where � as usual represents a small variation of associated variables. It can be

observed that the linearized load tends to di�erent values at di�erent frequencies,

i.e.,

lim
s!0

�Pd =
P0

V0
�s lim

s!1
�Pd =

P0

V0
�s

The inuence of load model parameters on load dynamic behavior have been studied

in detail in [117, 118].

A similar model, the adaptive load model has similar recovery characteristics to the

exponential one. The adaptive load recovery curve after a voltage step change is

given in Figure 2.6, and the model equations are listed below, [64, 118]

Tp _xp = Ps(V )� Pd = Ps(V )� xpPt(V ) (2.21)

Tq _xp = Qs(V )�Qd = Qs(V )� xpQt(V ) (2.22)
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where Pd, Qd are greater than zero. The state form model can be transformed into

the I-O form as [68]:

Tp _Pd + Pt(V )(Pd � Ps(V )) = TpPd
pt(V )

Pt(V )
_V (2.23)

This adaptive load model does not make much di�erence in the load recovery re-

sponse, although, it does make signi�cant di�erence while considering its algebraic

equation solvabilities. Such di�erences relate the fact that in the exponential re-

covery model, xp is added to other loads, while in the adaptive recovery model, xp

is multiplied with transient load power [68].
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Figure 2.6: Adaptive Recovery Load Model Recovery Characteristics

To sum up, both of the recovery load models feature a similar recovery behavior.

Besides the general characteristics mentioned above, we observe:

� The recovery trajectory of load power follows an approximately exponential

law;

� The time constant, and other model constants a�ect the load power recovery

behavior in an nonlinear way;
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� The value of voltage step change also a�ects the recovery time in a relationship

function de�ned by Equations (2.18,2.20,2.21,2.22,2.23).

The load models given above are summarized for comparison in the form of general

load models, see Table 2.1.

For a real power system study, the load is very complicated; typically, there can

be loads of di�erent kinds. To study the mixed load inuence on system stabil-

ity properties, the load model of devices such as induction motors, tap changing

transformers will be studied later.

Genetic Load Models

Steady-State Transient

1 Exponential Pd = Ps(V ) Pd =
1
Tp
x(0�) + Pt(V )

Recovery

2 Adaptive Pd = Ps(V ) Pd = x(0�)Pt(V )

Recovery

3 General a(x; V ) = 0 Pd = bp(x(0
�); V )

State bp(x; V ) = Pd

4 General fp(Pd; V ) = 0 dPd = gp(Pd; V )dV

IO

Table 2.1: Comparison of Genetic Load Models (for Real Power)

2.4 Power System Modeling

Power system modeling requires modeling of all the system components including

generators, transmission lines, transformers, loads, and other control devices/systems

as discussed above. Since all stability analysis will be based on the system model,

here the complete system model composed of di�erential and algebraic equations

will be discussed.

A complete power system modeling approach involves forming the overall system

equations in the form of di�erential algebraic equations (1.1) or (1.2) and are rewrit-

ten below:

_x = f(x; z; �)
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0 = g(x; z; �)

where x is the vector of state variables, z is the vector of algebraic variables, and � is

the vector of system parameters.The di�erential equation set includes the dynamics

of generators, excitation systems, load dynamics, and the algebraic equation set

includes load ow equations and other algebraic relations of system components.

However, for small signal stability analysis, linearization is needed to eliminate the

algebraic part of the system equations. Linearization yields

� _x =
@f

@x
�x +

@f

@z
�z

0 =
@g

@x
�x +

@g

@z
�z

Then the system Jacobian Js =
@f
@x
� @f

@z
(@g
@z
)�1 @g

@x
can be used for stability analysis

via its eigenanalysis. For a power system, the matrix Js can be of very large scale,

because of contributions from the equations describing di�erent network devices.

For accurate small signal stability analysis, all relevant system dynamics should be

included in the system model. The analysis of the system model requires e�cient

computation techniques and algorithms for di�erent aspects of small signal stability

problems.

In power system modeling studies, the parameter values are chosen as �xed values or

within a certain range because the measurement of actual system parameters is very

di�cult. In particular, the load parameter values are di�cult to obtain due to the

large number of load components, the inaccessibility of certain customer loads, load

compensation variation, and uncertainties of many load component characteristics.

2.5 Bifurcations and Power System Stability

This section begins consideration of stability boundaries and their characteristics

in terms of bifurcations in the di�erential equation models. In order to sustain a

power system in stable and reliable operation, the operating point must lie within

a certain boundary or a limit space composed of power system parameters and

control variables. The boundary can be very complicated. It is possible to study the

surface via cut sets, for example, the cut set of selected power system load powers,

the cut set of power system PSS gains. These cut sets will be named as power
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system security boundaries. All the points on the security boundary fall into one or

more of the categories of the stability characteristic points which include load ow

feasibility boundaries, saddle node and Hopf bifurcations, and singularity induced

bifurcations. The load ow feasibility boundaries are related to system load ow

solvability, and all of the bifurcation characteristic points can be associated with

system Jacobian eigenvalue attributes.

To explore these small signal stability boundary characteristic points, �rst the power

system model will have to be composed, then the system Jacobian or state matrix

should be calculated for stability eigenanalysis. Since a power system is a very large

nonlinear system, the problem of �nding all these characteristic points is not easy.

E�cient numerical methods will be needed to perform these analyses.

Before going into the detail of the speci�c system operation and stability boundaries,

the concept of a variable parameter space will be briey presented. The space

spanned by all power system parameters can be functionally divided into a set of

system parameters which do not change during system operation and the set of

operating parameters which can change during system operation. If a parameter

changes during operation, the system state will change accordingly. Generally,

particular change in the system state is associated with one or more particular

parameter changes. There are relationships between system parameter changes

and system equilibrium state variation, but the qualitative behavior of the system

state space remains the same within each region in the parameter space. These

boundaries may include load ow feasibility limits, and bifurcation boundaries.

These boundaries divide the parameter space into several typical regions in which

the structure of the state space remains identical. It includes the static properties

and dynamic local properties as well as the dynamic global properties such as the

stability boundary [142].

The notation of feasibility region in the parameter space is de�ned as the set of

all operating points in the parameter space which can be reached by quasi static

parametric variations as part of the system operation [142]. The system opera-

tion can be shifted freely while remaining stable under slow, continuous parameter

changes. However, the size of the region of attraction normally decreases as the

system operation point approaches the feasibility boundary [22].
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2.6 Model Linearization and System Jacobian

To study a power system small signal stability problem, an appropriate linearized

model for the machine and load dynamics is required. They include generator and

excitation system di�erential equations, stator and network algebraic equations.

These equations build up the set of di�erential-algebraic equations are rewritten

here for clarity,

_x = f(x; z; p)

0 = g(x; z; p) (2.24)

In the equation (2.24), x is the vector of state (di�erential) variables, z is the vector

of algebraic variables, p is the vector of speci�ed system parameters.

In small signal stability analysis, the set (2.24) is then linearized at an equilibrium

point to get the system Jacobian and state matrix. The structure of the system

Jacobian Js is shown in Figure 2.7 [98], where Jlf stands for the load ow Jacobian,
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Figure 2.7: Structure of the System Jacobian.

J11 = @f=@x, J12 = @f=@z, J21 = @g=@x and J22 = @g=@z are di�erent parts of J

corresponding to di�erential and algebraic variables. In Figure 2.7, Qgen stands for

the reactive power at generator buses, Psb is the active power at the swing bus, �

is the vector of machine rotor angles, ! is the vector of machine speeds, � is the

vector of the state variables except � and ! (such as E 0
q, E

0
d, EFD, VR, and RF ; load
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bus voltages Vload and angles � should be considered as dynamic state variables in

cases where load dynamics is considered [98]), id and iq are vectors of d-axis and

q-axis currents, and Vgen stands for generator bus voltages. The pre�x � means a

small increment in corresponding variables.

From the information provided by the structure of the state matrix or system Ja-

cobian, bifurcation and other stability characteristic conditions can be studied.

2.7 Load Flow Feasibility Boundaries

The power system load ow feasibility region de�nes the solvability of the load

ow equations in the parameter space which is bounded by the load ow feasibility

boundary [52]. The power system must operate within its load ow feasibility

boundary. For a system composed of 1 slack bus, ng generator and voltage controlled

buses, and nld load buses, the system load ow conditions are described in the

equations below:

(1) Swing bus equation:

~V1 = V1 6 �1 (2.25)

(2) Generator bus [P-V bus] load ow equations:

0 =
Vi
X 0

di

(E 0
qi sin(�i � �i)� E 0

di cos(�i � �i))

�Vi

ngX
j=1

Vj(gij cos �ij + bij sin �ij) (2.26)

0 =
Vi
X 0

di

(E 0
qi cos(�i � �i) + E 0

di sin(�i � �i)� Vi)

�Vi

ngX
j=1

Vj(gij sin �ij � bij cos �ij) (2.27)

(3) Load bus [P-Q bus] load ow equations:

0 = PLk � Vk

nldX
j=1

Vj(gkj cos �kj + bkj sin �kj) (2.28)

0 = QLk � Vk

nldX
j=1

Vj(gkj sin �kj � bkj cos �kj) (2.29)

where ~V1 is the swing bus voltage vector; generally it can be taken as ~V1 = 16 0, and

SLk = Plk + jQlk is the complex injected load at bus k, (k = 1; 2; :::; nld). Also note
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that in the equations above, saliency e�ects, and rotor resistance of machine have

been neglected, i.e. assume X 0
d = X 0

q and Rr = 0.

For the classic 3-machine 9-bus power system [6] which contains 3 generators, and

9 buses where 3 are loaded. The system is given in Figure 2.8.

1

2 3

1

4

5 6

7 9

8 32

A B

C

Figure 2.8: The 3-machine 9-bus system

If the active loads at buses 5, 6, and 8 are increased simultaneously, the load

ow gives the following Figure 2.9. The load ow feasibility region is Dlf =

fP5; P6; P8jP5 � 3:007 p:u:; P6 � 2:6508 p:u:; P8 � 2:7618 p:u:g. Within the range

Dlf , the system has load ow solutions, which can be stable or unstable depend-

ing on the stability analysis. Generally, the upper P � V curve branch is a stable

branch, and the lower one is unstable. It seems that the straightforward method

to obtain the load ow feasibility points is by consistently solving many load ow

problems, and �nding the nose point where the limit lies. However, more e�cient

methods of locating the load ow feasibility boundaries will be discussed in later

chapters.

There are many studies concerning the load ow feasibility boundary, which is also

known as the load ow singularity boundary because the load ow Jacobian is

singular on it, i.e. det J(x; p)lf jz2Dlf
= 0. The space of the boundary can be in

nodal powers [67], synchronous machine parameters, bus voltages, control system



48 Chapter 2. Power System Modeling and Bifurcation Analysis

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Active Load at Bus 5, (p.u.)

B
us

 V
ol

ta
ge

 M
ag

tin
ud

e,
 (

p.
u.

)

Figure 2.9: Load ow solution of the 3-machine, 9-bus system.

parameters, and combination of these parameters.

Small signal stability analysis is based on system equilibrium points. For a power

system, the equilibrium point is a load ow solution point. In fact all stability

questions will have to be based on a solution of load ow conditions. As usual, the

P �V or Q�V curve reveals that the load ow feasibility limit corresponds to the

nose point of these curves (for consistent power loads). Beyond the feasibility limit,

there will be no power ow solutions, and it represents that no physical operation

is possible.

Inside the load ow feasibility boundary, the system behavior can be further divided

into several stability regions by di�erent characteristic stability boundaries, which

are described by bifurcation boundaries. The system retains a similar stability

property within each region speci�ed by a certain bifurcation boundary; crossing

a bifurcation boundary, the system will experience signi�cant property changes.

It may lose stability, may change from a stable oscillatory operation state to an

unstable oscillatory operation state, or vice versa, and in the case of a singularity

induced bifurcation, the system behavior may become totally unpredictable.
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2.8 Bifurcation Conditions and Power System Sta-

bility

In the remaining sections, we review the common local bifurcations occurring in

power system models. For easy presentation of the bifurcation theory, let us take a

nonlinear system described by the equation,

_x = f(x; �) (2.30)

where x � Rn is a vector of the system state variables, and � is a vector of system

parameters which may be varying slowly and continuously. � here is called the

bifurcation variable because the slow continuous change of values of � may result

in bifurcation, which is qualitative change in system behavior. This change can

happen suddenly, and after that the system may lose stability, or begin oscilla-

tion. Di�erent bifurcations corresponding to di�erent system behaviors. For power

system stability analysis, saddle node bifurcations, Hopf bifurcations, singularity

induced bifurcations, cyclic fold, period doubling, and blue sky bifurcations are

of particular importance. The system behavior after these bifurcation have been

studied in many literatures, for example in [32, 139, 145].

Local bifurcation analysis is based on the neighborhood of the system's equilibrium

point, which is the solution of,

0 = f(x; �) (2.31)

for equation (2.30) when _x = 0. The equation (2.31) corresponds to the load ow

equations [96]. A static bifurcation point, which is a bifurcation of system equilib-

rium points are associated with the dynamic bifurcation, i.e. a bifurcation of vector

�elds. A static bifurcation occurs when two or more equilibrium points coincide. A

Hopf bifurcation occurs when a periodic solution emerges from a stable equilibrium;

it can be a stable oscillation or unstable oscillation depending on the direction of

eigenvalue transversality condition. Unlike the regular oscillations associated with

dynamic bifurcations, chaos exhibits irregular oscillations. It is a result of a global

bifurcation which is characterized by the system's non-local change in its phase

portrait [49, 136].

When some of the system parameters vary slowly and continuously, the system

slowly adjusts its operation equilibrium points to match the parameter change
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within its stability boundaries composed by the load ow feasibility boundaries

and bifurcation points. Then, as the parameter variation continues the system may

undergo a sudden change in state and become unstable. Di�erent bifurcations re-

sult in di�erent system behavior and require di�erent techniques to locate them.

We will discuss the properties in the following section.

2.9 Saddle Node Bifurcations

One of the most important bifurcations is the saddle node bifurcation (SNB), which

has found wide application in power system stability studies. A SNB occurs when

the system Jacobian becomes singular,i.e. det@f
@x

= 0. More speci�cally [46], let x�

and �� denote the system equilibria. x is to bifurcate from x� at the parameter

value �� if two distinct solutions emerge at x� as � varies toward ��. The stable

equilibrium point disappears in a SNB. The de�nition and characterization of a

saddle node bifurcation is given in the following result [61].

Theorem 1 Assume that for � = �� system (2.30) satis�es the following hypothesis

at an equilibrium point y�,

i @f
@x
(x�; ��) has n�1 eigenvalues with negative real part and a simple eigenvalue

0 with right eigenvector v and left eigenvector w.

ii wT ((@f
@�
)(x�; ��)) 6= 0

iii wT ((@
2f
@x2
j�)(v; v)) 6= 0

Then there is a smooth curve of equilibria passing through (x�; ��), tangent to Rn�

��. Depending on the signs in ii and iii, there are no equilibria near (x�; ��) when

� < or > ��, and two hyperbolic equilibria, one stable and one type-1, when � <

or > ��.

From the above theorem, the conclusion can be made that the system Jacobian has

exactly one zero eigenvalue, and all other eigenvalues have negative real parts. This

is the necessary conditions for locating SNBs. SNB can be depicted by the Figure

(2.10). Theoretically, SNB can occur between a stable equilibrium point and a type

1 unstable equilibrium point as well as between unstable equilibrium points, even

if the latter is of no real practical interest.
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Figure 2.10: Saddle Node Bifurcation: i. Bifurcation Curve, ii. Eigenvalue Trajec-

tory.

In power systems, saddle node bifurcations are associated with collapse type insta-

bilities. For example, in the load ow P-V or Q-V curve, the system comes to its

saddle node bifurcation point when it is being stressed to it's power transfer limit.

The SNB point is also called the PoC point at which two distinct solutions emerge

into one solution, and the load ow Jacobian becomes singular. There is no solution

beyond the SNB point. The system will exhibit voltage collapse immediately after

being perturbed beyond the point if the emergency control action fails.

It should be noted that saddle node bifurcations of the load ow function will not

occur if the power system is operated well within its steady-state stability limits.

The saddle node bifurcation can provide indices to estimate the distance from the

current operating point to the bifurcation boundaries. The smallest eigenvalue, or

critical eigenvalue of the linearized system, or the eigenvector can be used to build

a distance in the parameter space to prevent instability [42, 43, 44, 49].

Regarding the characteristics of power systems, let us represent it by di�erential

and algebraic equations (DAE's) which are rewritten here for clarity:

_x = f(x; z; �) (2.32)

0 = g(x; z; �) (2.33)
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The eigenanalysis procedures require �rst that we solve the equations and so �nd

the equilibrium points (x�; z�; ��), which satisfy:

0 = f(x; z; �)

0 = g(x; z; �)

The set of equations above can be referred to as 'load ow' equations, although prac-

tical load ow calculation may use di�erent models, based on di�erent assumptions

[96]. Then linearization of the equations at the equilibrium point gives,

� _x =
@f

@x
�x +

@f

@z
�z

0 =
@g

@x
�x +

@g

@z
�z

Then form the reduced system Jacobian by Js =
@f
@x
� @f

@z
(@g
@z
)�1 @g

@x
j�. This Jacobian Js

is then analyzed based on its eigenproperties including left and/or right eigenvalues,

and the corresponding eigenvectors.

As stated earlier, bifurcation occurs as a result of system parameter constant slow

variation. The variation should be slow enough so that the system will stay in its

equilibrium conditions without major property change until a bifurcation is met.

Then the system suddenly undergoes qualitative change in its dynamic properties.

A saddle node bifurcation occurs when the system Jacobian is singular, i.e. det Jsj� =

0. If the Jacobian is by chance a load ow Jacobian, Jlf then the load ow saddle

node bifurcation occurs, which coincides with the load ow feasibility boundary.

However, not all saddle node bifurcations are load ow singularity points. Only

under certain conditions, where many simpli�cations have been assumed, do these

two kinds of characteristic points coincide [132, 143].

Before going into the mathematical aspects of saddle node bifurcation conditions,

the system equations in (2.32{2.33) shall be replaced for simpli�cation by F (x; �) =

0, where F includes f and g, and the vector x in the function F (x; �) is merged

with the vectors x and z in equations (2.32{2.33). Note that this simpli�cation does

not a�ect the bifurcation analysis to be performed [107].

Basically, there are two approaches to locating saddle node bifurcations: the direct

or point of collapse method, and the continuation method. They will be studied

later in the thesis. The mathematical description of the saddle node bifurcation can
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be shown in the equations

F (x; �) = 0 (2.34)

@F (x; �)

@x
v = 0 or wT @F (x; �)

@x
= 0 (2.35)

jjvjj = 1 or jjwjj = 1 (2.36)

where v, w 2 RN is the left and right eigenvector of the Jacobian, @F (x;�)
@x

. Solution of

these equations is used in the direct approach, i.e. the solution of the equations gives

the saddle node bifurcations directly. A nontrivial condition is ensured by equation

(2.36) and the equilibrium constraints condition is given by equation (2.34). The

solution of the problem can be obtained by applying the Newton-Raphson-Seydel

method to the equations (2.34{2.36). Neighboring equilibrium points very close to

the saddle node bifurcation point can be calculated by solving the equations,

F (x; �) = 0 (2.37)

(
@F (x; �)

@x
� "I)v = 0 (2.38)

where I is the identity matrix of the same order as @F (x;�)
@x

, " 2 [�"a; "b] and "a; "b >

10�12. It is evident that " = 0 corresponds to the bifurcation solution point itself

[96].

When a saddle node bifurcation occurs, the system may experience a static type of

voltage collapse or angle instability beyond the limit determined by the SN bifur-

cation.

Saddle node bifurcations have become a well accepted means to de�ne indices for

voltage instability. The most common way to build indices is in terms of some

measures of the singularity of @F
@x
. Also, the saddle node bifurcation points of the

load ow Jacobian help locating the load ow feasibility boundary.

2.10 Hopf Bifurcation Conditions

Another important kind of bifurcation is the Hopf bifurcation (HFB). This bifurca-

tion corresponds to emergence of a periodic solution from an equilibrium point of

the equation (2.30); in this way, the HFB is responsible for power system oscillatory

behavior. At a HFB point, the system Jacobian has a pair of imaginary eigenvalues
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Figure 2.11: Hopf Bifurcations: (solid line - stable solution branches, dotted line -

Unstable solution branches.)

1. [left] Stable limit cycle for supercritical Hopf bifurcation;

2. [right] Unstable limit cycle for subcritical Hopf bifurcation;

passing the imaginary axis, and no other eigenvalues with non negative real part.

These two pure imaginary eigenvalues result in the system's oscillatory modes, de-

pending on the direction of a transversality condition stated below [1, 3, 136],

Theorem 2 For the equation (2.30), where x � Rn, the following conditions de-

�nes Hopf bifurcation at the equilibrium point given by y� and ��,

i. f(x�; ��) = 0

ii. Jacobian @f(x;�)
@x

j(x�;��) has a simple pair of purely imaginary eigenvalues

� = 0� i� and all other eigenvalue with negative non-zero real parts.

iii. d(<�(�))
d�

j�� 6= 0

Then there is a birth or death of limit cycles at the point (x�; ��) depending on the

sign of equation iii. The initial period of the generated limit cycle is T0 =
2�
�
.

A HFB can be supercritical or subcritical. A supercritical Hopf bifurcation has neg-

ative sign for the derivative in iii. The periodic solution branch is initially stable

for the supercritical case. On the other hand, a subcritical Hopf bifurcation is as-

sociated with an unstable periodic solution branch. The periodic solution branches

of these two kinds of Hopf bifurcation are given in Figure (2.11).

Moreover, the Hopf bifurcation theorem shows the existence of small amplitude of

oscillations for � near ��. It is adapted from [62], and is given below as Theorem 3,

Theorem 3 The Hopf bifurcation theorem,
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i. [Existence] There is �H > 0 and a Cr�1 function �(�) = �0 + �2�
2 +O(�3),

such that for each 0 < � � �H, there is a nonconstant periodic solution y�(t) of

equation (2.30) near the equilibrium y�(�) for � = �(�). The period of y� is a C
r�1

function T (�) = 2���1[1 + T2�
2] +O(�3), and its amplitude grows as O(�).

ii. [Uniqueness] If �2 6= 0, there is a �1 � (0; �H ] such that for each � � (0; �1],

the period orbit y� is the only periodic solution of equation 2.30 for � = �(�) lying

in a neighborhood of y�(�(�)).

iii. [Stability] Exactly one of the characteristic exponents of y�(t) approaches

0 as � ! 0 , and it is given by a real Cr�1 function �(�) = �2�
2 + O(�3). the

relationship �2 = �2�0(�0)�2 holds. Moreover, the periodic solution y�(t) is or-

bitally asymptotically stable with an asymptotic phase if �(�) < 0 but is unstable if

�(�) > 0.

If �2 6= 0, then the periodic solution z�(t) occurs for either � > �0 or � < �0.

Accordingly, the Hopf bifurcation is said to be supercritical for � > 0 and subcritical

for � < 0.

For power system analysis, Hopf bifurcations may be provided by many sources

including excitation control, nonlinear damping, load changes, losses of the trans-

mission line, frequency dependence of the electric torque. There are many examples

of Hopf bifurcations reported in the literature [49, 1, 12, 47, 125, 145, 150]. Hopf bi-

furcations of nonlinear systems can be studied by the computer packages AUTO and

BIFOR2 [145]. Generally, a Hopf bifurcation may happen typically as a subcritical

bifurcation where the operating point is stable, but its region of transient stability

is reduced by the surrounding unstable periodic orbit. In some cases, a Hopf bi-

furcation exists with other bifurcations, and they can reduce the system operation

security domain. Numerical methods computing Hopf bifurcation boundaries will

be addressed later in the thesis.

A Hopf bifurcation is characterized by a pair of pure imaginary eigenvalues passing

the imaginary axis in the complex plane while all other eigenvalues remain on the left

side of the complex plane. Di�erent Hopf bifurcations are associated with di�erent

oscillatory behaviors. It has long been observed that badly damped low frequency

inter-area oscillations can take place in complicated power systems, and they can

reduce power transfer capabilities [27]. Such cases appear in bulk power systems for

large separated subsystems which are coupled by long transmission lines, as well as
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for post contingency operating conditions [27, 137].

In accordance with the de�nition of the Hopf bifurcation, which feature a pure pair

of imaginary eigenvalues 0� j! of the system Jacobian Js =
@F (x;�)

@x
j(x0;�0), the Hopf

bifurcation condition gives [136]:

Jsv = j!v (2.39)

where complex eigenvector v = v0 + jv.

Separating the real and imaginary parts, which gives,

Jsv
0 = �!v00 , Jsv

00 = !v0 (2.40)

After formulating the equation for vector operation, and normalization of the eigen-

vector v, the power system [described by DAE's] equilibrium point is considered

Hopf bifurcation point when it satis�es the equations which follow. Note here,

the system Jacobian Js is the reduced form from the DAE approach, i.e., Js =
@f
@x
� @f

@z
(@g
@z
)�1 @g

@x

F (x; �) = 0 (2.41)

JTs (x; �)v
0 + !v00 = 0 (2.42)

JTs (x; �)v
00 � !v0 = 0 (2.43)

v0k = 1 (2.44)

v00k = 0 (2.45)

where 0+j! is the eigenvalue corresponding to the Hopf bifurcation, and v = v0+jv00

is the corresponding left eigenvector, superscript T indicates transpose of the matrix

Js, and the last two equations give the nontrivial condition provided by the k-th

element of eigenvector v.

Solving the above equations with the Newton-Raphson-Seydel method produces

the Hopf bifurcation points in the parameter space. This approach of locating Hopf

bifurcations is a direct method. The parameter continuation method will be used

later in the thesis to explore the Hopf bifurcation boundary in the parameter space

as part of the power system security boundary.

Depending on the stability of the periodic solutions arising from the bifurcation,

supercritical and subcritical Hopf bifurcation can be identi�ed. A stable oscillatory
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orbit, or an unstable oscillation is the result of system operational behavior after

these two kinds of Hopf bifurcations respectively. There are nonlinear control meth-

ods to prevent the system from voltage collapse after subcritical Hopf bifurcations.

It requires precise switching of control actions after subcritical Hopf bifurcation

occurs.

Hopf bifurcation studies have been paying more and more attention to their e�ects

on system stability, because the system may lose its stability well before the point

of collapse is reached. This can be initially an oscillation event and �nally lead to

system failure. What's more, subcritical Hopf bifurcations can reduce the system

security operation limit, because of its property of introducing unstable system

oscillatory behavior.

2.11 Singularity Induced Bifurcations

The singularity induced bifurcation (SIB) is another important bifurcation in power

system small signal stability analysis. This kind of bifurcation is charactered by un-

bounded system Jacobian eigenvalues at the equilibrium point [142]. The eigenvalue

motion is given in Figure (2.12). The theorem about singularity induced bifurcation

Re

Im

8− 8+
0

8

Figure 2.12: Singularity Induced Bifurcation Eigenvalue Trajectory

is given as Theorem 4, which is adopted from [142].

Theorem 4 Singularity Induced Bifurcation Theorem

For the system given in equations (2.32,2.33) with a 1-D parameter space, assume

the following conditions are satis�ed at (0; 0; �0):
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i. f(0; 0; �0) = 0, g(0; 0; �0) = 0, @g
@z

has a simple zero eigenvalue and

trace(@f
@z
adj(@g

@z
) @g
@x
) 6= 0.

ii. The system Jacobian

0
@ @f

@x
@f
@z

@g
@x

@g
@z

1
A is nonsingular.

iii. The system's expended Jacobian

0
BBB@

@f
@x

@f
@z

@f
@�

@g
@x

@g
@z

@g
@�

@�
@x

@�
@z

@�
@�

1
CCCA is nonsingular. Where

� = det @g
@z
.

Then there exists a smooth curve of equilibria in Rn +m+ 1 which passes through

(0; 0; �0) and is transversal to the singular surface at (0; 0; �0). When � is increased

through �0, one eigenvalue of the system reduced Jacobian ~J moves from C� to C+

or reverse along the real axis passing through inf. The other (n � 1) eigenvalues

remain bounded.

The eigenvalue movement is shown in Figure 2.12.

A singularity induced bifurcation is the result of singularity of the algebraic part

of the linearized power system DAE's model. At this bifurcation point, one of the

system state matrix or Jacobian eigenvalues becomes in�nity while others remain

bounded. The system behavior can not be predicted close to this point, since the

relationship between algebraic and di�erential parts of the system is broken. It is

also impossible to simulate the system behavior around the vicinity of this point

for a power system represented as DAE's [98, 142].

2.12 Power System Feasibility Regions

Besides above stated loadow feasibility limits, and several types of bifurcations,

power system stability and/or feasibility regions are often de�ned by the so called

feasibility regions or steady-state stability limits.

As a typical large scale system, power system is composed of large number of devices

and controls. Their limits have introduced the feasibility regions or steady-state

stability limits. These limits are usually associated with the so called limit-induced

bifurcations in the literature [42]. They occur in power systems when the system

device reaches its limits and failed to provide further control or supply to the system,
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then the system may undergo sudden loss of stability or voltage problem. One

example of such kind of feasibility regions is the immediate loss of stability and

subsequent voltage collapse due to loss of voltage control when reactive power limits

are reached at generator models. The reactive power limits are revealed by armature

current or �eld voltage limits. In real power systems, these feasibility regions often

de�nes the system operational stability and/or feasibility regions.

2.13 Conclusion

Adequate power system modeling is necessary for system stability assessment. The

major system equipment/devices may have an important impact on system sta-

bility behavior. They must be considered in power system stability studies with

su�ciently detailed models. These devices include, generators and their excitation

control system - including AVR and PSS, generator current limiters, transmission

lines, loads, transformers and tap changers, SVCs and other FACTS devices as well

as HVDC links. System stability analysis using static approaches which involves

computation of eigenvalues and eigenvectors, such as model analysis of the reduced

Jacobian matrix saves computation costs, and may provide su�cient insight into

the mechanism of instabilities. On the other hand, based on the models provided,

time domain simulations may be used as the decisive method to study fast transient

dynamics.

The static bifurcations are common even in very simple power systems. They are

results of solutions merging at the equilibrium points because of parameter or nodal

power changes. Hopf bifurcations are associated with system oscillatory behavior.

They result in emergence of stable or unstable limit cycles. It is important for

power system analysis to study the Hopf bifurcations at equilibrium points. This

kind of bifurcation is also very common in power system dynamics. Chaos which

has been observed in simulations of small size power systems, deserves further study

for practical power system analysis to prevent possible irregular system oscillations.

Later in the thesis, saddle node and Hopf bifurcations will be studied in detail

concerning their contribution to power system small signal stability properties, and

computational techniques for their determination.
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3.1 Introduction

Power system security operation requires that the system operates inside the secu-

rity boundary determined by di�erent criteria which include the load ow feasibility

limit, saddle node and Hopf bifurcations, singularity induced bifurcations and crit-

ical damping conditions. However, since the power system is very complicated, it

is essential to locate these security boundaries accurately for safe system operation.

The complexity of the power systems, make the task of locating critical stability

conditions very di�cult and time consuming. However only those closest to the

current normal power system operation point are of interest and the thesis will fo-

cus on obtaining these critical stability conditions. Before introducing approaches

to obtain the critical stability conditions in a given loading direction, we review a

method which is straight forward extension of those used in practice.

3.2 Step-by-Step Loading Approach

This step by step approach starts from the current system operating point and in-

creases load in a direction de�ned by system loading conditions to solve the stability

problem up to the load ow feasibility point. For a given power system modeled as

_x = f(x; p) and 0 = g(x; p), the approach generally comprises the following steps

except for special additional stability condition calculations required:

1. Solve system load ow calculation based on current power system operating

conditions.

2. Select system parameters, p, which are of interest to de�ne the stability bound-

aries. These parameters are generally system nodal power(s) which give load

variation direction. The selected nodal powers can be load active or reactive

powers, machine generated active or reactive powers. These nodal powers

selected are generally considered as close to the stability limits, and tend to

cause system instability. Also the selected parameters can be control variables

which can be adjusted to prevent instability. These selected parameters build

up the space where stability boundaries lie in.

3. Vary the selected parameters in a certain direction in the space spanned by
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them. i.e. p = p0+ ��p, where p is the vector of selected system parameters,

� de�nes the direction of parameter variation, �p is a small variation of the

parameter vector. Note the variation is small enough so that small signal sta-

bility analysis can be used, and p0 is the current parameter value. Generally,

pn+1 = pn +�p gives a sequence of parameter changes.

4. Perform load ow calculation based on the new parameters after variation

alone the selected direction. Check if the system load ow feasibility boundary

is going to be met. If the system is close to point of collapse, special techniques

will have to be used to �nd the exact Point of Collapse (PoC) point.

5. Perform the system state matrix or Jacobian calculation for the linearized

system dynamic model based on the new parameters.

6. Calculated eigenvalues and eigenvectors of the state matrix or Jacobian, and

check if the eigenvalues are prone to bifurcation or other instability problem.

7. Categorize and record all indices for instability or oscillatory behaviors.

8. Repeat steps 1. {7. till load ow calculation does not converge, i.e. out side

of the load ow feasibility boundary.

9. Repeat the procedures 1. {8. for di�erent loading directions until the inter-

esting parameter(s) space(s) have been explored.

10. Analysis the recorded instability indices and instability points, locate the se-

curity boundary.

The method is rather straightforward, though very time consuming for computation.

The operator needs to try all possible direction of parameter variation in order to get

su�cient information about the stability characteristics. However, in some cases,

the system operator need only perform the calculation along a well selected weak

parameter variation direction based on experience and save much computation time.

3.3 Critical Distance Problem Formulation

Saddle node or Hopf bifurcations are useful concepts in analysis of power system se-

curity. The method here is to �nd the most dangerous directions for change of power
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system parameters which drive the power system onto the bifurcation boundaries.

The corresponding vectors in the space of parameters provide information about

stability margins and measures of system security as well as providing optimal ways

to improve the system security by variation of the adjustable available parameters

so that the system can operate away from stability boundaries.

The direct step by step loading variation approach is too expensive with computa-

tion to adequately achieve this. To save computation costs, and �nd more reliable

results will need more sophisticated methods. We now present a general formulation

of the problem of �nding closest points on the bifurcation boundaries.

Recall in Chapter 2, the power system structure preserving model is composed of

DAE's, which are rewritten below for completeness,

dx1=dt = f1(x1; x2; p) (3.1)

0 = f2(x1; x2; p) (3.2)

where x1 2 Rm is the dynamic state vector; x2 is a vector composing of other system

variables supplement to the full system state vector x = (xt1; x
t
2)
t 2 Rn; n � m; p is a

vector of controlled parameters; p can include any parameters of generators, control

units, loads and networks which can be varied in planning, tuning and control, and

whose inuence on the dynamic stability is to be analyzed.

After linearization around a certain operation equilibrium point (x; p), the system

state matrix or reduced Jacobian, Js, can be obtained by,

Js(x; p) = (f1)
0
x1 � (f1)

0
x2

h
(f2)

0
x2

i�1
(f2)

0
x1 (3.3)

which will be used for eigenanalysis. Also in order to simplify description, the

system equilibrium will be denoted as f(x; p) = 0, where x = fx1; x2g.

Provided all the information about system dynamic and static equations are given

as above, the points along the dynamic stability boundary for both aperiodic and

oscillatory type, can be described by the equations below,

f(x; p) = 0 (3.4)

Js(x; p) _r � j! _r = 0 (3.5)

where f(x; p) = [f t1(x; p); f
t
2(x; p)]

t, and _r = r0 + jr00 6= 0 is the right eigenvector of

Js(x; p), corresponding to the eigenvalue � = 0 + j!.
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Figure 3.1: The Critical Distance in the Space of Controlled Parameters.

The aim of the method is to �nd a point at the stability boundary closest to the

current operation point p0 in the parameter space of p as shown in Figure (3.1).

This point should satisfy the minimum distance condition:

fobj = jjp� p0jj ! min
x;p

(3.6)

and the constraints listed in equations (3.4),(3.5) plus a nontrivial condition by

setting the i� th element of one of the eigenvectors to be:

_ri = 1 + j0 (3.7)

The solution presented here has strong points of contact with with earlier work,

particularly in the Russian literature [85, 86, 88, 89] and work by Dobson [4, 42,

43, 47]. Some further re�nements have been made here.

To solve the optimization problem given by equations (3.4) {(3.7) the Lagrange

function method can be employed to transfer the constrained problem into an un-

constrained one. The Lagrange function takes the form given below,

L =
1

2
kp� p0k

2 + f t(x; p)v + [Js(x; p)r
0 + !r00]tl0 �

�[Js(x; p)r
00 � !r0]tl00 + (r0i � 1)w1 + r00iw2; (3.8)

where p 2 Rk, v 2 Rn, l0; l00 2 Rm, and w1; w2 2 R1 are Lagrange multipliers.
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The solution set fx; p; v; r0; r00; l0; l00; !; w1; w2g must satisfy the conditions below in

order to be extrema of the Lagrange function (3.8),

@L

@p
= p� p0 +

"
@f

@p

#t
v + [

@s

@p
]t = 0 (3.9)

where s(x; p) := r0tJs
t(x; p)l0 � r00tJs

t(x; p)l00

@L

@x
= J t(x; p)v + [

@s

@x
]t = 0 (3.10)

@L

@!
= r00tl0 + r0tl00 = 0 (3.11)

@L

@r0
= Js

t(x; p)l0 + !l00 + w1ei = 0 (3.12)

@L

@r00
= Js

t(x; p)l00 � !l0 � w2ei = 0 (3.13)

@L

@v
= f(x; p) = 0 (3.14)

@L

@l0
= Js(x; p)r

0 + !r00 = 0 (3.15)

@L

@l00
= Js(x; p)r

00 � !r0 = 0 (3.16)

@L

@w1

= r0i � 1 = 0 (3.17)

@L

@w2

= r00i = 0 (3.18)

where J(x; p) = (@f
@x
) is the Jacobian matrix of (3.4); ei = (0; ��; 1; ��; 0)t is the

i-th unit vector. The system (3.9) {(3.18) has k + 2n + 4m + 3 equations and

the corresponding number of unknown variables fx; p; v; r0; r00; l0; l00; !; w1; w2g. The

system is similar that used to �nd the locally closest Hopf bifurcation system given

in [42, Section 5]. There are some di�erences between [42] and the proposed set of

equations. The proposed system normally has lower dimension than the system in

[42], where all variables are considered as the dynamic ones (m = n); however, due

to this the corresponding set has k+6n+2 equations and unknown variables. But the

number of dynamic state variablesm is normally less than n. The next distinction is

that in [42] the saddle node bifurcations are eliminated from consideration; here they

can be obtained from (3.9) {(3.18) simply by putting ! = 0. Note that this method

as well as other direct methods meet computational di�culties from calculation of

the Jacobian matrix of either J or Js. Although approximations to these Jacobians

can be used, the equations may experience worse convergence problem while being

solved. Normally, continuation methods are su�cient to approximate the Hopf
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bifurcation points [23].

The equations (3.9) {(3.18) need to be studied carefully to obtain better under-

standing. First of all, the equations (3.15) and (3.16) are derived from equation

(3.5) by separating its real and imaginary parts. These two equations reveal that

for _r = r0 + jr 6= 0, the state matrix Js(x; p) has an eigenvalue with zero real part,

i.e. �i = 0 + j!, and the matrix [Js(x; p) � j!I] has a zero eigenvalue. Note that

the matrix I is a identity matrix of the same dimension as Js(x; p).

Theorem 1 The values of w1 and w2 in equations (3.12) and (3.13) are zero at

the solution points of equations (3.9) {(3.18), which means that _l = l0 + jl00 is the

left eigenvector of Js(x; p) corresponding to the eigenvalue of �i = 0 + j!.

Proof:

Suppose ! 6= 0, then from (3.15) {(3.18), r0 6= 0, and r00 6= 0. multiplying r00t by

equation (3.13),

r00tJs
tl00 � !r00tl0 � w2r

00tei = 0: (3.19)

From (3.15) r00tJs
t = !r0t, and from (3.17) r00tei = 0, one can conclude

!(r0tl00 � r00tl0) = 0: (3.20)

On the other hand, from (3.11),

r0tJs
tl0 + !r0tl00 + w1r

0tei = 0: (3.21)

As from (3.14) r0tJs
t = �!r00t, and from (3.16) r0tei = 1, one can get

!(r0tl00 � r00tl0)� w1 = 0: (3.22)

By comparison of (3.20) and (3.22), the conclusion of w1 = 0 can be drawn.

If multiply r00t by (3.11),

r00tJs
tl0 + !r00tl00 + w1r

00tei = 0: (3.23)

By substitution,

!(r0tl0 + r00tl00) = 0: (3.24)
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From (3.12),

r0tJs
tl00 � !r0tl0 � w2r

0tei = 0; (3.25)

�!(r0tl0 + r00tl00)� w2 = 0: (3.26)

By comparison of (3.24) and (3.26), one can conclude that w2 = 0. In case ! = 0,

there exist r0 6= 0, r00 = 0, and the fact that w1; w2 = 0 directly follows from equali-

ties (3.22) and (3.26). 2

Regarding equations (3.9) {(3.17), it can be concluded that as long as (3.10), (3.17),

(3.14) hold, and Js(x; p) has no equal eigenvalues, the equation (3.9) can be ex-

pressed as

p� p0 + 2(r0l0 � r00l00)[
@<(�i)

@p
]t = 0: (3.27)

This equation helps explain the meaning of (3.9) {(3.17). Equations (3.9) and (3.10),

represented as (3.27) with the help of (3.17), provide that the distance vector (p�p0)

has an opposite direction compared to the real part of the sensitivity vector [@<(�i)
@p

].

The dynamic stability domain is restricted by the surface where <(�i) = 0. The

sensitivity vector [@<(�i)
@p

]t is a normal vector with respect to the boundary. Thus:

Theorem 2 The critical distance vector corresponds to one of the normal vectors

of the stability domain boundary.

Proof:

Suppose that (x; p) satis�es (3.14). The Implicit Function Theorem gives

J(x; p)(
dx

dp
) + (

@f

@p
) = 0: (3.28)

By transposing of (3.28) and multiplying by v 6= 0, v 2 Rn,

[
dx

dp
]tJ t(x; p)v + [

@f

@p
]tv = 0: (3.29)

Let v satisfy (3.10). Then apply (3.10) and (3.29) in (3.9),

p� p0 + [
dx

dp
]t[
@s

@x
]t + [

@s

@p
]t = 0; or (3.30)

p� p0 + 2

(
@

@p

h
r0tJs

t(x; p)l0 � r00tJs
t(x; p)l00

i)t
= 0 (3.31)
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Consider the second term in (3.31). It is known that the sensitivity of eigenvalues

with respect to p is
@�i
@p

= ( _rt _l)�1 _rt[
@Js
@p

]t _l (3.32)

if all eigenvalues are di�erent. From (3.32),

(r0tl0 � r00tl00)
@<(�i)

@p
= r0t[

@Js
@p

]tl0 � r00t[
@Js
@p

]tl00 (3.33)

if (3.17) is true. In (3.31) all variables can be considered as independent ones, and

(3.31) becomes (3.27). 2

Equation (3.14) is the load ow equation which determines the system equilibrium

conditions. Equations (3.17) and (3.18) are non-trivial conditions to prevent solu-

tion convergence to trivial solutions at p = p0, and v; _r; _l; w1; w2 = 0.

The problem formulated in equations (3.9) {(3.18) is of large dimension, i.e. k +

2n+ 4m+ 3 as stated before, and thus carries with it di�culties for solution. This

large dimension requires more computational costs, which may result in unfavorable

e�ects on some of its practical applications. There are ways to reduce the dimension

of the problem:

� Reduce the system dimension by mathematical transformation.

As described in veri�cation of conclusions concerning equations (3.9) {(3.11),

it is possible to eliminate the vector v and equation (3.10). Then the sys-

tem dimension can be reduced to k + n + 4m + 3. Also, in case ! 6= 0, the

vectors r00 and l00 can be expressed by equations (3.13) and (3.16) and substi-

tuted into all other equations, thus reduces the system dimension further to

be k + n + 2m+ 3.

� Equivalence conditions can help reduce the system.

By an equivalence approach to the load ow condition in (3.14), the value

of n can be decreased. In addition, equivalence of the dynamic portion can

help reducing the value of m.
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� Sparse matrix techniques can be applied to deal with the Jacobian matrix.

The equations (3.9) {(3.18) contain many zero entries. The technique can

speed up computations to solve the problem.

The solutions to the problem (3.9) {(3.18) corresponding to points on the bifurcation

surface are characterized by <(�i) = 0. This surface can have a very complicated

structure, and may cause a series of problems while locating it. For a given point

p0 there are a set of vectors normal to the surface, and all of them are solutions

to (3.9) {(3.18). They represent local and global optima of the distance function

jjp�p0jj
2. To locate the closest one, proper choice of the initial value of the unknown

variables is a necessity. Further, the surface bounds domains with certain numbers

of non-zero real part eigenvalues, together with those with zero real part eigenvalues.

Solution of the system (3.9) {(3.18) can produce all of them, so special numerical

methods will be needed to get the right answer, i.e. �nd only the distance vectors to

the part of the surface which contains the domain with zero real part eigenvalues.

This numerical method requires checking of the determinant of matrix, i.e.. if

det(M(!�; p)) = 0. It will be discussed later in this chapter.

Newton-Raphson like methods are required to solve the problem (3.9) {(3.18), which

involves computation of the Jacobian matrices. In cases when the algebraic part

of the system equations f2 given in (3.2) are dependent on the parameter p, the

elimination of the state matrix (3.3) can cause a very complicated dependence

relationship between Js and p. Consequently, some parts of the Jacobian matrix of

(3.9) {(3.18) have to be computed numerically. The multiple recalculation of (3.3)

will take up lots of computation. Techniques employing higher order numerical

methods dealing with the problem can be e�cient by reducing the recalculations of

the Jacobian matrix. Two possibilities to help increase computation e�ciency are

to use (1) simpli�ed analytical representations of the state matrix for the equations

(3.9) {(3.18), or (2) the numerical calculation of the state matrix by di�erences of

the system states.



3.3. Critical Distance Problem Formulation 71

3.3.1 The Critical Distance Problem in The Space of Gen-

erator Control Gains

A particular task for locating the closest distances to the stability boundary is

studied to illustrate the methods of solution to the critical distance problem and

di�culties which may arise. The task is to de�ne the most dangerous change of

generator control gains which put the system close to or on the Hopf or saddle

node bifurcation boundaries. The solution presented here introduces a convenient

determinant minimization formulation for �nding a point on the stability boundary.

The critical distance vector in this case shows how close the current tuning of

control gains is to the stability boundaries. Projections of the critical distance

vector (p� p0) along pi, p = (p1; � � � ; pk)
t, indicate inuences of tunings on stability

properties. They give an alternative view of the parameter sensitivity concept. The

traditional understanding of sensitivity is (@<(�i)
@p

) taken at p = p0. It might give

misleading information as it is not clear which eigenvalue will cross the imaginary

axis �rst, and the sensitivity can change both its value and even its sign under large

changes of p. The critical distances based de�nition of sensitivity does not cause

these problems, and it gives another way of achieving locally optimal changes of p.

We �rstly derive the critical distance equations to a reduced form. The following

assumptions are made for the analysis:

� The gains p do not a�ect the load ow conditions, i.e. f2(x; p) is not dependent

upon p.

� Gains linearly appear in the dynamic state matrix, so that the state matrix

can be expressed as,

Js(p) =
kX
i=1

Jipi + J0 (3.34)

� The operating point p0 lies inside the stability domain, Re�i < 0; i =

1; � � � ; m.

From the �rst two assumptions, the Lagrange function (3.8) becomes

L = 0:5kp� p0k
2 + [Js(p)r

0 + !r00]tl0 �

[Js(p)r
00 � !r0]tl00 + (r0i � 1)w1 + r00iw2; (3.35)
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and the optimality conditions are reduced to

@L

@p
= p� p0 + [

@s

@p
]t = 0 (3.36)

@L

@!
= r00tl0 + r0tl00 = 0 (3.37)

@L

@r0
= Js

t(p)l0 + !l00 + w1ei = 0 (3.38)

@L

@r00
= Js

t(p)l00 � !l0 � w2ei = 0 (3.39)

@L

@l0
= Js(p)r

0 + !r00 = 0 (3.40)

@L

@l00
= Js(p)r

00 � !r0 = 0 (3.41)

@L

@w1

= r0i � 1 = 0 (3.42)

@L

@w2

= r00i = 0 (3.43)

where s(p) = r0tJs
t(p)l0 � r00tJs

t(p)l00. The system (3.36) {(3.43) has k + 4m + 3

equations and the same number of unknown variables. Equations (3.36) {(3.41) are

quadratic equations. The system given in equations (3.36) {(3.43) can be repre-

sented in a more compact form as

g(z) = 0; z = (pt; !t; r0t; r00t; l0t; l00t; wt
1; w

t
2)
t (3.44)

To solve (3.44), several stages are now proposed:

Stage A. Locate a Point of the Stability Boundary with ! ! !�

We aim to �nd the point on the stability boundary associated with the critical

distance to the boundary where an oscillatory mode becomes unstable, and the

frequency of the mode ! is close to a given pre-set value of !�. The value !� can be

chosen based on physical considerations. For example, if the inter-area oscillations

are to be studied, then !� should be taken from 0.1 to 1 Hz, which is the normal

range of inter-area oscillatory characteristic frequency.

To overcome the solution di�culties caused by the complexity of the bifurcation

surface, a good initial estimation of z in (3.44) is required. The desired point

satis�es [47, 136]

d(!�; p) := detM(!�; p) = 0 (3.45)
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where M(!; p) =

0
@ !I Js(p)

Js(p) �!I

1
A (3.46)

The fundamental point of this �rst step technique relies on the variation of p along

the gradient of d(!; p) to get p close to singularity of M(!�; p) as shown in equation

(3.45). It is realized by an iterative process given in the formula

p(i+1) = p(i) + �(i)rpd(!�; p
(i)) (3.47)

where �(i) is the step length at the i-th iteration, and rpd(!�; p
(i)) is the gradient

of d(!�; p)) computed at p = p(i). The step �(i) can be chosen, for example, as

�(i) = ��(i)
d(!�; p

(i))

jjd(!�; p0)jj
(3.48)

where �i is the step factor. It should be very small initially, and then increased

if subsequent changes of d(�) are not big enough or decreased if the determinant

increases or changes its sign. The ratio d(!�;pi)
jjd(!�;p0)jj

provides continuous decrease of

the step �i to prevent passing of the solution point (3.45). Numerical experiments

show that su�ciently good guesses of (3.45) are obtained when d(!�; p
(i)) becomes

several orders less than d(!�; p0). A way of computing of rpd(!�; p
i) in (3.47) is

given below.

Stage B. Computation of rpd(!�; p
(i)) in (3.47)

Based on equations (3.34) and (3.46), the matrix M(!; p) can be represented as

M(!; p) =
kX
i=1

Mipi +M!! +M0; where (3.49)

Mi =

0
@ 0 Ji

Ji 0

1
A ; i = 0; � � k; and M! =

0
@ I 0

0 �I

1
A (3.50)

are constant (2m � 2m) matrices. As from the Schur Lemma, for ! = !�, and

p = p0 +�p; �p! 0,

d(!�; p)

d(!�; p0)
! 1�

kX
i=1

�p0i
mX
j=1

etjM
�1(!�; p0)�ij; (3.51)

where ej is the j-th unit vector, �ij is the j� th column of the matrix Mi. Further,

it is clear that
mX
j=1

etjM
�1(!�; p0)�ij = TrfM�1(!�; p0)Mig and (3.52)

d�1(!�; p0)rpd(!�; p) = �TrfM�1(!�; p0)Mig (3.53)
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The last formula can be applied at each iteration of (3.47). As Mi contains few

nonzero elements, (3.53) requires several solutions of the linear system LUy = �ij,

where L and U are lower and upper sparse triangular matrices, LU = M(!�; p0),

for all nonzero columns �ij. The determinant d(!�; p0) is calculated as a product of

diagonal elements of U .

Stage C. Validity Check of the Stability Boundary Points

Having a point on the surface characterized by <(�i) = 0, it is necessary to check

whether it belongs to the stability domain boundary or not. As stated before, this

point may correspond to the surface restricting unstable domains with distinct but

nonzero numbers of the right hand plane eigenvalues. To check the situation of the

point, a similar method as in Section (3.3.1) is used.

Suppose there exists an initial guess of p� which is close to a point p of the boundary

where detM(!�; p) = 0. De�ne �p as p� � p0, and consider the line p0 + �p.

Starting from  = 0, and ! = !�, the task to search for  and ! which satisfy the

conditions below,

d(!; ) = detM(!; ) = 0 (3.54)

The iterative formulae similar to (3.47) are used, i.e.

(i+1) = (i) + �(i)(
@d

@
) (3.55)

!(i+1) = !(i) + �(i)(
@d

@!
) (3.56)

where �(i) is the step size. Note that the process (3.54) and (3.55) can theoretically

converge to any intersection point of the line p0 + �p and the bifurcation surface

as well as to the local nonzero extrema of d(!; ). Those cases were not detected in

all our practical computations, where we always got a point of the stability domain

boundary. Robustness of the process can be improved by using di�erent steps for 

and ! as in (3.54), (3.55). The partial derivatives in (3.54), (3.55) can be obtained

in the way similar to the calculating of rpd(!�; p
(i)) in (3.47),

d�1(!; )(
@d

@!
) = TrfM�1(!; )M!g (3.57)

d�1(!; )(
@d

@
) = TrfM�1(!; )Mg (3.58)

where M =
Pk

i=1Mi.
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Stage D. Re�nement for Initial Values of p, !, _r, _l, w1, and w2

The former procedures should have already provided rather good estimates of p and

!. However, the initial values of _r, _l, w1, and w2 are also necessary for solution of

equations (3.36) {(3.43) as well. Basically, they can be taken from the solutions

to the original system for either saddle node or Hopf bifurcation conditions. The

estimation of _r = r0+jr00 can be obtained as the solution of the linear system (3.40) {

(3.43). Further improvement can be achieved by solution of the set of equations

below,

Js(p0 + �p)r0 + !r00 = 0 (3.59)

Js(p0 + �p)r00 � !r0 = 0 (3.60)

r0i � 1 = 0 (3.61)

r00i = 0 (3.62)

Direct solution of (3.59) {(3.62) without the steps A concerning ! ! !� and C

giving a validity check of the solutions typically leads to substantially more com-

putation. For the considered problem, the correct choice of �p is very di�cult,

and numerical methods might converge badly or not converge at all. Similarly, the

initial value of the left eigenvector l = l0 + jl00 can also be obtained. While, as can

be recalled from the former sections, the remaining variables, w1 and w2 are zeros

as explained in the proof of Theorem 1.

Stage E. Solution of The Critical Distance System (3.36) {(3.43)

To solve the system (3.36) {(3.43), the high order numerical method addressed in

detail in Appendix (B.1) can be e�ectively used. The high order numerical method is

used from the initial point obtained in earlier steps and provide further motion along

the solution domain �. This method may be considered as either a generalization

of the Newton-Raphson method including nonlinear terms of the Taylor series, or

a parameter continuation technique providing more reliable solution properties.

It has the following advantages [104]:

1. Minimal number of iterations and re-computations of the Jacobian matrix.

2. Reliable solution of nonlinear algebraic problems up to points of singularity.
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3. Convergence to a singular point of the problem if it occurs on the way of the

iterative process.

4. Straight motion of the iterative process in the space of mismatches.

5. Retention of zero components of mismatch functions.

The feature (1) minimizes computations related to numerical evaluation of the Ja-

cobian matrices of (3.9) {(3.18). The properties (2) and (3) ensure reliable per-

formance of the step E. , and give an opportunity to localize singular points of

(3.9) {(3.18) or (3.36) {(3.43). Having a singular point, it is possible to skip it

by additional changing of ! in the direction of its variation on iterations, and re-

peating of the procedure starting from the step 3.3.1. The properties (4) and (5)

provide motion of the iterative process along the bifurcation boundary and load ow

constraints once (3.12)-(3.16) or (3.38) {(3.41) satisfy to the initial guesses [108].

Once the critical distance point is obtained, it is necessary to execute the step of

validity checking to make sure that this point belongs to the stability boundary.

If validity checking gives a closer point, this normally means that the previous

point belongs to the surface restricted domains with unstable eigenvalues, and the

search is to be continued by repeating the steps of validity checking, initial value

re�nement, and numerical solving of the system.

3.3.2 Numerical Testing of Determinant Minimization Tech-

niques

The developed technique for generator gains was tested on the 10 generator, 39

bus New England Test System [16] shown in Figure 3.2. The used mathematical

models contain 78 algebraic and 89 di�erential equations (Case 1), and 79 algebraic

and 93 di�erential equations (Case 2). In the Case 1, the critical distances were

found in the space of AVR voltage gains KA of generators 1,2,..9. As each of the

parameters KA has its own range of variation, a normalization of KA is required.

After the normalization, the problem is represented in the space of rated values of

KA corresponding to current positions of regulator knobs. The maximal values of

KA should be taken as a base. As the information about ranges of KA is omitted

in [16], we take the bases of KA as twice the initial value of each parameter. It
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Figure 3.2: The Structure of New England 39-Bus Test System

is obvious that KAmin = 0. By using the proposed technique, we have got several

critical distance vectors in the 9-th dimensional space of KA. Four of them are

given in Table (3.1). The solutions 1 and 2 have a simple interpretation. They

correspond to aperiodic instabilities caused by negative signs of KA and forming of

positive feedbacks. The solutions 1 and 2 illustrate a possibility to get points of the

aperiodic stability boundary from the system (3.36) {(3.43). However, they indicate

the necessity to take into consideration the controlled parameter constraints as well.

The solutions 3 and 4 are more interesting from the physical point of view, and they

are not so obvious. They indicate generators which are responsible for excitation

of unstable modes with frequencies close to the given initial guesses. They refer

to generators 9, 5, 7 and 4 (solution 3), and the generator 9 (solution 4). In the

last case, the gains of generators 1,..,8 have relatively small inuence on stability at

frequencies being close to 0.9 Hz.

To give a more pictorial illustration of the proposed technique, we consider the

Case 2 where the critical distances are de�ned on the plane of PSS gains. For that

purpose we add a PSS and change the AVR model at generator 9 -see Figure (3.3).

The parameters are given at base 100 MVA. We use the additional normalization

in such a way, that 1 p.u. of power (Kp) and frequency (Kw) gains correspond to

maximal values of parameters (0.1 p.u. and 30 p.u. at 100 MVA base respectively).

The bifurcation boundary for the frequency range 0.5...1.8 Hz is plotted on the
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Gene- Basic Initial Solutions

rators values values

of KA of gains 1 2 3 4

1 10 0.5 0.5 0.5 0.996 0.503

2 12.4 0.5 0.5 0.5 0.743 0.502

3 10 0.5 0.5 0.5 0.796 0.502

4 10 0.5 0.5 0.5 1.135 0.495

5 80 0.5 0.5 0.5 1.630 0.636

6 10 0.5 0.5 0.5 1.019 0.501

7 80 0.5 0.5 -0.077 1.345 0.505

8 10 0.5 0.5 0.5 0.668 0.503

9 80 0.5 -0.018 0.5 1.849 2.295

Guess of frequency, Hz 0.06 0.1 0.6 0.9

Frequency of solution, Hz 0 0 0.580 0.898

Distance 0.518 0.577 2.21 1.80

Table 3.1: The shortest distance solution in space of AVR gains
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Figure 3.3: The Structure of AVR and PSS of the 9-th Generator

plane of Kw, Kp (3.4). The curve was obtained by using the POISK1 program [59].

The operating point A corresponds to Kw = 0:32, and Kp = 0:92. There are 3

solutions of the critical distance problem: B, C, and D. The vectors AB, AC, AD

are perpendicular to the stability boundary. The method gives all those solutions

depending on the initial guesses of frequency. For instance, we get the solution B

(! = 0:52Hz;Kw = �0:177; Kp = 0:934) for the initial guesses of frequency from

0:5Hz to 1:0Hz. The vector AE is a normal to the bifurcation boundary as well,

but the point E is not a solution, as it belongs to the curve separating domains with

1POISK is the Russian word for 'Search'; The program had been developed in St. Petersburg

and made available by Drs. Maslennikov and Ustinov while visiting Sydney University
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Figure 3.4: Critical Directions in the Plane of PSS Gains

unstable eigenvalues. This point is obtained at step E. for the initial frequencies

!� from 0.67 to 1.0 Hz. The point F is computed on steps 3.3.1 and 3.3.1. After

that step E. is repeated starting from the point F , and the solution B is obtained.

The solution B is not practicable as it corresponds to the negative frequency gain

Kw. The actual solutions C and D indicate that decreasing of power gain Kp is

dangerous for stability. Changes of Kw have an inuence on damping of oscillations,

but they can not cause instability.

3.4 Initial Value Approximation Techniques

To solve the problem of locating the bifurcation boundaries, initial guessed variable

values are necessary for the optimization procedure. Traditionally, as described

in Section 3.2, load ow computation is performed along some speci�ed system

parameter variation direction, and system state matrix eigenvalue calculation is

performed at the same time to observe the eigenvalue behavior. Computation costs

are dependent on choice of parameter variation direction, which is normally based on

experience or on a trial and error basis. In this section, we show how the bifurcation

point in a particular direction can be estimated approximately.
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3.4.1 Sensitivity-based Technique

Now we show that the bifurcation point can be located approximately with an

eigenvalue sensitivity based technique. This point and the system parameter values

associated with it, can be used as the initial guess values for the optimization

problem to locate the closest distance point to instability. Again, the ideas are

developed from some in the Russian literature [60, 116]. The essential steps are:

� The system to be studied is modeled as,

f(x; p0 + ��p) = 0 (3.63)

F (x; p; J; _r; l; w) = 0 (3.64)

_ri � 1 = 0 (3.65)

where F (J; _r; l; w) = 0 stands for all the optimization equations concerning

system state variables, parameters, state matrix, eigenvalues, and eigenvectors

as described in (3.9 {3.18).

� Suppose at some initial load ow equilibrium point, the system variables are

X = X0 and the bifurcation parameters � = �0 are known. At this point,

compute the eigenvalues, �i = �i + j!i and corresponding left and right

eigenvectors, Li and Ri.

� Select the most important eigenvalues (say, corresponding to inter-area oscil-

lations or aperiodic modes of interest) among the �i.

� For each �i chosen (or just for the most sensitive one) execute the following

procedure. Compute the damping sensitivity as in [50]:

@�j
@�i

= <

8<
:L

t
j
@Js
@�i

Rj

Lt
jRj

9=
; (3.66)

By linear approximation of the function �i(�), an increment of � which gives zero

real part of the selected eigenvalue �i can be assessed as following:

�� = t(��i)
@�i
@�

; (3.67)
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where t is the step parameter. Then compute a new value of � as �1 = �0 + �� ,

recalculate the operating point to get a new vector X0, and repeat this step until

the value of �i becomes small enough. A graphical illustration of the technique is

given in Figure 3.5.

i iα =Re λ

τ

∆τ

τ τ00 1

Figure 3.5: Estimation of the initial bifurcation point

In the procedure, it is necessary to follow the chosen eigenvalue which is likely

to become purely imaginary or zero. At each iteration, a decision must be made

about the correspondence of newly obtained eigenvalues to the ones at previous

step. Incorrect tracking may pose obvious di�culties. In the tracking step, either

linear forecasts of eigenvalue imaginary parts or analysis of eigenvectors can be

used. Numerical studies reported below show a good and fast convergence of this

technique.

This approach is used as an ancillary technique to get initial points on the small

signal stability boundary. However for more complicated systems, where there are

many eigenvalues to be tried one by one, other techniques will have to be tried to lo-

cate the initial points of interest. Among these techniques, Genetic Algorithms(GA)

is promising for locating the globally closest distance point to instability as well as

local points which can be chosen as approximation solutions; numerical methods

can then be employed to �nd the exact solution points. The use of GA in small

disturbance stability problems is considered in Chapter 5.
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3.4.2 Testing of The Initial Value Approximation Technique

The method has been applied to a model power system composed of one generator,

one in�nite bus and a load bus feeding a motor load and connected with a shunt

capacitor [33]. The system is shown in Figure 3.6.
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Figure 3.6: The Single Machine In�nite Bus with Induction Motor Load Power

System

The model consists of four di�erential equations (3.68) {(3.71), which cover both

generator and load dynamics. The mathematical model of the system is the follow-

ing:

_�m = ! (3.68)

M _! = �dm! + Pm +

+EmymV sin(� � �m � �m) +

+E2
mymsin�m (3.69)

Kqw
_� = �K2

qv2V
2 �KqvV +

+E 0
0y

0
0V cos(� + �00) +

+EmymV cos(� � �m + �m)�

�(y00cos�0 + ymcos�m)V
2 �

�Q0 �Q1 (3.70)

k4 _V = KpwK
2
qvV

2 + (KpwKqv �KqwKpv)V +

+
q
K2

qw +K2
pw[�E

0
0y

0
0V cos(� + �0 � h)�

�EmymV cos(� � �m + �m � h) +

+(y00cos(�0 � h) + ymcos(�m � h))V 2]�
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�Kqw(P0 + P1) +Kpw(Q0 +Q1) (3.71)

where k4 = TKqwKpv and h = tan�1(Kqw=Kpw). Parameters of the system are

the following [33]: Kpw = 0:4, Kpv = 0:3, Kqw = �0:03, Kqv = �2:8, Kqv2 = 2:1,

T = 8:5, P0 = 0:6, Q0 = 1:3; P1 and Q1 are taken zero at the initial operating

point.

Network and generator values are: y0 = 20:0, q0 = �5:0, E0 = 1:0, C = 12:0,

y00 = 8:0, �00 = �12:0, E 0
0 = 2:5, ym = 5:0, �m = �5:0, Em = 1:0, Pm = 1:0,

M = 0:3, �m = 0:05.

All parameters are given in per unit except for angles, which are in degrees. The

active and reactive loads are featured by the following equations:

Pd = P0 + P1 +Kpw� +Kpv(V + T _V ) (3.72)

Qd = Q0 +Q1 +Kqw� +KqvV +Kqv2V
2 (3.73)

The system (3.68) {(3.71) depends on four state variables �, �m, !, V . Their values

at the initial load ow point are the following: � = 2:75, �m = 11:37, ! = 0, and

V = 1:79. Note that the initial point is not a physical solution; the voltage V is

too high as Q1 is zero.

Starting from the normal operation point, the �rst bifurcation point approximation

is thus obtained by forcing the real part system Jacobian eigenvalue to zero. So

either Saddle or Hopf bifurcations corresponding to aperiodic or oscillatory stability

characteristic points can be approximated by applying this technique. The graph

shown below in Figure 3.7 gives the eigenvalue real part trajectory leading to bifur-

cations. It can be seen very clearly that the technique works very e�ciently, after

4 or 5 iterations, the approximated point is very close to the real solution, which

can be either saddle node or Hopf bifurcations. By following this procedure, the

work of deciding the initial value for the later optimization procedure can be greatly

reduced.

3.5 Direct vs Indirect Methods

Our goal is to present a comprehensive framework for computing small signal sta-

bility characteristics. Before this it is useful to review some key ideas obtained in
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Figure 3.7: The Trajectory of Eigenvalue Real Part Leading to a Bifurcation Point.

prior work.

Dobson et al. has developed methods for locating the closest bifurcations by using

iterative and direct methods in the multidimensional parameter space [42, 44]. Sim-

ilar approaches also had been reported by Makarov et. al in [66, 108, 110]. These

methods are based on a matrix singularity property, which is worth examining in

greater depth.

3.5.1 Matrix Singularity Property

For a physical system modeled by nonlinear di�erential and algebraic equations of

the form of equation (3.4), which after eliminating the algebraic equations can be

written as

_x = f(x; p) where x 2 Rn; and p 2 Rm; m � 2

where the state variable vector x represents the dynamic static variables.

The problem of locating the closest bifurcation points on the parameter space de-

pends on the normal vectors at the bifurcation hyper surfaces.They can be evaluated

from the eigenvalues and eigenvectors of the system Jacobian [44, 108].

For saddle node bifurcations, the transversality conditions ensure the eigenvalue
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moves from left hand plane into the right hand plane as de�ned in [42, 136],

l�fpj� 6= 0 (3.74)

l�fxx(r�; r�)j� 6= 0 (3.75)

where l� and r� are the right and left eigenvectors of the system Jacobian fxj�

corresponding to the zero eigenvalue, and the subscript � denotes that all values are

taken at (x�; p�). We take
PSN

T as the set of p� 2
PSN for which the system has a

saddle node bifurcation at (x�; p�) with fxj� having a unique simple zero eigenvalue

and satisfying the transversality conditions given above. Under the condition of

p� 2
PSN

T , it had been proven in [37] that there exists an open set VSB 3 p� so thatPSB
T \VSB =

PSB
T \VSB, and

PSB
T \VSB is a smooth hypersurface. The bifurcation

equilibrium near x� are given by the smooth function ' :
PSB

T \VSB ! Rn and

'(p�) = x�. Therefore,
PSB has a normal vector N(p�) at p� 2

PSB
T and with a

smooth Gauss map N :
PSB

T ! Sm�1, where Sm�1 is the m � 1 sphere of unit

vectors in Rm. The normal vector for p is

N(p�) = �l�fpj� (3.76)

where p� 2
PSN

T and � is a scaling factor whose norm is designated to make

jN(P�)j = 1, and sign is chosen so that x will be driven to disappear by chang-

ing p along the direction set by N(p�).

In case of Hopf bifurcations, assign subset
PHB

T of parameter p� 2
PHB where the

system has Hopf bifurcation at (x�; p�) while the system Jacobian fxj� has a pair of

eigenvalues 0� j!�, and !� 6= 0. The transversality conditions for p� 2
PHB

T are,

c 6= 0 (3.77)

d<['(p)]

dp
6= 0 (3.78)

where c is a coe�cient of cubic terms in the ow reduced to the center manifold

and is a complicated function of triple derivatives of f [61]; and here the system

variable x is supposed to be related to the parameter p so that '(p�) = x�, and

'(p) = x and f('(p); p) = 0. It can be reasoned that 'p = �f�1
x fp, provided fx is

non-singular. Also the normalized right and left eigenvectors of fx are also implicit

functions of p, i.e. l = l(p) and r = r(p). It had been given by [37] that there

exist an open set VHB 3 p�, so that the common set
PHB

T \VHB =
PHB \VHB is a
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smooth hyper surface given by <[x(p)] = 0. Therefore, the hyper surface
PHB has

a normal vector N(p�) at p� 2
PHB

T with a smooth Gauss map N :
PHB

T ! Sm�1,

N(p�) = �<[l(�fxxf
�1
x fp + fxp)r]j� (3.79)

where � is a real scaling factor whose norm is chosen to make unity norm of N(p�)

and whose sign is chosen to ensure that changing of p in the direction of N(p�) leads

to instability of the system equilibrium [42].

The conditions for a closest bifurcation at p� 2
P

T depends on the normal vector

and the curvature of
P

T at p�, where
P

T =
PSB

T [
PHB

T , and the normal vector

N(p�) gives the map N :
P

T ! Sm�1. Let d(p0�) = jp0� � p0j represent the distance

vector of p0� based on the original value of p at p0. Then a closest bifurcation point

to p0 is a local minimum of d, where p� � p0 is parallel to N(p�). The following

conditions ensures a point p� is strictly a local minimum, i.e. the closest bifurcation

point [42],

d = jp� � p0j <
1

�max
if �max > 0 (3.80)

where �max is the maximum principle curvature of the hyper surface
P

T at p�. The

equation reveals that the radius jp�� p0j of the sphere centered on p0 must smaller

then the minimum radius of curvature 1
�max of

P
T at p�. It has been known [42]

that the condition (3.80) is always satis�ed if p0 is close enough to the surface
P

T

or if �max < 0.

There are established continuation, direct, and iterative methods to compute the

closest bifurcation along a ray de�ned in the parameter space starting from current

equilibrium point p0 [136]. Starting from some ray based at p0, these methods

compute the normal vector N(p�) with equations (3.76) and (3.79). Then a new

ray is formed along the direction de�ned by N(p�) and the procedure is iterated

until the ray becoming a �xed one, and thus the corresponding parameter value of

p� is obtained as a locally closest bifurcation point.

3.5.2 Iterative Method

Dobson [47] presented an iterative method to locate closest saddle node or Hopf

bifurcations in the parameter space by globally minimizing the distance from the

current equilibrium p0 to a series of tangent hyperplane approximations to either
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PSB or
PHB. The method �nds a step direction vector nr normal to both the

bifurcation hypersurface and its tangent hyperplane. The direction nr+1 at each

new iteration points to a point at the tangent hyperplane closest to p0

p� = p0 + t�n 2
X

(3.81)

nr+1 = N(p�(nr)) (3.82)

It was also given that the iteration procedure for the �xed solution of n� and cor-

responding p� is exponentially stable if

1

�min
< jp� � p0j <

1

�max
(3.83)

where �max and �min are maximum and minimum principle curvatures of the bi-

furcation hyper surface at p�. For a not too concave hyper surface
P

at p0, if

this approach converges exponentially to a solution p�, then p� indicates a locally

closest bifurcation point regarding to the original equilibrium p0. The second order

curvature conditions need to be checked, otherwise, the iterative method may not

converge at this point.

3.5.3 Direct Method

Other approaches proposed in [4, 42] are the direct methods, which are aimed to

locate the locally closest saddle node and/or Hopf bifurcations. This method is

based on solving the set of equations designated to minimize the eigenvalue real

part of the system Jacobian.

The equations for directly �nding Saddle Node bifurcations are:

F SN(x; p; l; �) =

8>>>>>><
>>>>>>:

f(x; p) = 0

lfx = 0

lfp(lfp)
T � 1 = 0

�(p� p0)
T � lfp = 0

(3.84)

where l is the left eigenvector, which is scaled to satisfy lfp(lfp)
T = 1. For a locally

closest bifurcation of
PSB

T at p�, p� � p0 is parallel to the normal vector l�fpj�, i.e.

l�fpj� � ��(p� � p0) = 0 for some nonzero real ��. Then Newton-type optimization

method can be applied to solve the problem given by Equation 3.84. The dimension

of the problem is 2n+m + 1.
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Similar methods can be used to locate the closest Hopf bifurcations in the parameter

space. The closest Hopf bifurcation location equations are given here for completion

[42],

FHB(x; p; !; r0; r00; l0; l00; u; �) = 0 (3.85)

where

FHB =

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

f(x; p) = 0

fxj � r
0 � !r00 = 0

fxj � r
00 + !r0 = 0

qT r0 = 0

r0T r0 � 1 = 0

(l0fxj� � !l00)� = 0

(l00fxj� + !l0)� = 0

l0r0 + l00r00 � 1 = 0

l0r00 � l00r0 = 0

fxj�u� fpj� = 0

�(p� p0)
T � l0(fXXu+ fxp)j�r

0 � l00(fxxu+ fxp)j�r
00 = 0

(3.86)

where as in case of Saddle node bifurcations, the last equation in (3.86) represents

the parallel conditions for the vector p� � p0. � is a map Cn onto Cn�1. The

dimension of the set of equations is 6n + m + 2, which makes it very di�cult to

solve if the problem itself has very large number of variables, n.

3.6 A General Method to Reveal All Character-

istic Points

In this section, we extend the ideas of locating one or two types of speci�c charac-

teristic points, e.g. saddle node bifurcation and / or Hopf bifurcation, to a more

general procedure, i.e. to locate all of the characteristic points in one approach.

Recall from Chapter 1 that there are more characteristic points related to power

system stability than saddle node and Hopf bifurcations. These points include,

� load ow feasibility boundaries,

� minimum and maximum damping conditions,
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� saddle node and Hopf bifurcations,

� singularity induced bifurcations,

� limit induced bifurcations.

So far the eigenvalue sensitivity approach or matrix minimization approach can only

locate one kind of bifurcation conditions for each formulation. The general method

here is designed to locate all the small stability characteristic points (with the excep-

tion of limit induced bifurcations, which need special optimization techniques such

as Genetic Algorithms in order to be located.) alone a ray speci�ed by power sys-

tem parameters in one optimization approach, provided there are such characteristic

points. The problem addressed here, where the system is described by di�erential

and algebraic equations (2.24), is that these di�erent small signal stability condi-

tions correspond to di�erent physical phenomena and mathematical descriptions

[96]. Saddle node bifurcations happen where the state matrix Js = J11� J12J
�1
22 J21

becomes singular and, for example, a static (aperiodic) type of voltage collapse or

angle instability may be observed as a result. Hopf bifurcations occur when the

system state matrix Js has a pair of conjugate eigenvalues passing the imaginary

axis while the other eigenvalues have negative real parts, and unstable oscillatory

behavior may be seen. Singularity induced bifurcations are caused by singularity of

the algebraic submatrix J22, and they result in fast collapse type of instability [142].

The load ow feasibility boundary corresponds to a surface where the load ow Ja-

cobian matrix Jlf is singular, and it restricts a region in the space of power system

parameters where load ow solutions exist. Under certain modeling simpli�cations,

this boundary coincides with the saddle node bifurcation conditions [143, 132], but

in general case it should be taken into account separately.

To locate the saddle node and Hopf bifurcations along a given ray in the space of

p, the following equations can be employed,

f(x; p0 + ��p) = 0 (3.87)

J ts(x; p0 + ��p)l0 + !l00 = 0 (3.88)

J ts(x; p0 + ��p)l00 � !l0 = 0 (3.89)

l0i � 1 = 0 (3.90)

l00i = 0 (3.91)



90 Chapter 3. Methods to Reveal Critical Stability Conditions

where ! is the imaginary part of a system eigenvalue; l0 and l00 are real and imaginary

parts of the corresponding left eigenvector l; l0i + jl00i is the i � th element of the

left eigenvector l; p0 + ��p speci�es a ray in the space of p; Js stands for the state

matrix obtained from the linearized model provided that the algebraic submatrix

J22 is nonsingular.

In the above set, (3.87) is the load ow equation and conditions (3.88)-(3.91) provide

an eigenvalue with zero real part and the corresponding left eigenvector.

Solutions of the system (3.87)-(3.91) correspond to either saddle node (! = 0) or

Hopf (! 6= 0) bifurcations. Nevertheless the extreme load ow feasibility conditions

(if they do not coincide with the saddle node bifurcations) can not be located by

means of this system. Actually, if the load ow feasibility boundary is met on

the ray p0 + ��p but there is no an eigenvalue with zero real part, the system

(3.87)-(3.91) becomes inconsistent and has no a solution.

Therefore, if the system (3.87)-(3.91) is used, it is necessary to analyze the load ow

feasibility conditions additionally. The corresponding procedures are well known -

see [42, 67, 108] for instance. The general idea behind these procedures is illustrated

by the following system:

f(x; p0 + ��p) = 0 (3.92)

J tlf(x; p0 + ��p)l = 0 (3.93)

li � 1 = 0 (3.94)

where l is the left eigenvector corresponding to a zero eigenvalue of the load ow Ja-

cobian matrix Jlf . The system (3.92)-(3.94) gives the load ow feasibility boundary

points along the ray p0+��p by a similar way as the system (3.87)-(3.91) generates

saddle node and Hopf bifurcation points.

By subsequent solution of both the problems (3.87)-(3.91) and (3.92)-(3.94), the

general issue may be resolved, but a challenging task is to �nd a single procedure

which can generate all small-signal characteristic points.

3.6.1 The General Method

To locate the min/max damping points, the saddle node and Hopf bifurcations as

well as the load ow feasibility boundary points within one procedure, the following



3.6. A General Method to Reveal All Characteristic Points 91

constraint optimization problem is proposed:

�2 ) max=min (3.95)

subject to

f(x; p0 + ��p) = 0 (3.96)

J ts(x; p0 + ��p)l0 � �l0 + !l00 = 0 (3.97)

J ts(x; p0 + ��p)l00 � �l00 � !l0 = 0 (3.98)

l0i � 1 = 0 (3.99)

l00i = 0 (3.100)

where Js is the state matrix, � and ! are real and imaginary part of an eigenvalue

of interest � respectively, l = l0 + jl00 is the corresponding left eigenvector.

To solve this optimization problem, several methods can be used. For example,

to consider the load ow constraint, this constrained optimization problem can be

represented with Lagrange function form as

� = �2 + f t(x; p0 + ��p)� ) minx;�;�

= �2 + �0 ) minx;�;� (3.101)

The optimization problem can be depicted by Figure 3.8. Then in each direction de-

�ned by input �p, considering the state variables shown in Figure 3.8, the load ow

constraint is computed �rst, while the state variables, which are to be optimized,

provide the input value to set up the state matrix. The eigenvalue computation

is then based on this matrix. In the algorithm, the real part of the critical eigen-

value(s) will be used to form the objective function �. The value of the objective

function f , as the output, will then provide information used to proceed the opti-

mization procedure and the state variables will be adjusted accordingly. When the

optimization process converges, all characteristic points along the direction de�ned

by �y can be located. To locate all these points in the whole plane, a loop is

needed to rotate the direction and repeat the optimization procedure along the new

direction. By subsequent rotations, we can locate all characteristic points in the

whole plane/space of interest. Generally, this plane/space is a cutset of the space

spanned by all parameters of interest.
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Figure 3.8: System Model Diagram for Small Signal Stability General Method Op-

timization

The problem may have a number of solutions, and all of them presents di�erent

aspects of the small-signal stability problem as shown in Figure 3.9.

The minimum and maximum damping points correspond to zero derivative d�
d�

= 0.

The constraint set (3.96) {(3.100) gives all unknown variables at these points. The

minimum and maximum damping, determined for all oscillatory modes of interest,

provides essential information about damping variations caused by a directed change

of power system parameters.

The Saddle Node or Hopf bifurcations correspond to � = 0. They indicate the

small-signal stability limits along the speci�ed loading trajectory p0+ ��p. Besides

revealing the type of instability (aperiodic for ! = 0 or oscillatory for ! 6= 0), the

constraint set (3.96) {(3.100) gives the frequency of the critical oscillatory mode.

The left eigenvector l = l0 + jl00 (together with the right eigenvector r = r0 + jr00

which can be easily computed in turn) determine such essential factors as sensitivity

of � with respect to p, the mode shape, participation factors, observability and

excitability of the critical oscillatory mode [60, 66, 95].

The load ow feasibility boundary points reect the maximal power transfer capa-

bilities of the power system. Those conditions play a decisive role when the system

is stable everywhere on the ray p0 + ��p up to the load ow feasibility boundary.

The optimization procedure stops at these points as the constraint (3.96) can not

be satis�ed anymore. Consider the trajectory of x(�), � !1 satisfying (3.96). At
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Figure 3.9: Di�erent Solutions of The Problem (3.95)-(3.100) - Eigenvalue Tra-

jectory Showing the Characteristic Points of Power System Small Signal Stability

Conditions as Intersecting with Di�erent Stability Boundaries:

Maximum / Minimum Damping Points (local),

Saddle Node (! = 0) or Hopf (! 6= 0) bifurcation,

Load Flow Feasibility Limit Point.

the load ow feasibility point, parameter � can not be increased anymore beyond

its limit value ��. Nevertheless, the trajectory x(�) can be smoothly continued by

further decreasing � - see [109], for example. Suppose that the function �[x(�)]

is monotone and continuous in the vicinity of ��, say; along the trajectory x(�),

suppose the increment d� is positive. As the increment d� changes its sign at the

point �� - see Figure 3.10 - this means that the derivative d�
d�

changes its sign at ��.

Thus enough optimality conditions (the constant sign of the second derivative of

the objective function with respect to �) are met at the point �� [55].

The problem (3.95)-(3.100) takes into account only one eigenvalue each time. The

procedure must be repeated for all eigenvalues of interest. The choice of eigenvalues

depends upon the concrete task to be solved. The eigenvalue sensitivity, observ-

ability , excitability and controllability factors [66, 95], can help to determine the

eigenvalues of interest, and trace them during the optimization. For example, the in-

ter area oscillatory modes can be identi�ed and then analyzed using (3.95) {(3.100)

for eigenvalues with frequency range from 0.1 {1 Hz [110].

The result of the optimization depends on the initial guesses for all variables in

(3.95) {(3.100). To get all characteristic points for a selected eigenvalue, di�erent
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Figure 3.10: Locating the Load Flow Feasibility Limit

� - selected eigenvalue real part,

� - scaling factor for system parameter variation,

x(�) - vector of system state variables, which is depending on �

initial points may be computed for di�erent values of � . At each point, the load ow

conditions, state matrix eigenvalues and eigenvectors can be obtained, and then a

particular eigenvalue selected to start the optimization procedure. More e�ective

approaches for �nding all characteristic points require additional development. At

the moment, an initial guess technique based on eigenvalue sensitivity and Genetic

Algorithms have been utilized.

3.6.2 Numerical Results for the General Method

The purpose here is to demonstrate whether the proposed method is able to locate

all these characteristic points depending on the initial guesses of � , x, �, !, l0 and

l00. The results will be then validated by comparing some of them with the results

obtained in the literature, and by dynamic simulations conducted close to these
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characteristic points.

The single machine in�nite bus power system model [33] presented in Figure 3.6,

and the classical 3-machine 9-bus power system [6] shown in Figure 2.8 will be

studied here.

Similar models were studied in [6, 121, 122, 129, 130].

The standard Gauss -Newton procedure fromMatlab was used here for optimization

[58].

Example 1. The Single Machine In�nite Bus System Model

The power system model has been given in Section 3.4.2; it is composed of four

di�erential equations describing the system dynamics (3.68)-(3.71). The system

load dynamics is given in equations (3.72)-(3.73). The state consists of four state

variables �, �m, !, V . Their values at the initial load ow point are the following:

� = 2:75, �m = 11:37, ! = 0, and V = 1:79. Note again, that the initial point is not

a physical solution as the voltage V is too high as Q1 is zero. Detailed study of the

system can be found in [33, 45].

The results of numerical simulations are presented in in Figures 3.11 -3.18.

The dependence of the real part � = Re� of critical eigenvalue � upon Q1 is shown

in Figure 3.11. It is seen that there are both subcritical (point I) and supercritical

(point II) Hopf bifurcations along the chosen loading direction. Figure 3.12 presents

the root locus for the critical eigenvalue conjugate. The subcritical (point I) and

supercritical (point II) Hopf bifurcation points are displayed. Both these character-

istic points were successfully located by the proposed method, (3.95 -3.100).

Figure 3.13. shows the load ow feasibility and bifurcation boundaries on the plane

of the load parameters P1 and Q1. The boundaries were obtained by the proposed

optimization method when the loading direction was changed by subsequent rota-

tion of �y in the plane P1 and Q1. It was checked that exactly the same curves

were computed by separate solution of the problems (3.87) {(3.91) and (3.92) {

(3.94). To verify the results, transient simulations were performed at several points

in the plane P1 - Q1. Point A with P1 = 0 and Q1 = 10:88 was placed within

the load ow feasibility region close to subcritical bifurcation boundary. Then a
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Figure 3.12: Subcritical (I) and Supercritical (II) Hopf Bifurcations
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Figure 3.13: The Feasibility and Hopf Bifurcation Boundaries

small disturbance was applied. The corresponding phase portrait is shown in Fig-

ure 3.14. In complete correspondence with the theoretical expectations, the system

has experienced sustained oscillations.

Those oscillations can be viewed in Figure 3.15 where the load bus voltage against

time is presented.

Point B with P1 = 0 and Q1 = 11:4 was placed within the load ow feasibility

region close to the supercritical bifurcation boundary. (Note that, in the vicinity of

points A and B, the Hopf bifurcation boundary as shown in Figure 3.13 actually

consists of internal subcritical and external supercritical boundaries located in close

proximity). All eigenvalues at point B have small negative real parts. The phase

portrait for a small disturbance applied at point B is given in Figure 3.16. The

system undergoes decreasing oscillations. The corresponding voltage behavior is

shown in Figure 3.17.

The next point was taken close to the point B but outside the load ow feasibility

boundary. The system experiences voltage collapse as illustrated by Figure 3.18.

By solving the optimization problem, the system small signal stability boundaries

were obtained.

The minimum and maximum damping conditions on the plane P1 - Q1 were studied

as well. Table 3.2 presents the curves of minimum and maximum damping for



98 Chapter 3. Methods to Reveal Critical Stability Conditions

0.3074 0.3076 0.3078 0.308 0.3082 0.3084 0.3086
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Machine angle

M
ac

hi
ne

 s
pe

ed

Figure 3.14: Phase Portrait at Point A Near Subcritical Bifurcation
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Figure 3.16: Phase Portrait at Point B Near Supercritical Bifurcation
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Figure 3.17: Load Bus Voltage Transients Near Supercritical Bifurcation
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Figure 3.18: The system load bus voltage transients near feasibility boundary

di�erent eigenvalues.

Example 2. The Three-Machine Nine-Bus Power System Model

As given in Figure 2.8, the model power system is composed of three machines and

nine buses. Buses 1, 2, and 3 are connected to generators; bus 1, which is connected

with generator 1, is taken as in�nite bus, and buses 5, 6, and 8 are load buses feeding

active and reactive loads, which are modeled as static loads. Machine 1 is modeled

by classical model, and machines 2 and 3 are modeled by the two-axis model. The

equations modeling these machine dynamics are as follows,

�j1 _!1 = Tm1 � E1Iq1 �D1!1 (3.102)

_�1 = !1 (3.103)

� 0qoi _E
0
di = �E 0

di � (xqi � x0i)Iqi (3.104)

� 0doi _E
0
qi = EFDi � E 0

qi + (xdi � x0i)Idi (3.105)

�ji _!i = Tmi �Di!i � Idi0E
0
di

�Iqi0E
0
qi � E 0

di0Idi � E 0
qi0Iqi (3.106)

_�i = !i (3.107)

i = 2; 3

In order to obtain a set of independent system equations, the last two equations
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min-damping max-damping

P1 Q1 P1 Q1

-2.5709 -7.9124 -4.5537 -0.9679

-0.8391 -3.1315 -4.6069 -1.2344

0.0111 0.2113 -4.7900 -2.1326

0.0000 0.3836 -4.9317 -2.8473

-0.0165 0.3152 -5.0219 -3.2612

-0.107 1.0240 -5.1184 -3.7187

-0.1131 0.7142 -5.2218 -4.2286

-0.1640 0.7717 -5.3329 -4.8017

Table 3.2: Minimum and Maximum Damping Data for the Single-Machine In�nite

Bus System

above are combined into one as,

_�1i = !1 � !i where i = 2; 3: (3.108)

These equations are linearized around equilibrium points to obtain the state matrix

thus stability analysis can be performed on them. To obtain the state matrix,

however, the following equations are necessary for linking state variables and the

system parameters,

Ir + jIs = I 6 (� � �) =
(P � jQ)

V
(3.109)

tan (� � �) =
xqIr

V � xqIx
(3.110)

E 0
q = Vq � Idx

0
d (3.111)

E 0
d � Vd + Iqx

0
d (3.112)

I 6 [�(� � � + �)] = Iq + jId (3.113)

V 6 (��) = Vq + jVd (3.114)

where Id, Iq are d-axis, q-axis currents, V 6 � is generator terminal voltage and its

angle, � is the power factor angle lag of voltage [6].

Unlike the results in [129] and [121], the excitation system dynamics have been

neglected, so the state variables here are the following: �, !, E 0
q, and E

0
d. Algebraic
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Figure 3.19: System Eigenvalue Real Parts Behavior along Reactive Power Variation

variables were Id, Iq, �, and V ; bifurcation parameters were Pld and Qld. The

notations, parameter values and description of the system (3.102) {(3.107), (3.109) {

(3.114) can be found in [6].

Unlike the single machine in�nite bus example, which includes an induction motor

load, this three-machine nine-bus model considers constant load models only. In the

general case of small signal stability analysis, the load dynamics should be de�nitely

taken into consideration. Nevertheless some stability aspects can be studied with

the constant load model [35].

In the preliminary examination, the loads Pld and Qld at buses 5, 6 and 8 were

increased in proportion with the load size. The increase of load was followed by the

corresponding increase of generation in proportion with the generator size. The total

increment in load was equal to the total increment in generation. The loading was

repeated till the point where load ow did not converge. At each step, eigenvalues

of the state matrix were computed to reveal the bifurcation points and minimum

and maximum damping conditions.

The system eigenvalue behavior along the chosen loading direction is shown in

Figure 3.19,

There are several points of interest which can be clearly seen in Figure 3.19. They

include the maximum damping, minimum damping, bifurcation points and points
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1st minimum 2nd minimum

Bus damping point damping point Bifurcation point

Pld Qld Pld Qld Pld Qld

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000

5 -0.8125 -0.3250 -0.5000 -0.2000 -0.5781 -0.2313

6 -0.5850 -0.1950 -0.3600 -0.1200 -0.4163 -0.1388

7 0.0000 -0.0000 0.0000 -0.0000 0.0000 -0.0000

8 -0.6500 -0.2275 -0.4000 -0.1400 -0.4625 -0.1619

9 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000

Table 3.3: Load Powers at Some Small Signal Stability Characteristic Points

close to the load ow feasibility boundary. Some of the obtained characteristic

points are summarized in Table 3.3.

In the examination of the proposed method based on the optimization problem

(3.95) {(3.100), the method has been applied to locate these points of interest.

The results showed that the constrained optimization procedure converged toward

all the points of interests depending on the initial guess of variables. The initial

guesses were chosen using the rough estimates of the characteristic points obtained

in preliminary examination.

3.7 Conclusion

This chapter discussed methods which can be used to reveal critical stability char-

acteristic points in the parameter space. These characteristic points include: load

ow feasibility boundary points, minimum and maximal damping, saddle node and

Hopf bifurcations. Many existing techniques can only compute one or two kinds

of these points at one time, however, the proposed comprehensive general method

is capable of locating all these characteristic points within one procedure. The

method has been tested and validated by numerical simulations, comparison with
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the previous results obtained for the test systems, and by transient simulations con-

ducted at the characteristic points. Further developing work is required to develop

techniques for obtaining the initial guesses of variables, fast and reliable solution of

the constrained optimization problem, and handling of large power systems.
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4.1 Introduction

So far we have studied techniques to locate the closest distance to the security

boundary and methods to �nd all the critical points in a given direction de�ned

by a ray of system parameters. It is possible to locate the security boundary or

hypersurface in the space of power system parameters by varying the direction of

the ray. Once the boundary or hypersurface is found, control actions to enhance

the system security and power transfer capacity can be decided. For these ideas to

be implemented in real-time security control, it is important to develop acceptable

approximations of the boundary or hypersurface for large power systems.

In Chapter 3, we introduced methods to locate the critical stability characteristic

points in the space of power system parameters. These critical points can provide

important information on system operation and control for security. In general,

the critical points must be seen as surfaces in parameter space. The natural planes

de�ned by physical parameters only give a limited view of the boundaries. It would

be useful if the hyperplane containing all these characteristic points could be fully

manoeuvred to more fully view the boundaries. Further, this would improve the

optimal planning and control direction away from contingency. Their representation

and visualization in the parameter space requires special techniques which will be

discussed in this chapter.

The structure of the chapter is as follows. Firstly, we introduce the basic idea of

indirect methods using an objective evaluation function. Then, parameter continu-

ation to locate critical points is described along with a reformulation of the critical

distance problem treated in Chapter 3. The formulation is speci�cally related to

the space of nodal powers. Whereas Chapter 3 used a direct method and higher

order solution techniques, here we will concentrate on indirect methods. Also we

aim to exploit more the structural properties of the power ow equations expressed

in quadratic form. A review of various methods, with emphasis on less known con-

tributions in the Russian literature is made. This motivates the need for techniques

to e�ciently compute load ow feasibility and stability boundaries. The remainder

of the chapter presents a new so called �-plane method for computing load ow fea-

sibility boundaries in a chosen cut plane de�ned by three di�erent operating points.

Finally, a continuation method for tracing the power system small signal stability

boundaries is presented.
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4.2 Indirect Approach to Compute Stability Bound-

ary

In indirect methods, the solution approximation is updated from the data obtained

from a continuation procedure, evaluated by the objective test function of the prob-

lem to be solved. For example, consider a system represented by the equation:

f(x; �; �) = 0

where x is vector of state variables and � is the slowly varying system parameter

where � 2 [�1; �2], and � is an objective evaluation function used to evaluate the

solution accuracy. For example, � can be the real part of the state matrix critical

eigenvalue(s) in case saddle node or Hopf bifurcations are to be studied. Suppose

indirect methods are to be used to locate the solution value of � of the system in

the neighborhood of [�1; �2]. As shown in Figure 4.1, starting from initial guessed

λ

λλλ sjj-1

*

µ

Figure 4.1: Indirect Solution Approach

solution point (x0; �0; �0), the continuation procedure at step j gives approximation

of the solution as

(xj; �j; �j) j = 1; 2; ::: (4.1)

Knowing that the solution exists in [�1; �2] = [�j�1; �j] then an approximation, ��

of the �nal solution �s can be calculated by the straight line interpolating function,

�� = �j�1 + �j�1
�j � �j�1

�j�1 � �j
(4.2)

This approximation is close enough to the solution if the distance of j�j � �j�1j are

small enough. There are many other interpolation formula which can be used here

for approximation [136].
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Followed by the approximation of parameter ��, the approximation of system vari-

able x can be obtained similarly,

x� = xj�1 + �j�1
xj � xj�1

�j�1 � �j
(4.3)

where x� is the approximation to the solution xs. Generally without any singularity

problems, with small enough distance of j�j � �j�1j, the approximation for x� will

be close enough to the actual solution. The indirect method can be used in many

occasions of stability problems, e.g. to trace the stability boundaries, to locate

critical solutions. As one of the very important classes of indirect methods, we

proceed to explore the continuation methods.

4.3 Parameter Continuation Techniques to Lo-

cate the Critical Solution Points

In locating critical solution points, such as saddle or Hopf bifurcations, load ow

point of collapse points, traditional Newton-Raphson like optimization methods do

not always converge close to such points because of singularity properties associ-

ated with them. In order to overcome such problems caused by singularity, which

can be load ow Jacobian singularity or state matrix singularity, the parameter

continuation techniques can be employed.

r
2

r

λ

λ

λ

1

1

2

*

λ

Vi

Figure 4.2: The System Stability Limits Revealed in Power Flow Q-V Curve

One of the most important tasks of locating the power system critical stability points

is the load ow feasibility point, or the Point of Collapse (PoC) characterized as
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a saddle node bifurcation point. Continuation methods to locate such points have

been proposed in [4, 24, 108, 136]. For a power system given by equation (3.63),

the continuation methods di�er from direct methods in the way that these methods

solve (3.63). The direct methods require solution of the set of equations (3.63) -

(3.65) to locate the bifurcation point. For continuation methods, the equations are

subjected to a variable parameter. Rather then repeatedly solving the equations,

the previous solution is updated by a predictor-corrector procedure.

The continuation method involves operations:

� Predictor

� Corrector

� Parameterization

� step size control

To �nd the PoC point of power ow problem, the parameter continuation method

starts from a known load ow solution point, and then starts the predictor correc-

tor technique to �nd the subsequent solutions. The continuation step size can be

adjusted so that large step size is selected where the current solution point is far

from the PoC, and smaller step size is selected where the solution is close to the

PoC. Parameterization is necessary to over come the load ow Jacobian singularity

problem around the PoC. It is suggested in [26] to use the continuation method in

tracing the power ow curves and the point of collapse. Ca~nizares and Alvarado in

[26] proposed the following scheme for a continuation method applied to the system

modeled by _x = f(x; �), where x is the state variable, � is the parameter to be

continuously changed.

� The predictor steps in state space and parameter space are de�ned based on

the derivative of state variables with respect to the parameter via �� = k
jdx=d�j

and �x = �� dx
d�
, where k is a user determined constant.

� The corrector is determined by solving the intersection between the perpen-

dicular plane to the tangent vector and the branch curve.
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� For parameterization, the parameter to be continuously changed is the one

with maximum sensitivity to variation, i.e. � = maxfj�xi
xi
j; j��

�
jg, where

i = 1; 2; :::; n.

This method can trace the power ow curves around the PoC point, and allow

solution of the lower (normally unstable) branches of P-V or Q-V curves.

To �nd the closest saddle node bifurcation points in the parameter space, another

form of continuation approach is proposed in [108]. The proposed technique requires

a two stage searching to �nd the closest (locally) saddle node bifurcation point to

the current power system operation point. The �rst step is to �nd a point on the

singularity surface which is composed of saddle node bifurcation points; the second

step is to move from this initially found point to the critical closest point on the

bifurcation surface. The second step depends on the proposed continuation method

which is robust in tracing the solution trajectory.

4.3.1 Revised Critical Distance Problem formulation

In this section, we revise the critical distance problem with the aim of a more speci�c

formulation with nodal powers as parameters.

A power system load ow problem can be modeled abstractly by the set of n non-

linear algebraic equations,

F (x; p) = 0 (4.4)

where x is now the vector of state variables (dynamic and algebraic), p is the vector

of system parameters. The equation can often be further simpli�ed into this form:

p0 + f(x) = 0 (4.5)

where p0 2 Rn is the vector of speci�ed independent power system parameters such

as active and/or reactive powers of loads and generators or �xed voltages, x 2 Rn

is the vector of state variables, consisting of nodal voltages. The vector function

f(x) de�nes the sum of power ows or currents into each bus from the rest of the

network. If nodal voltages x are expressed in rectangular coordinates then f(x) is

a quadratic function of x [69].
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The critical distance problem, as discussed in Section 3.3, aims to minimize the

distance function,

d(p) = k�[p� p0]k (4.6)

where we introduce � as a diagonal matrix of weight coe�cients, with diagonal

elements,

�i = 1=pbi (4.7)

where pbi is a `normalizing' factor for the i-th parameter. The distance (4.6) can be

used as an aperiodic stability index. By comparing the distance d(p) with a preset

value of the stability index Is which ensures safe operation, it is possible to decide

to which extent the current operating state is close to aperiodically unstable limits.

The parameter pb in (4.7) should be a constant value, and not dependent on the

operating point p0. Otherwise, the nonlinear dependence of d(p) on p0 may result

in solution di�culties when pb = p0.

The idea of locating the closest aperiodic stability point in the parameter space is

achieved by variation of some parameters. However, in the optimization problem

given by,

min
p2�p

d(p) = min
p2�p

k�[p� p0]k (4.8)

not all parameters are free to vary. Some parameters must stay unchanged. For

example, the power injected at buses without load or generation must remain con-

stant and therefore can not vary freely. These kinds of parameters can be e�ectively

held constant by assigning them very large values of weight coe�cients � in (4.6).

However, consequently, this will lead to an ill-conditioned problem, and numerical

di�culties will arise. To overcome this di�culty, a modi�ed power ow formulation

will now be given and should be employed.

The modi�ed load ow equations achieve the task by dividing the parameters into

two groups p1 and p2 which are free varying parameters and �x value parameters

respectively. Then all m parameters p2 with �xed values are put into a group of

equations, and the remaining n �m parameters p1, which can vary freely, are put

into another set of equations. Then the system (4.5) can be rewritten as,

p1 + f1(x) = 0 (4.9)

p02 + f2(x) = 0 (4.10)
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Based on the equations (4.9) and (4.10), the square of the distance d(p) de�ned at

(4.6) can be written as,

d(p)2 = kp� p0k2 (4.11)

= kp1 � p01k
2 (4.12)

= kp01 + f1(x)k
2 (4.13)

Note that � is taken as the identity matrix I for simpli�cation. The case when

� 6= I requires trivial transformations of all these equations.

Consider the constraint optimization problem,

extrema
x

kp01 + f1(x)k
2 (4.14)

st:

p02 + f2(x) = 0 (4.15)

From (4.11) {(4.13), it can be seen that the cost function (4.14) de�nes the square

of the distance between the points p1 and p01, with both points belonging to the

constraint hyperplane de�ned by p2 = p02 = const.

To solve the optimization problem, the Lagrange function can be de�ned as,

l(x; �) = kp01 + f1(x)k
2 + 2[p02 + f2(x)]

t� (4.16)

then the constrained optimization problem (4.14) and (4.15) can be formulated as

an unconstrained problem of locating the extrema of l(x; �) in the space spanned

by x and �. Solutions of the Lagrange function satisfy the nonlinear system,

J t1(x)[p
0
1 + f1(x)] + J t2(x)� = 0 (4.17)

p02 + f2(x) = 0 (4.18)

where J1 = @f1
@x

and J2 = @f2
@x
. This system of equations can be written in more

general form as �(x; �) = 0. The system (4.17) and (4.18) can be rewritten by using

the substitution s = p01 + f1(x) in(4.17) as,

�s + p01 + f1(x) = 0

p02 + f2(x) = 0 (4.19)

J t1(x)s + J t2(x)� = 0
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It is clear that the system (4.19) has the same solutions as the original system (4.17)

and (4.18), so

�(x; �) = 0, �(x; s; �) = 0 (4.20)

where �(x; s; �) = 0 represents the system (4.19). The last equation in (4.19) can

be rewritten as,

J t(x)s� = 0 (4.21)

where J t = [J t1 J
t
2] and s� = [st �t]t.

If s� 6= 0, to ful�ll the equation (4.21), the Jacobian matrix J(x) must be singular,

hence the vector s� is a left eigenvector of J(x) corresponding to a zero eigenvalue.

Therefore, based on the original optimization problem (4.14) and (4.15), and the

condition (4.21) for s� 6= 0, the conclusion can be drawn that the critical points,

i.e., points on � that are composed of minimal distance (locally) points from the

operating point y0, satisfy the system (4.19). Later analysis of the continuation

method will be based on these equations.

4.3.2 Locating the closest saddle node bifurcations with

continuation method

Not all solutions to the equations (4.19) which describe the critical points, are closest

saddle node bifurcation points. Solutions with nonzero left eigenvector de�ned in

(4.21), i.e. s� 6= 0, are nontrivial solutions belonging to the singular surface where

det J = 0. Whereas those solutions where s� = 0 are actually the normal power ow

solutions which are global minima of the distance function with d(p) = 0. These

solutions are trivial and should be eliminated. As a result, the algorithm for �nding

critical points must consist of two parts:

1. an approach which is capable of obtaining a good estimate of the unknown

state variables fx; s; �g in the vicinity of the critical point;

2. a numerical technique that will converge reliably from that initial estimation

to a desired critical point which is locally closest to the operating point p0.

Such an algorithm is described as follows.
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Stage 1: Initial Estimation Technique

The �rst step of this closest point approach must obtain an initial estimation of

the state variables fx; s; �g close to the critical distance point. In order to �nd this

initial point, a direction of parameter variation will have to be provided so that

the states can be calculated from the operating point toward the desired critical

point. This direction is based on human expertise by using existing knowledge

of power system operation and control activities. Generally, most power system

operators and planners. have enough idea of the direction in parameter space from

the operating point to the most probably closest aperiodic instability point(s). Later

discussion will show that, by using Genetic Algorithms, the need for this knowledge

can be ignored. The self adaptive heuristic algorithm is powerful enough to locate

the best available estimation for the problem. This parameter variation direction,

e.g. loads variation direction, is denoted as �p1 in the space of parameters can be

varied. Recall that the remaining parameters p2 = p02 are those parameters that are

not to be varied throughout the procedure.

The initial estimate of the critical point is a point on the solution boundary � where

p+ f(x) = 0 and det J(x;p) = 0 in the direction �p1 from the operating point. That

point is given by

��p1 + p01 + f1(x) = 0 (4.22)

p02 + f2(x) = 0 (4.23)

J t(x)s� = 0 (4.24)

st�s� = 1 (4.25)

where � is the loading parameter in the speci�ed direction �p1, and k�p1k = 1. An

alternative formulation of (4.24) and (4.25) uses the right eigenvector to achieve the

singularity condition, rather than the left eigenvector s�. Both the direct method

and continuation method can be used to solve the problem. Many methods had

been proposed for solving this problem in the literature [4, 5, 26, 40, 67, 136].
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Stage 2: Continuation Toward The Critical Point Along the Singular

Margin

After performing the �rst stage, the initial estimated solution point on � in the

vicinity of the desired critical point is available. This point is denoted as x�; ��; s�� =

[s�t ��t]t for later analysis. The aim of this stage is to move from this initial point

to the critical point on the singular margin �, which is de�ned in equations (4.22) {

(4.25), and this can be achieved by the equations below,

�(���p1 + s�)� s+ p01 + f1(x) = 0 (4.26)

p02 + f2(x) = 0 (4.27)

J t(x)s� = 0 (4.28)

Note that when � = 1, the initial point fx�; ��; s��g is a solution of (4.26) {(4.28).

The problem is the same as that of (4.19) if � = 0, which means that the solution

is the critical point if � = 0. Therefore, the process of moving from the initial point

to the critical point is done while � is varied from 1 to 0. The constraint condition

in equation (4.28) makes sure that all solutions along the path lie on the singular

margin �. Constraint condition (4.27) indicates that the parameters p2 = p02 are

not varied during the process. Scaling s� so that ksk = �� at the initial point � = 1

will help solve the problem. Note that this scaled s� will still satisfy (4.28).

A special numerical solution technique listed in the appendices B.1, put forward in

[108] is suitable for solving the problem. That technique has the following features:

� For an appropriate choice of the maximum deviation �g de�ned in equation

(B.12) (see Appendix B.1), and the corresponding step sizes �i, the technique

will follow the linear path through parameter space given by �(���p1 + s�).

� The method can always �nd a solution point if no singular points exist along

the search direction de�ned by the line �(�p1 + s�). Otherwise, the method

will iterate towards and become very close to the singularity point. Though, in

some cases, the solution point could be stepped over without being detected

by the method. In some cases, it involves several trial and error processes

to �nd a solution point. Further improvement of the method is required to

overcome this problem.
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� This method costs as much computation time as a normal Newton-Raphson

method does, or at least in the same order. The time consumed at each

iteration is proportional to the reduction of the number of iterations [108].

There is an alternative approach to move the solution point from the initially ob-

tained point by Stage 1 to the critical point along the singularity margin. It is based

on the equations below,

���p1(1� p)� ps+ p01 + f1(x) = 0 (4.29)

p02 + f2(x) = 0 (4.30)

J t(x)s� = 0 (4.31)

When p = 0, the initial point x�; ��; s�� satis�es (4.29) {(4.31). But p = 1 corre-

sponds to the critical point problem. So in this case, by varying p from 0 to 1, the

solution of (4.29)-(4.31) is distorted from the Stage 1 point to the desired critical

point. Because of (4.30) and (4.31), this path again traverses the intersection of

the p2 = p02 hyperplane and �. As with the previous case, it is helpful to scale s�

such that ksk = �� at the initial point p = 0. Many numerical techniques exist for

solving this continuation problem [67, 54, 136].

Stage 3: Local Optimal Direction of Distance Minimization

Starting from an operating point, the algorithm �nds an initial solution point on

the intersection of � and the p2 = p02 hyperplane in Stage 1; then from the initial

point motion is toward the solution point aiming to minimize the distance from

operating point along the singular surface by Stage 2 of the algorithm. The �nal

aim is thus to locally reduce the distance set by kp1 � p01k while satisfying p2 = p02.

At the vicinity of a point on the power ow solution space boundary �p, the surface

�p can be approximated (locally) by its tangent hyperplane P. The optimal motion

direction can be derived from the intersections of �p and P with the p2 = p02 hyper-

plane. These intersections are referred to as �p1 and Ps intersection respectively. A

graphical illustration of the intersections are given in Figure 4.3. where point A on

�p1 intersection satis�es p1 = �f1(x), and the hyperplane Ps is tangent to �p1 at

point A. Point B is the point closest to the operating point p01 on the Ps. It can be

seen that the vector from p01 to B is orthogonal to the hyperplane Ps. Therefore, if
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Figure 4.3: Locally optimal direction of distance minimization.

�p1 is approximated by the plane Ps, the motion from A to B will give the minimal

distance kp1 � p01k. That is, the locally optimal direction is given along the vector

dP 2 Ps.

The conclusion drawn above can be used in analyzing the �rst solution motion

in Stage 2 of the algorithm. Since s is orthogonal to Ps, its projection onto Ps

is a point. Therefore, (4.26) is a connection between the projections onto Ps of

�(���p1 + s�) = ��p� and p01 + f1(x), by the relations given below,

(��p�)P + (p01 + f1(x))P = 0 (4.32)

So,

�(��p�)P = (p01 + f1(x))P = dP (4.33)

� is varied from 1 to 0 during the solution process. It can be seen from equation

(4.33) that the component of motion in the Ps plane is in the locally optimal

direction. Though, there may be a component of motion normal to Ps. As results

of variation of � from 1 o 0, the vectors (��p�)P and (��p�)P will also approach

zero. Consequently this means that the continuation algorithm will only approach

a minimal value of distance kp01 + f1(x)k = kp1 � p01k and will never converge to

maxima.
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4.3.3 Numerical Testing of the Continuation Method

In [108] two model power systems, including a three bus system, and an eight

bus system were studied about the solution characteristics as well as validating

the proposed continuation technique by using the numerical methods listed in the

Appendix B.1. The eight bus system ( given in Figure 4.4) and the continuation

motions and distance changes of Stage 2 of the algorithm is quoted here (in Figure

4.5) for completion.

This continuation algorithm converges to desired critical distance points under nor-

mal conditions. However, the algorithm may experience solution di�culty because
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of the singularity of critical distance equation Jacobian on a very bad estimate of

direction. In such cases, the left eigenvector of the Jacobian can be used to �nd out

the nature of the singularity [108].

4.4 State of Art for Computing Security Bound-

aries in the Parameter Space

In order to keep the power system in a secure operating state, e�orts must be made

to ensure the system is operating state is inside the feasibility and stability domains

which are restricted by the hypersurface � satisfying the conditions below,

det[J(x)] = 0

det[Js(x)� j!I] = 0

where J(x) is either the load ow Jacobian (Jlf) or dynamic state matrix (Js), x is

a vector of load ow independent parameters (nodal voltages) or state variables, I

is the identity matrix, and ! 6= 0 is the imaginary part of an eigenvalue with zero

real part. When power system parameters are varied slowly, either conditions listed

above can be achieved, and this means that the system is on the edge of its transfer

capability (J(x) � Jlf) or small signal stability (J(x) � Js). Either saddle node or

Hopf bifurcations (instabilities) may occur in the system. In some special cases the

transcritical and pitchfork bifurcations may happen as well [22].

Power system control and planning should provide safe stability and loadability

margins. Knowledge of the stability boundary geometrical con�guration gives guid-

ance for development of control strategies and proper decision making. Hence it

follows that study of the bifurcation surfaces � is an important task. However, as

the conditions listed above correspond to a very complicated surface in the space

of power system parameters, it is very hard to observe the topology of the stability

surface composed of di�erent stability boundaries.

The study of nonlinear power system behavior associated with multiple equilibrium

points (load ow solutions) and their relationship with bifurcations has attracted

considerable attention recently - see [63] for a recent collection of review papers.

Among these, the paper [96] contains an extended review of modern local bifurcation
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theory, its application to power system analysis and control, and some relevant com-

putational aspects. An important reference is [42] which is devoted to mathematical

and computational issues of bifurcation analysis, namely, to �nding the closest sad-

dle node, Hopf, transcritical and pitchfork bifurcation in parameter space. Many of

the ideas can be used to study the bifurcation boundary geometry.

In the works [52, 81, 69, 141, 87], the singularity condition detJ(x; p) = 0 is substi-

tuted by the following equivalent equations

J tlf(x; p)w = 0 , Jlf (x; p)v = 0 (4.34)

where v and w are the right and left eigenvectors of Jlf(x; p) corresponding to the

zero eigenvalue. The vectors v and w have remarkable properties [42] which are

very useful in stability analysis. The right eigenvector v indicates the direction of

the initial dynamics of the unstable behavior (voltage collapse, for example), and

the extent to which a variable collapses is given by the relative magnitude of the

corresponding components of v. The left eigenvector w may be interpreted as the

normal vector to �lf , or more precisely, to the tangent hyperplane spanned by the

columns of Jlf(x; p).

The picture given in Figure 4.6 is commonly used to illustrate voltage stability limits

at one busi, suppose the load ow limit point for reactive power variation case is

point A, current operation point is point C, and there are two marginal points, B1

and B2 regarding the security margin and limit.

A

C

Warning limit margin

V

Q
j

B
i

1

Distance to instability

Alarm limit

2B

O

Figure 4.6: The System Stability Limits Revealed in Power Flow Q-V Curve

Techniques for locating one of these boundary points have been discussed in Chapter

3 and 4. However, di�erent techniques are required to more completely explore
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the security boundaries in the parameter space. The following sections discuss

known techniques used to explore these security boundaries presenting the current

state of art for solution techniques. Then a new �-plane method and a parameter

continuation technique are proposed.

4.4.1 Supporting Hyperplane Method

In the works [51, 52, 81] based on quadratic representation of the load ow problem

F (x; p) = p + g(x) = 0, the feasibility region Rp = fpjF (x; p) = 0; x 2 Rng is a

cone whose vertex is at the origin of Rn
p . The supporting (tangent) hyperplanes Tp

imply the condition wtp = 0, where w is the normal vector to Tp, and, if the cone

is convex, all feasible independent parameters p satisfy the inequality wtp � 0 (see

Figure 4.7). In [51, 52, 81] it was conjectured that the feasibility region is convex.

0

p

p1

λ p
0

- 1

λ p0- p 1

Tp :

0pt p= k

( ) tp=0λ p0- p 1

w=

p
0

p

λ p0- p 1

Figure 4.7: A supporting hyperplane in Rn
p [51]-[81]

Examples [69] show that this is not true in general. Though, under what situation it

is true remains to be proven by further research. For vectors p within the feasibility

region, the following optimization problem gives the tangent planes:

max
p

pt1p ( or min
p

pt1p) (4.35)

pt0p = k (4.36)

where p0 is a vector corresponding to a positive de�nite J(p0) (where J(p0) is a

linear matrix function of p0 [51, 52, 81]), and p1 is a vector not parallel to p0, and

k is a nonzero constant. The constraint (4.36) de�nes a plane which intersects the
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cone (Figure 4.7). The problem (4.35)-(4.36) can be expressed as follows [51, 52, 81]:

max
x

xtJ(p1)x
�
or min

x
xtJ(p1)x

�
(4.37)

xtJ(p0)x = k (4.38)

By means of di�erentiation of the Lagrange function L(x; �) = xtJ(p1)x + �[k �

xtJ(p0)x] with respect to x, the following generalized eigenvalue problem can be

stated:
[J(p1)� �J(p0)]x = 0 (4.39)

To get the supporting planes Tp, the minimal (� = �min) and maximal (� = �max)

eigenvalues of the problem (4.39) are used. The set of tangent hyperplanes for

di�erent p0 and p1 gives an approximation of the feasibility region boundary �lf .

Di�culties may arise for nonconvex feasibility regions.

Further developments are given in [87, 88, 89] and [43]. The authors present methods

for �nding the load ow feasibility and saddle node bifurcation points by solving a

system which can be generalized as follows:

F (x; p0 + l�p) = 0 (4.40)

J t(x; p0 + l�p)w = 0 (4.41)

wtc� 1 = 0 (4.42)

where equations (4.40) and (4.42) are the load ow and w 6= 0 conditions respec-

tively, p0 is the vector of independent parameters at a given operating point, �p is

a direction of variation of p, l is a scalar unknown parameter, and c is a nonzero

vector. In [42] and [43], this system is used to obtain the locally closest bifurcation

point, but it can give sequences of the saddle node bifurcation points as well. By

successive rotations of �p in a plane, it gives the intersection of �lf (J � Jlf) or �
sn

(J � Js) by this plane. In the last case, the system (4.40)-(4.42) can be inconsistent

if there is no saddle node bifurcation point detJs = 0 along the straight line p0+ l�p

within the load ow feasibility domain, i.e. the system is aperiodically stable, and

its operating conditions are restricted by the network transfer capability only.

There are some other questions regarding the technique for generating bifurcation

boundaries:

(i) What is a reliable way to get an initial estimate of x; l; w on �?
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(ii) How reliable is the procedure in view of the geometric peculiarities and nons-

moothness of �?

(iii) Whether is it possible to obtain all the parts of �?

(iv) How many points are to be found for an accurate assessment of �?

4.4.2 High Order Numerical Method

Regarding question (i) at the end of the above section, the initial estimate of the

critical point can be taken as the point on the solution boundary
P

in the direction

�p from the operating point [108]. A high order numerical method is used to get

the initial point and provide further motion along �lf [108]. This method may

be considered as either a generalization of the Newton-Raphson method including

nonlinear terms of the Taylor series, or a parameter continuation technique provid-

ing more reliable solution properties. The idea of the method is the following. A

nonlinear system �(z) = 0, which is the power ow problem or set (4.40)-(4.42),

can be expressed as

�(z; ) = ( � 1)�0 + �(z) = 0; (4.43)

where the equation �(z; ) = 0 implicitly de�nes the function z = z(), �0 is a

given nonzero vector, and  is a scalar parameter. If  = 0, a solution of (4.43)

corresponds to the point where �(z) = �0. At  = 1, z becomes a solution of the

original problem �(z) = 0. The dependence z() can be expressed as the Taylor

series

z() = z0 +
1X
k=1

k

k!

dkz

dk
= z0 +

1X
k=1

k

k!
�zk; (4.44)

Formula (4.44), where the upper in�nite sum limit is replaced by a given �nite

number K, is used at each iteration of the method. The correction vectors �zk are

de�ned recurrently through the values of the mismatch function �(�) computed at

certain points, and  is chosen within the range (0; 1] to get reliable convergence of

(4.44) and good accuracy of the method [108]. The method provides many desirable

features: reliable solution of nonlinear algebraic problems up to points of singularity;

convergence to a singular point if it occurs on the way of the iterative process;

almost straight line motion of the iterative process in the space of mismatches; and

retention of zero mismatches of (4.43).
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4.4.3 Permanent Loading Technique

To get an initial point on �lf , the permanent loading technique can be used [91, 108].

In this application, z and �(z) are dependent variables x and load ow mismatch

functions F (x; p) as in equations (4.45) {(4.47) respectively. For a speci�ed direction

�p = �p1 in (4.40), and parameter l = l� which gives a point outside the feasibility

region, the method follows this direction unless a singular point detJlf = 0 has been

met - see Figure 4.8, Step 1. The system (4.40)-(4.42) is used after that to re�ne

*
* * * *
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* Step 1, permanet loading - - Step 2, refinement

- Step 3, exploring Σlf
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∆ ∆

∆
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: det Jlf  =0

w1

Figure 4.8: Application of the technique [108] to explore �lf

the initial estimate of x and get proper initial values of w = w1 and l = l1 - see

Figure 4.8, Step 2. To get an initial guess of w1 for Step 2, the fact that x()! v1

when p! �lf can be e�ectively used [108]. For further exploring the intersection of

�lf by a plane going through the points p0 and p0 + l��p, the vector �p is rotated

in the plane through the angle increment � - see Figure 4.8, Step 3. Again, the high

order method is applied at the second stage. As mismatches of (4.41) and (4.42) are

initially zeros, they are preserved close to zeros afterward, and due to this the high

order method follows the feasibility domain boundary. Note that the series (4.44)

taken as a function of  provides an analytical approximation of �lf . Equations:

F (x; p) = 0 (4.45)

J t(x; p)w = 0 (4.46)

jjwjj = 1 (4.47)

where y is now a vector of any two independent parameters, and the predictor-

corrector method [124] are used in [67] to explore the power ow solution space

boundary. The system (4.45)-(4.47) is presented as �(z) = 0; z = [xt; wt; pt]. The

unit predictor vector �p; k�pk = 1; that is tangent to the curve (4.45), is given
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Figure 4.9: The predictor-corrector procedure [124, 67]

by [@�=@z]�p = 0 - see Figure 4.9. Predictions of the next point pi+1 are found as

pi+1 = pi+ ��pi, where � is the step length. Corrections of a step are computed by

simultaneous solution of equations describing hyperplanes perpendicular to p, that

is (p� pi)
t�p = 0, and �(z) = 0. The initial point on � is found by application of

the same predictor-corrector technique to solution of the problem f(x; p) = 0 . The

predictor-corrector technique is considered as a very reliable parameter continuation

method [124]. Nevertheless the above questions (ii)-(iv) remain relevant.

4.4.4 Predictor Corrector Method

For the Hopf bifurcation boundary �h, the state matrix Js has to satisfy the fol-

lowing conditions [42, 110]:

J ts(x; p)w
0 + !w00 = 0

J ts(x; p)w
00 � !w0 = 0

,
Js(x; p)v

0 + !v00 = 0

Js(x; p)v
00 � !v0 = 0

(4.48)

In (4.48), w = w0 + jw00 and v = v0 + jv00 are the left and right eigenvectors

corresponding to eigenvalue � = 0 + j!. By using (4.48) instead of (4.34), the

following set can be proposed to get a Hopf bifurcation point in the direction of �y

F (x; p0 + l�p) = 0 (4.49)

J ts(x; p0 + l�p)w0 + !w00 = 0 (4.50)

J ts(x; p0 + l�p)w00 � !w0 = 0 (4.51)

w0
i � 1 = 0 (4.52)

w00
i = 0 (4.53)
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From the dimensions for the original DAE system model, the set (4.49)-(4.53) con-

sists of n + 2m + 2 equations and depends upon the same number of unknown

variables x, w0, w00, l, and !, where n and m are the number of load ow and dy-

namic state variables respectively. Both the Hopf (! 6= 0) and saddle node (! = 0)

bifurcation boundaries can be plotted by means of successive rotation of �p. Many

di�culties arise regarding the solution of (4.49)-(4.53): absence of bifurcation points

on the line y0 + l�p - see previous comments to the system (4.40)-(4.42) - large di-

mension, complicated topology of the bifurcation surface, and other computational

problems [110].

An alternative way for computing the Hopf bifurcations on the ray p0+ l�p can be

proposed. It consists in the use of eigenvalue sensitivity factors to get the zero real

part for a certain oscillatory mode. The procedure implies the following steps:

1. Set p1 = p0 and i = 1.

2. Take xi as a solution of the load ow problem F (xi; pi) = 0. Find the vectors

xis and xia from xi.

3. Compute the state matrix Js(x
i
s; p

i) using (3.92).

4. Find the eigenvalue of interest �i = �i+j!i for the matrix Js(x
i
s; p

i), and cor-

responding eigenvectors vi and wi. If �i is small enough, stop the procedure.

5. Evaluate the derivative dJs=dl at the current point (x
i
s; p

i) numerically.

6. Compute the sensitivity factor

d�i

dl
= Re

("
(wi)t

dJs
dl

vi
# h
(wi)tvi

i�1
)

7. Find the increment of l as �li = ��i[d�i=dl]�1 and pi+1 = pi +�li�p.

8. Go to step 2 with i = i+ 1.

The procedure can be used to get the initial guesses for �h including the eigenvectors

and !. It allows choice of a particular oscillatory mode (for example, an inter-area

mode) to get its bifurcation point. Di�culties may be caused by the nonlinear

dependence �(l), and by tracing the selected mode between steps.
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For the special cases when p does not a�ect the load ow conditions, p linearly

appears in Js(p), and the operating point p0 lies inside the stability domain (Re�i �

0; i = 1; _;m), we saw equation 4.49 can be eliminated from the system, and x is

�xed vector x�. A special determinant minimization method can be used to solve

the problem.

4.5 New �-Plane Method

This method is e�cient for locating the power ow feasibility boundaries in the space

of power system parameters. Besides its application in power system problems, it

is also e�cient for any quadratic algebraic problem. When applied to power system

studies, it is a robust method for �nding the power system power ow feasibility

boundaries on the �-plane de�ned by any three vectors of dependent variables

(e.g. nodal voltages). The method exploits some quadratic and linear properties

of the load ow equations and state matrices written in rectangular coordinates.

One of the advantages of the method is that it does not require iterative solution

of nonlinear equations except for calculating the eigenvalues. Besides locating the

boundaries in the parameter space, the method is also useful for topological studies

of power system multiple solution structures and stability domains.

4.5.1 Properties of Quadratic Systems

The proposed �-plane method is based on the quadratic load ow system proper-

ties. The solution and singularity property of the quadratic problem is essential in

application of the method.

Consider a power ow problem which requires solution of nonlinear equations of the

form given below,

F (x; p) = p+ f(x) = 0 (4.54)

where p 2 Rn
p is the vector of speci�ed independent parameters such as active and

reactive powers of loads and generators or �xed generator terminal voltages, and

x 2 Rn
x is the state variable vector, consisting of nodal voltages. The vector function

f(x) reects the sum of power ows into each bus from the rest of the network or

generator bus voltages. If nodal voltages x are expressed in rectangular coordinates
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then F (x) is a quadratic function of x, and the Jacobian matrix J(x) = @F=@x is

a linear function of x.

The important properties associated with the quadratic systems are given below;

more detailed study can be found in [105], [106] and [109].

Property 1. For any two points x1 6= x2 and detJ(x1) 6= 0, the number and location

of singularities of the quadratic problem F (x) = 0 on the straight line through

x1; x2 is de�ned by real eigenvalues of the matrix J�1(x1)J(x2). These singular

points on the line can be found as xj = x1+�j(x2� x1), where �j are computed as

�j = (1� �j)
�1 for all real eigenvalues �j 6= 1 of the matrix J�1(x1)J(x2).

Property 2. The maximum number of solutions of a quadratic equation F (x) = 0

on each straight line in the state space Rn
x is two.

Property 3. For quadratic mismatch functions F (x), a variation of x along a straight

line through a pair of distinct solutions of the problem F (x) = 0 results in variation

of the mismatch vector F (x) along a straight line in Rn
p .

Property 1 gives a background of the proposed �-plane method. Properties 2 and

3 provide helpful implementation for the method. Proofs of these properties are

given in Appendix C.

4.5.2 Obtaining bifurcation curves on �-plane in R
n
x

The aim here is to develop a method for plotting an intersection of the power ow

feasibility domain boundary by a plane in the space of dependent variables x. It is

known that the boundary itself consists of points where detJ(x) = 0.

A plane in Rn
x can be de�ned by any three distinct points x1, x2 and x3 provided

that

x3 6= x1 + �(x2 � x1) (4.55)

is satis�ed for any scalar parameter �. Condition (4.55) means that the three points

x1, x2 and x3 do not lie on a single straight line in Rn
x. Once (4.55) is true, the

points x1, x2 and x3 form a triangular � which de�nes a plane in Rn
x and gives

the name for the proposed method. Any point on the �-plane can be expressed by

means of scalar parameters 1 and 2 as shown in Figure 4.10:

x(1; 2) = x1 + 1(x2 � x1) + 2(x3 � x1) (4.56)
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It is clear that x(0; 0) = x1, x(1; 0) = x2 and x(0; 1) = x3.

Suppose that at the point x1, the matrix J(x) is nonsingular, i.e.

detJ(x1) 6= 0 (4.57)

Then the following procedure can be used to �nd out all singularities of J(x) in the

�-plane. The idea consists in rotation of a vector x(1; 2) � x1 in the �-plane,

and subsequent computations of all singularities of J(x) on each line de�ned by this

vector (see points �j in Figure 4.10). The following steps are to be used:

1. Take the angle � = 0

2. Compute 1 = l cos � and 2 = l sin �, l� 0

3. De�ne a point x = x(1; 2) as in (4.56)

4. Find eigenvalues of the matrix J�1(x1)J(x)

5. Compute �j = (1 � �j)
�1 for all real eigenvalues �j 6= 1 from the previous

step

6. For each value of �j, de�ne the corresponding point in the �-plane as

xj(�) = x1 + �j[1(x2 � x1) + 2(x3 � x1)] (4.58)
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7. Change � = �+��, where �� is an increment, and go to step 2 unless � � �.

The set of points xj(�) computed for di�erent � forms a cut-set of the feasibil-

ity domain boundary � by the �-plane. Note that the proposed procedure does

not require an iterative solution except the eigenvalue problem. The reliable QR

technique is recommended to be used in step 4.

4.5.3 The �-plane Shown in R
n
x

Although the bifurcation points xj(�) in (4.58) belong to the �-plane, they are

vectors in the multidimensional space Rn
x. To get a visual representation for them,

it is convenient to use a new two-dimensional coordinate system associated with

the �-plane itself. For this purpose, we use the following oblique-angled coordinate

system (Figure 4.11).

~x1 =

0
@ 0

0

1
A

~x2 =

0
@ kx2 � x1k

0

1
A (4.59)

~x3 =

0
@ kx3 � x1k cos �x

kx3 � x1k sin �x

1
A

where

�x = arccos
(x3 � x1)

t(x2 � x1)

kx3 � x1kkx2 � x1k

In the new two-dimensional coordinate system, the expression for computing the

power ow singular points is the following:

~xj(�) = �j(1~x2 + 2~x3) (4.60)

4.5.4 �-plane Shown in R
n
p

Consider a particular case when the vectors x1, x2 and x3 are distinct solutions of

(4.54). It follows from Property 2 in Section 4.5.1, that those three points can not

lie on a straight line in Rn
p . Property 3 in the same section 4.5.1 indicates that, by
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Figure 4.11: Visual representation of the �-plane

y = �f(x), the straight lines

x(1; 0) = x1 + 1(x2 � x1) (4.61)

x(0; 2) = x1 + 2(x3 � x1) (4.62)

in Rn
x are mapped in the straight lines

p1 = p(1; 0) = 1(1 � 1)J(x1)(x2 � x1) (4.63)

p2 = p(0; 2) = 2(2 � 1)J(x1)(x3 � x1) (4.64)

in Rn
p respectively. The last two lines pass through a common point �f(x1), and

they de�ne a plane which we call the �-plane in Rn
p - see plane ABC in Figure 4.12.

4.5.5 Visualization of the �-plane in R
n
p

By p = �f(x), all singular points computed along the lines (4.61) and (4.62) are

mapped into points of the lines (4.63) and (4.64) respectively. So, they lie on �-

plane in the space Rn
p . The rest of the points yj(�) do not normally belong to the

plane as the plane �-plane in Rn
x is mapped by p = �f(x) into a surface which

is not a plane (Figure 4.12, surface ABDC). The only thing we can do here is to
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p

�nd the projections ~pj(�) on �-plane in the space Rn
p . The projection ~pj(�) can be

found by the following way. Let

~pj(�) = �1~p1 + �2~p2 (4.65)

where �1 and �2 are scalar parameters, and ~p1, ~p2 are de�ned as

~p1 =

0
@ kp1k

0

1
A (4.66)

~p2 =

0
@ kp2k cos �p

kp2k sin �p

1
A (4.67)

where

�p = arccos
(p2)

t(p1)

kp2kkp1k

The coe�cients �1 and �2 can be found by solving the linear equation

0
@ kp1k

2 pt1p2

pt1p2 kp2k
2

1
A
0
@ �1

�2

1
A =

0
@ p1yj(�)

p2yj(�)

1
A (4.68)

They are used in (4.65) after that to get singular points in the two-dimensional

oblique-angled coordinate system (~p1; ~p2).

As the singular points belong to a nonlinear surface (see the surface ABDC in Figure

4.12), and only their projections on the �-plane are used, the resulting plot reects

only a qualitative representation of the singular boundary in Rn
p . Nevertheless, all

singular points along the lines AB and AC are presented very accurately.
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4.5.6 �-plane View of The New-England Test System

The proposed method has been tested for the New England Test System [16] as

given in Figure 3.2. The system consists of 39 buses, 10 generators, and 18 loads.

Bus number 31 is a slack bus. All other generators are simulated by means of

constant active powers and terminal voltages. Loads have �xed active and reactive

demands.

Three distinct load ow solutions x1, x2 and x3 given in Table 4.1 are considered.

These solutions were selected from a solution set obtained by the method for com-

puting multiple solutions of quadratic algebraic problems given in [105, 109]. All

three points are low voltage solutions. Solutions x1, x2 and x3 de�ne a �-plane in

Rn
x shown in Figure 4.13. The orientation of the plane is do by setting x1 correspond

to zero point (0; 0), and the vector x2 � x1 be directed along the horizontal axis.

Solution x1 is taken as a �xed point for the plot, and all straight lines, along which

the singularities are determined, belong to �-plane and pass through x1. The cut-

set of the feasibility domain boundary by �-plane is shown by dotted curves.
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Figure 4.13: �-plane in Rn
x plane of nodal voltages (New England Test System)

A detailed consideration of the feasibility boundary topology is not the main purpose

here. Nevertheless some observations can be made based on the �-plane:

� The singular points marked by small circles lie exactly in the middle of the
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Bus Solution x1 Solution x2 Solution x3

V, kV �, grad V, kV �, grad V, kV �, grad

1 103.1 -25.2 0.0 -23.2 89.3 -42.4
2 101.7 -18.9 86.9 -11.0 64.1 -41.1
3 95.5 -20.8 92.0 -15.1 3.8 -125.2
4 84.2 -19.9 94.6 -15.7 44.5 -39.2
5 77.0 -16.8 96.6 -14.1 64.0 -29.0
6 78.7 -15.3 97.2 -13.1 67.7 -26.4
7 68.5 -19.5 96.0 -16.3 66.3 -32.7
8 64.1 -20.7 95.9 -17.3 66.5 -34.5
9 0.0 -21.1 100.8 -23.4 88.9 -40.2
10 88.2 -13.2 98.9 -10.8 73.5 -25.3
11 84.9 -13.9 98.2 -11.6 71.2 -25.7
12 84.6 -14.2 96.8 -11.7 67.6 -26.7
13 87.9 -14.4 98.2 -11.7 68.9 -27.5
14 87.9 -17.3 96.9 -13.6 59.0 -34.3
15 94.2 -19.1 97.5 -14.5 64.3 -45.0
16 98.6 -18.0 99.4 -13.1 69.5 -45.2
17 98.3 -19.4 97.2 -14.3 52.3 -49.7
18 97.1 -20.4 95.1 -15.1 32.0 -56.4
19 103.5 -13.2 103.8 -8.4 93.6 -39.1
20 98.3 -14.5 98.5 -9.7 92.6 -40.8
21 100.0 -15.4 100.6 -10.6 79.5 -41.2
22 103.4 -10.8 103.7 -6.0 92.5 -35.1
23 102.7 -11.0 103.1 -6.2 91.5 -35.3
24 99.5 -17.9 100.3 -13.0 73.0 -45.1
25 103.5 -17.6 93.9 -12.0 75.6 -45.8
26 102.4 -18.2 98.3 -12.9 73.4 -48.1
27 99.9 -20.0 97.2 -14.9 62.5 -51.7
29 103.6 -14.6 101.5 -9.2 88.8 -43.2
29 104.1 -11.8 102.7 -6.3 94.1 -39.9
30 104.8 -16.5 104.8 -8.3 104.8 -37.4
31 98.2 -0.3 98.2 0.0 98.2 0.0
32 98.3 -5.1 98.3 -3.7 98.3 -15.6
33 99.7 -8.7 99.7 -3.8 99.7 -34.4
35 101.2 -9.4 101.2 -4.6 101.2 -35.5
35 104.9 -6.0 104.9 -1.2 104.9 -29.7
36 106.4 -3.1 106.4 1.7 106.4 -26.52
37 102.8 -11.0 102.8 -4.9 102.8 -37.3
38 102.7 -5.1 102.7 0.5 102.7 -32.7
39 103.0 -28.9 103.0 -27.3 103.0 -42.5

Table 4.1: Three Distinct Load Flow Solutions De�ning The �-Plane
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dashed lines connecting the points x1, x2 and x3. This fact is due to the

quadratic load ow properties. Detailed explanation can be found in [105, 109]

etc.

� The singular curves in Figure 4.13 have an open shape. This means that, by

certain unrestricted variations of nodal powers p in Rn
p , voltages x in Rn

x may

be inde�nitely increased without reaching the power ow feasibility boundary.

This paradoxical fact can be explained as follows. The singular boundary is

considered without any limitations applied to parameters p. Therefore the

generator terminal voltages and nodal powers in all buses can be varied ar-

bitrarily. Obviously, by varying p, it is possible to get unrestricted voltage

increase in some buses and provide unlimited power transfers. In real situ-

ations, the limitations for p, for example, equality constraints for generator

terminal voltages and zero power injections in empty buses, must be taken

into account.

Figure 4.14 shows the corresponding �-plane inRn
p . Point 0 represents the operating

condition p0 + g(x) = 0 of the system. The singular boundary is plotted by using

the map p = �p0 � g(x)). Points A and B correspond to the points A and B in

Figure 4.13. All singular points which belong to the straight lines de�ned by 0�A

and 0 � B are given accurately. All other points are obtained as projections of

multidimensional singular curves on the �-plane in Rn
p .

As seen from the descriptions above, this new technique does not require an iterative

solution of nonlinear equation sets. For quadratic problems, it produces all saddle

node bifurcation points on a straight line in space of dependent variables (e.g. nodal

voltages given in rectangular form) by solution of an eigenvalue problem. The

method is useful for visualization and topological studies of the multiple solution

and feasibility domain structures. However, since the boundaries produced by this

method are rather complex, this clearly raises questions about their approximate

solution in realistic power systems.
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Figure 4.14: �-plane in Rn
p plane of nodal powers (New England Test System)

4.6 Continuation Method for Tracing the Aperi-

odic and Oscillatory Stability Boundaries

We now present a continuation method procedure for tracing the aperiodic and

oscillatory stability boundaries.

Besides the traditional steady-state stability limit which is usually taken from the

power ow feasibility limits, the aperiodic and oscillatory small-signal stability re-

strictions (saddle node and Hopf bifurcation boundaries) should also be considered

as a characteristic of the network transfer capability. In open access grids, there is

the likelihood of increasing numbers of stability limited transfers. We refer to the

following well-known facts [77]:

� Economic incentives often require the open-access system to operate away

from its nominal design conditions;

� The grid is subject to uncertain and signi�cant changes in generation and

load.

In longitudinal systems, for instance, this may lead to poorly damped inter-area

oscillations which are di�cult to eliminate by using the traditional approaches.
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Bifurcation analysis is mainly used to indicate power system voltage collapse and

instability in power systems. The assessment of the saddle node and Hopf bi-

furcation boundaries and corresponding stability margins in the space of system

parameters would be helpful and maybe essential for monitoring transfer capability

in open-access grids.

There are techniques locating these stability points along a given ray in the pa-

rameter space, which have been discussed in Chapter 3 and Sections 4.1-4.6 of

this chapter. However the general solution system equations are rewritten here for

completion,

f(x; p0 + ��p) = 0 (4.69)

Js
t(x; p0 + ��p)l0 + !l00 = 0 (4.70)

Js
t(x; p0 + ��p)l00 � !l0 = 0 (4.71)

l0i � 1 = 0 (4.72)

l00i = 0 (4.73)

Solutions of the system (4.69)-(4.73) correspond to either saddle node (! = 0) or

Hopf (! 6= 0) bifurcations. Nevertheless the extreme load ow feasibility conditions

(if they do not coincide with the saddle node bifurcations) can not be located by

means of this system. They can be located by any of the techniques discussed

before, e.g. direct method by substituting the load ow Jacobian with the state

matrix, or �-plane method for their cut-set in the parameter space.

Before starting tracing the bifurcation boundaries, an initial solution of the bifur-

cation point is needed. This step has been discussed in section 3.4. Once the �rst

solution had been found, implicit function based theorem can be used to follow the

solution curves. The Davidenko -Newton -Raphson method was employed to ful�ll

the task [136]. The method can be explained as follows:

� At the equilibrium point, assume the bifurcation problem is formulated as

0 = f(x; �), where x is the vector of state variables, and � is the bifurcation

parameter. When di�erentiating both sides of the equation, the result comes

out as,

0 = df = fxdx+ f�d�

dx=d� = �(fx)
�1f�
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� Then given x(�0) = x0, the equation above can be solved using any ordi-

nary di�erential equation [ODE] solver such as R-K method to determine the

dependence of x on �.

� Subsequently, the solution of the last step will be taken as initial guessed value

of solution for the next step and so on to trace the bifurcation boundary /

solution curve.

Due to singularity or ill-conditioning of the Jacobian matrix, the tracing procedure

may converge very slowly or not at all in some cases. To avoid this, as the �rst

choice, a smaller step size for �p can be used. In more complicated cases, the entire

procedure should be repeated for di�erent eigenvalues and initial loading directions.

In view of complicated shape and possible loops in the bifurcation curve, it can be

useful to relocate the point y0 and change the loading direction �p and parameter

� during the tracing procedure. The idea is to ensure a better position for the

point p0 with respect to the bifurcation boundary and to avoid cases where ��p

is a tangent vector to this boundary. Note that the vectors p0, �p and parameter

� can be easily changed in coordination to preserve zero mismatches of power ow

condition. To achieve this, the initial operating point p0+��p is kept �xed through

the process. The following correction procedure can be used:

� Compute the curventure radius and center of the boundary with the former

solution points.

� Set a new point p0 in the torsion center, change the direction �p and bifur-

cation parameter � to preserve the last obtained bifurcation point p� .

� Continue with the tracing procedure.

Figure 4.15 illustrates the proposed correction procedure. Suppose that initially

the vector ��p originates at point a, and that, as a result of its clockwise rotation,

the point c is achieved. It is clear that further tracing of the bifurcation boundary

in the clockwise direction is impossible. However by rotating the origin of ��p in

the point b, which is the current curventure center of the curve, and changing the

vector ��p correspondingly, clockwise tracing of the bifurcation boundary can be

continued.
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Figure 4.15: Continuation corrector method

Numerical Example Using the Technique

The tracing technique has been applied to the single machine in�nite bus system

with motor load [33] in Figure 3.6 and described by equations (3.68) {(3.71). The

tracing results are given in Figures 3.13 -3.18. The feasibility and Hopf bifurcation

boundaries are given in Figure 4.16, and all other �gures are simulations aimed

to verify the method. These �gures have been given in Section 3.6.2. The �gure
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is obtained by two steps: (1) locating the initial bifurcation point by initial value

approximation techniques given in Chapter 3, Section 3.4 - see Figure 3.1 - and

(2)parameter continuation tracing techniques given in this section.

4.7 Conclusion

Two major techniques are addressed in this chapter: (1) visualizing the security

boundary hyperplane de�ned by characteristic points; (2) a continuation method to

trace the aperiodic and oscillatory instability boundaries. As compared with tradi-

tional approaches, the new techniques proposed here are superior in their capability

to show the boundaries from point of view of computation e�ciency and result

accuracy. The potential usage of the results is greatly increased by the problems

faced in modern open access systems.

In the next chapter, a powerful optimization tool, i.e. the Genetic Algorithm (GA)

is to be discussed, which can overcome di�culties caused by non-convexity, and

non-di�erentiable nature of some problems that need optimization.
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5.1 Introduction

In this chapter, we address a new genetic optimization technique which can be used

to compute the small signal stability boundaries and margins in the space of power

system parameters of interest. The margins are determined as a set of critical [the

shortest] and subcritical [closest to the shortest] distances from the system's state

point to the load ow feasibility, aperiodic and oscillatory stability boundaries.

The proposed technique is able to locate the distances quite robustly within one

procedure. It is an important feature that the distances are computed for all of the

di�erent boundaries concurrently.

Recall the analytical techniques to locate power system small signal stability critical

conditions discussed in Chapters 3,4. The problem we need to solve includes an

initial guess of solution points, numerical methods to locate the critical solutions,

as well as general methods to �nd all characteristic points in the parameter space.

All these methods start from a ray in the parameter space, and obtain solution

by solution along the direction de�ned by this ray. Also a problem arises when

tracing a particular eigenvalue in the search procedures. Take for example the

general method; the optimization procedure has to be repeated for every eigenvalue

of interest in order to locate these stability characteristic points in one direction.

In case the power systems to be studied are very large, the computation costs will

increase greatly.

Once again, the result depends upon the initial guesses of variables and selected

eigenvalues. The choice of these parameters is a complicated task. One can use

some practical ideas regarding the most dangerous loading direction and critical

eigenvalues [for example, corresponding to the inter-area oscillatory modes.]. Nev-

ertheless, it looks quite di�cult to get all of the critical and subcritical distances

by these analytical approaches.

One of the most compelling di�culties in all the formerly mentioned procedures is

computing the small signal characteristic points in view of breaks of smoothness in

the objection function and constraints. For example, to take account of reactive

power limits, di�erent models in the constraint set will have to be used. A sudden

change in the model causes severe problems for the optimization procedures. In

fact, it can lead to an instant instability [42].
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To summarize, the analytical approaches to the small signal stability analysis have

many di�culties which can be hard to solve by traditional optimization techniques.

For this reason, we are attempting to apply the genetic optimization procedures.

The structure of the chapter is as follows. A brief review of features of GAs is given.

Then a black box model of the power system is used with inputs corresponding

to parameters of interest and output as the �tness function. A �tness function

is designed to reect in inuence of the critical eigenvalue and the distance to

the stability boundary. The GA operates in the space of black box inputs. The

solution of the problems of locating characteristic points and critical distances is

demonstrated on two examples. Finally, a scheme for reactive power planning using

GAs is presented.

5.2 Fundamentals of Genetic Algorithms (GAs)

Genetic Algorithms (GAs) [56] are heuristic probabilistic optimization techniques

inspired by natural evolution processes. In genetic algorithms, the �tness function

is used instead of objective function as in the traditional optimization procedures.

Each concrete value of variables to be optimized is called as an individual. Then

a current number of individuals compose the generation. In the process of GAs,

individuals with better �tness survive and those with lower �tness die o�, so �nally

the individual with the best �tness is located as the �nal solution. They are capable

of locating the global optimum of a �tness function in a bounded search domain,

provided a su�cient population size is given. The GA sharing function method is

able to locate the multiple local maxima as well.

Genetic Algorithms (GAs) belong to class of the derivative-free optimization meth-

ods. They rely on repeated evaluations of the objective function, and the subse-

quent search direction after each evaluation follows certain heuristic guidelines [80].

GAs use reproduction, crossover and mutation as major operators to simulate nat-

ural evolution process. Based the evaluation of the objective functions, only the

populations with highest �tness values can survive till we obtain the acceptable

optimization point. GAs are suitable for noisy and discontinuous functions. They

work with a set of parameters and probabilistic transition rules thus providing a

robustness property for many optimization problems [56].
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As compared with other search techniques, the features of Genetic Algorithms can

be summarized as [56, 94]:

� Heuristic probabilistic algorithms for searching and optimization, which em-

ulate natural evolution processes;

� Based on a set of encoded strings representing parameters (instead of these

parameters themselves);

� Started from a set of individuals standing for a group of possible solutions of

variables to be optimized instead of a single point, while traditional optimiza-

tion techniques do start from a point;

� Inherently parallel;

� Capable of handling multimodal, nonlinear, non-convex problems;

� Optimization procedure does not require di�erentiation operations;

� Capable of locating global optimum and local optima within search domain.

The major genetic operators are:

Selection/Reproduction - which creates a new population from the old popula-

tion biased towards the highest �tness. Selection is based on individual �tness of

the current generation. Generally the selection scheme is Roulette Wheel Selection,

which calculates the ratio of individual �tness to the sum of all �tnesses of the gen-

eration, fiP
fi
. This ratio is the individual's probability of being selected. Once an

individual is selected, it is copied exactly and put into a temporary mating pool for

usage by other genetic operations. By this way, the higher the individual's �tness,

the more possible it will survive by being copied of its gene into individuals of later

generations.

Crossover/Mating - swaps chromosome parts between individuals. There are

two steps of crossover operation. Firstly, a couple of individuals is selected from

the mating pool produced during selection/reproduction. This selection is done

with a certain probability. Then this two individuals are crossed over and a new

couple of individuals are produced as a result. The crossover can be done on one

point or two points on the string representing the mating individuals. In Figure 5.1
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one-point and two-point crossover are performed on two sample mating individuals.

A Genetic Algorithm achieves global optimization by reproduction and crossover to

pass over and mating the information included in individual strings.

1 | 0 1 1 0 | 0 1 0

1 0 1 | 1 0 0 1 0
1 0 0 | 1 0 0 1 0
1 0 1 | 1 1 1 1 0

1 | 0 1 1 0 | 1 1 0

(a) One-point crossover

(b) Two-point crossover

1 | 0 0 1 1 | 0 1 0
1 | 0 0 1 1 | 1 1 0

Point

Crossover

1 0 0 | 1 1 1 1 0

Figure 5.1: Crossover/Mating - swaps chromosome parts between individuals.

Mutation - changes a random part of the string, aimed to bring back any lost bit

from selection and crossover. Mutation is usually taken as an auxiliary operator.

Mutation is performed on single individuals by changing bits on individual chromo-

some with very small probability. By mutation, the di�erences among individuals

are kept so to bring back bits with better �tness lost during former genetic opera-

tion. Mutation prevents the genetic algorithm from premature convergence toward

local optima instead of global optima.

1 0 0 1 1 |0| 1 01 0 0 1 1 |1| 1 0
Mutated Bit

Figure 5.2: Mutation - changes a random part of the string, aimed to bring back

lost bit from selection and crossover.

Corresponding to these operators are the probabilistic factors, Ps, Pc, and Pm which

are selection probability, crossover probability and mutation probability. They usu-

ally take the values as Ps � 1:0, Pc � 0:8, and Pm � 0:001 � 0:02. Note that the

mutation probability rate should be very small, otherwise the optimization process

may uctuate and takes longer time to converge. However, zero mutation rate may

result in loss of the best �t chromosome during optimization. Note Pm > 0:5 will

lead to random search regardless of crossover probability [56]. Generation size is

also important for e�cient genetic optimization procedure.

It can be seen that Genetic Algorithms are evolved from nature evolution process,

and listed in Table 5.1 are the items of GA as compared with natural evolution.

However, Genetic Algorithms are usually not as fast as traditional methods, [71].
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Terms for Terms for

Natural Evolution Genetic Algorithms

Chromosome String

Gene Characteristic

Gene type Structure

Epistasis Nonlinearity

Table 5.1: Terms of natural evolution as compared with GA terms.

For bulk power systems, population control is necessary to save computation costs.

The idea of population control is that computation should start with large popula-

tion size, then reduce it gradually in every generation that followed. Also resolution

control will help with large size systems. Resolution control requires large step size

in the beginning of the generations, till promising regions are reached; then it can

be reduced to �nd more accurate results [71].

5.3 Genetic Optimization Procedures

The traditional algorithms for optimization sometimes fail to give the correct so-

lution or can even give no solution at all if the problem lacks such properties as

linearity, convexity and di�erentiability [134]. For all the analytical approaches to

stability analysis, the optimization methods used are mainly Newton-Raphson like,

which uses the Lagrange function method in equation (3.101) and the procedure

shown in Figure 3.8. This method starts from one point and searches for the optimal

solution based on di�erentiation information and a series of iteration procedures.

It might stop at local optima and requires the objective function be continuous,

di�erentiable and locally convex. Other methods can be used to locate the global

optimum. For instance, the in�nite search method, compares the objective function

values based on many discrete points in the search domain to locate the best solu-

tion taken as the global optimal solution. However, it becomes impossible to use for

a very large search domain. Another nonlinear optimization method is the Interior

Point (IP) method, which is capable of handling large sets of equality and inequal-

ity constraints within the problem solution by using a Lagrangian function. The

IP method has been used in determining power system loadability, collapse point,
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and other feasibility limits. However, IP method still requires Newton's method

to solve the modi�ed objective function, which contains objectives and constraints

[79]. Simulated Annealing (SA) and the Monte Carlo method are other kinds of

heuristic probabilistic optimization methods. The SA mimics the annealing process

by decreasing the temperature, which is represented by the objective function, to

locate the point with minimum value. The normal SA method may stop at local

optima and fail to �nd the global one. The Monte Carlo method often involves

too much random information for practical processing [100]. An overview of opti-

mization techniques being applied to the determination of power system feasibility

regions can be found in [19].

The Genetic Algorithms compared with all these traditional optimization methods,

are very robust in locating the global optima, and do not require the objective

function to be continuous, di�erentiable, and convex.

Before the Genetic Algorithm can optimize a real optimization problem, the vari-

ables to be optimized will have to be encoded. Since GAs operate on chromosomes,

or bits of strings representing the optimization variables, a suitable encoding scheme

is essential to GA operation. Currently, the binary encoding scheme is the most

popular one. The key aim of genetic optimization is achieved by searching for the

best �tted individual as the solution in the search domain. The �nal result is usu-

ally a group of solution points with very close �tness clustered around the global

optimal point. The Genetic optimization algorithm can be represented by

y = Ffitness(x)

xoptimal � fxjy = max[Ffitness(x)]g:

Procedures involved in GA Optimization

1. Production of initial population: P (0) = f�1(0); �2(0); :::; ��(0)g

2. Individual �tness evaluation: evaluation of the encoded individuals, f(P (j)) =

ff(�1(j)); f(�2(j)); :::; f(��(j))g, where P stands for population, j stands for

j-th generation, and �i are the i-th individuals of the generation, there are

totally � individuals in the generation.

3. Genetic operations
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� Reproduction/Selection

� Crossover/Mating

� Mutation

4. Produce new generation.

5. Repeat from step 2 till some stopping criteria is met. This criteria may be

the preset maximum number of generation being met, or stabilized population

�tness measurement over several genetic operation iterations from steps 3, 4,

5 and 2.

The conventional Genetic Algorithm is illustrated in Figure 5.3 [93].

5.3.1 Genetic Algorithms Sharing Function Method

A Genetic Algorithm by itself is able to locate the global optimal solution in the

search domain. This is very important in global optimization and search problems.

However, this is not enough for power system analysis in certain cases. For example,

to locate the shortest distance to instability in the parameter space, there are not

only global shortest distances, but also many local shortest distances which may

a�ect the power system safe operation as well. In such cases, an algorithm is

expected to locate both global and local optima. The sharing function method

[56, 57], is capable of ful�lling this task.

The sharing function method comes from the two-armed bandit payo� rule, where

the number of players are allocated according to payo�s of each arm [57]. There

are two important terms for the method; these are niche, which means a group of

individuals within a certain distance under a similarity measure, and species, which

is a generated stable subpopulation. For example, in the Bandit case, species are

associated with the stable subpopulations behind each arm which is referred to as a

niche. More generally, a niche can be understood as an domain of certain distance, in

which individuals can reside. The method is achieved by degradation of individuals

payo� via its �tness according to its distance to the neighboring individuals.

To sum up, The method decreases the �tnesses for similar individuals by the \niche

count", m0(i). For each individual �i, the niche count is computed as a sum of



5.3. Genetic Optimization Procedures 149

End

Designate

No
Yes

Yes

Creat Initial Random 
Population for Run

No
Evaluate Fitness of Each
Individual in Population

Yes

No
PmPr

Pc
Select One Individual
Based on Fitness

Select One individual
Based on Fitness

Crossover

MutationReproduction

Select Genetic Operation

i := 0

i = M ?

Run:=0

Gen:=0

Run = Run + 1

Run = N ?

Result for Run

Gen := Gen + 1

Copy into New 
Population New Population

Insert Mutant into 

Select Two Individuals 
Based on Fitness

i := i + 1

Insert Two
Offspring

into New
Population

i := i + 1

Termination Criterion
Satisfied for Run ?

Figure 5.3: Genetic Algorithm Flowchart.
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sharing function values between the individual and all individuals �j generated -

see equation (5.2) below. The similarity of individuals is evaluated by the distance,

d(i; j) from each other. The resulting shared �tness �0 is changed through dividing

the original �tness, � by the corresponding niche count (5.3), where the �tness

� is de�ned depending on speci�c problem to be optimized [56, 57, 102]. These

operations are represented as follows:

d(i; j) = d(xi; xj) (5.1)

m0(i) =
nX
j=1

sh[d(i; j)] (5.2)

�0(i) =
�(i)Pn

j=1 sh[d(i; j)]
(5.3)

The sharing function is de�ned so that it ful�lls,

sh(d) =

8>>><
>>>:

0 � sh(d) � 1

sh(0) = 1

limd!1 sh(d) = 0

(5.4)

For example, the sharing function can have the form,

sh(d) =

8<
: 1� ( d

�
)�; if d < �

0; otherwise
(5.5)

where � is a constant, and � is the given sharing factor.

By doing so, an individual receives its full �tness value if it is the only one in its

own niche, otherwise its shared �tness decreases due to the number and closeness

of the neighboring individuals.

In later sections, a Genetic Algorithmwith sharing is applied to small signal stability

analysis, where the optimization problem is highly non-linear and sometimes, non-

di�erentiable.

Take for example the optimization problem of the multi (decreasing) peak function,

f(x) = sin6(5:1�x+ 0:5)e[�4x2] (5.6)

The optimization result by using a normal genetic algorithm and GA with sharing

function method are given in Figures 5.4. As indicated in the �gures, after genetic

optimization, the solution points are crowded at around the global optimal point

without sharing. Otherwise the solutions are distributed around several local optima

as well.
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Figure 5.4: A - Optimization Results without Sharing. B - Optimization Results

with Sharing.

5.3.2 Fitness Function Formulation

In order to �nd the optimal solution to a problem, the objective function associated

with that problem will have to be converted into the form of a �tness function for

Genetic Algorithm optimization. There are several requirements in the conversion,

among which the most important conditions are listed below:

� The �tness function must always be positive in the search domain;

� The �tness function is designed so that the optimal solution is obtained at the

maximum value of the �tness, i.e. GAs are globally locating the maximum

�tness.

Accordingly, in practical optimization problems, the �tness function itself often

needs to be adjusted to obtain better genetic optimization results. The major need

for �tness adjustment arises in cases when: (a) the minimization problem leads

to a negative objective function; (b) premature termination of the search process

because of reproduction of individuals is dominated by above average �tness at the

beginning of genetic optimization; and (c) where bad convergence emerges from

simple random reproduction caused by closely distributed �tnesses among individ-

uals. There are several approaches to adjust �tness, namely, linear transformation,

power law transformation, and exponential transformation. Normally, linear trans-

formation is good enough for �tness adjustment [56].
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For power system small signal stability assessment, the �tness function should be

selected to reect the inuence of the critical eigenvalue and the critical distance

to the small signal stability boundaries. For this problem, we suggest the following

general form of the �tness function,

�(�; d) = �1(d)�2(�) (5.7)

where � is the real part of the system critical eigenvalue, and d = jj�(p � p0)jj is

the distance from the current operating point p0. The diagonal matrix � scales the

power system parameters which may have di�erent physical nature and range of

variation. The �rst multiplier in equation (5.7) reects the inuence of distance,

and the second one keeps the point y close to the small signal stability boundary.

For example, the following expressions for �1 and �2 can be exploited,

�1(d) = 1=d (5.8)

�2(�) = ek�
�2

(5.9)

where k is the factor de�ning the range of critical values of �. The second multiplier

acts as a �lter. If k is very large, say about 1000 or more, then only those � which

are very close to zero can pass the �lter and survive during the genetic optimization

process. The �lter eliminates a large number of negative �, to force the GA to

select individuals close to the small signal stability boundaries. The �lter function

takes the shape as shown in Figure 5.5, where the horizontal axis, �, is the real part
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Figure 5.5: The Filter Function for the Fitness Function

of the power system Jacobian critical eigenvalue(s), and the �lter function is close
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to 1 only when the � � 0, which corresponds to saddle node or Hopf bifurcations,

and by proper modeling, can also correspond to load ow feasibility limits, and

minimum /maximum damping conditions - see Section 5.4.1.

5.3.3 Population Size Control

The shape of power system small signal stability boundaries can be very compli-

cated, and there are many niches existing. In order to ensure the GA locates the

multiple maxima of the �tness function, and to avoid the noise induced by genetic

drift, the su�cient population size should be considered. Di�erent population size

requires di�erent genetic parameters in order to obtain better performance. For

example, for population sizes of 20 to 40, either higher crossover probability (Pc)

together with lower mutation probability (Pm), or lower Pc with higher Pm will

give good results. However, the larger the population size, the less the probability

of optimal crossover occurs, and the convergence period will be prolonged as well.

Techniques for choosing the population size can be found in [102].

To enhance the GA search capability and speed up convergence, population size

can be set at a large value in the beginning; then with the increasing number of

generations as the generated individuals are being located into narrower search

areas, the population size can be decreased. By doing so, the convergence will

be achieved faster which still ensuring the global reliability of the �nal solution.

However, the minimum level of population size should be chosen carefully so that

the GA search process has enough searching diversity to avoid being trapped into

some locally optimal regions.

5.3.4 Mutation Probability Control

Mutation probability is exponentially decreased with increase of generation num-

bers. The procedure is adopted from the concept of Simulated Annealing where the

`temperature' is decreased according to the increment of iteration numbers [147].

In this context, the mutation rate is set to be .28 in the beginning, then decreased

close to zero after the tenth generation - see Figure 5.6. For better GA performance

with not very large scale systems, adaptively adjusted mutation probability can be

used [101]. Higher mutation probability in the beginning ensures individuals will be
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Figure 5.6: The decreasing trajectory of mutation probability

produced to be distributed all over the search domain instead of clustered into some

small areas. As the search proceeds, more and more individuals are produced close

to the global optimal solution points, so a lower mutation probability is adopted to

prevent long convergence time. The process is summarized in Table 5.2.

High Pm Low Pm

Stage Beginning Close to End

E�ects Search diversity Stable solution

Table 5.2: Mutation Probability Adjustment

5.3.5 Elitism - The Best Survival Technique

In reference [56], the Simple Genetic Algorithm (SGA) proposed includes all the

operators of the GA optimization mechanism. However, the SGA cannot guarantee

that the best �t solution survives throughout the optimization process. In other

words, the best solution obtained from the SGA may not be included in the last

generated solutions, which are clustered towards a solution spot. To overcome this

problem, the elitism technique is used in the GA such that once an individual with

highest �tness among the current generation is found, it will be kept unchanged and

transferred into the next generation. By doing so, the chromosome contained in

this individual is being copied to other individuals in the optimization that follows.

Finally, the solution of the last generation will cluster close to it. But this approach
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achieves its property by sacri�cing one possible newly generated individual. This

can be overcome by choosing a slightly higher population size.

5.3.6 Gene Duplication and Deletion

Gene duplication and gene deletion techniques can also be applied to enhance the

search capability of a genetic algorithm. Biologically, gene duplication and deletion

are considered as genetic disorders resulting in the formation of a slightly longer or

shorter chromosome [56]. For gene duplication, a gene is duplicated and appended

to the chromosome to form a longer chromosome. On the other hand, a gene is

randomly deleted within the chromosome and results in a shorter chromosome.

They can be used to reproduce chromosomes with di�erent length as compared to

the parents. All these operations are to bring diversity to the search process aimed

to locate the global optima. Detailed description of these techniques can be found

in references [29, 56].

5.4 GAs in Power System Small Signal Stability

Analysis

As studied in the former chapters and sections, a power system is a highly nonlinear

large scale system. Power system stability analysis requires optimization of compli-

cated objective functions for di�erent purposes. These objective functions can be

nonlinear, non-di�erentiable, and non-convex, which makes traditional optimization

methods struggle to �nd the optima. However, Genetic Algorithms can be applied

to such problems to obtain approximate solutions which can be acceptably close to

the global optima and several local optima as well with proper techniques.

In this section, novel approaches toward power system small signal stability analysis,

and reactive power planning will be studied. A Genetic Algorithm with sharing

function method gives more comprehensive solutions as compared with traditional

optimization methods. This approach is based on a novel power system black

box model, which is suitable for GA optimization for solving small signal stability

problems. To solve the reactive power planning problem, a two stage planning

technique is adopted to speed up the GA searching process.
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5.4.1 Power System Black Box System Model for Genetic

optimization

In the system model used in the analytical form of the small signal stability problem

- see the Equations (1.1),(1.2) - we have a highly nonlinear, nonconvex optimization

task. It is known that the traditional optimization methods meet serious di�culties

with convergence while solving such problems. Besides this, the constraint sets,

in equation (5.11) -(5.15) and (5.17 -(5.21) take account of only one eigenvalue

during the optimization. To get the stability margin for all eigenvalues of interest,

as well as the critical load ow feasibility conditions, it is necessary to vary the

initial guesses and repeat the optimization. Additionally, the functions in equation

(5.11) -(5.15) and (5.17 -(5.21) can have discontinuities due to the di�erent limits

applied to power system parameters. For example, the generator current limiters

may cause sudden changes in the model, and consequently break in the constraint

functions. This makes the analytical optimization problem even more complicated.

In the genetic optimization procedures, those di�culties can be overcome by using

the black box power system model - see Figure 5.7 - described in the sequel.

State variable State matrix
Function

conv-
erged

not converged
α = 0

Eigenvalue

calculation

FitnessLoad flow 
calculation calculation formation

Φ
γ

Black Box System Model

Figure 5.7: Black Box System Model for Optimization

The black box has control parameters  as inputs, and the �tness function � as

outputs. Inside the black box, we compute the load ow �rst. If it converges,

then the state variables and matrix are computed, and then the eigenvalues of the

state matrix are obtained. Thereafter, the critical (i.e. the most right) eigenvalue

is chosen for analysis. The critical eigenvalue's real part is used to compute a

particular value of the �tness function. If the load ow does not converge, which

means that a load ow solution does not exist, we put the critical eigenvalue real part

to zero. By such a way, the load ow feasibility points are treated in the same way as
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the saddle node and Hopf bifurcation points. The �tness function � can be changed

quite exibly depending on the concrete task to be solved. For example, if the state

matrix is unstable or the load ow procedure diverges, the �tness is taken to be

large and it is decreased with the increase of distance. If the load ow procedure

converges and the state matrix is stable, the �tness is then taken uniformly low.

Finally, the last population is concentrated outside the stability domain [which is

the intersection of the load ow feasibility and small signal stability domains] close

to the critical and subcritical distance points.

To demonstrate the advantages of the black box model, consider the tasks of locating

power system small signal stability characteristic points, and locating the closest

distance toward instability. They have been studied in former chapters and the

equations describing the problem are given below for reference. For the general

method described in Section 3.6, we have the formulation (equations (5.10) {(5.15))

�2 ) max=min (5.10)

subject to

f(x; p0 + ��p) = 0 (5.11)

~J t(x; p0 + ��p)l0 � �l0 + !l00 = 0 (5.12)

~J t(x; p0 + ��p)l00 � �l00 � !l0 = 0 (5.13)

l0i � 1 = 0 (5.14)

l00i = 0 (5.15)

For closest distance problem, we have (equations (5.16) {(5.21)),

jjp� p0jj
2 ) min (5.16)

subject to

f(x; p) = 0 (5.17)

~J t(x; p)l0 � �l0 + !l00 = 0 (5.18)

~J t(x; p)l00 � �l00 � !l0 = 0 (5.19)

l0i � 1 = 0 (5.20)

l00i = 0 (5.21)
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Detailed notation of the variables in the equations can be found in former Sections

3.3.1 and 3.6.

To reveal all characteristic small signal stability points, such as maximum loadabil-

ity, saddle and Hopf bifurcation and minimum and maximum damping points, along

a given ray p0+��p in the space of power system control parameters, p, the general

small stability problem equation. (5.10) -(5.15) can be solved. If the above prob-

lem is solved by traditional optimization methods, the solution obtained depends

on initial selection of the eigenvalue traced, and variables x. Moreover, even for

one eigenvalue selected, it is not possible to get all the characteristic points in one

optimization procedure. By applying the black box model and GA techniques all

the problem characteristic points can be found within one optimization procedure.

In this case, the input is the loading parameter,  = � , and the �tness function is

�2 for maximization and 1=�2 for maximization. To compute the function, the load

ow is computed for a given value of � . If the load ow converges, then the state

matrix and its eigenvalues are computed, an eigenvalue of interest is selected (for

example, the critical eigenvalue with the minimum real part), and used to get the

�tness function. The black box model only has one input and one output, and is

used in the standard GA optimization.

To �nd out all the critical distances to the load ow feasibility and bifurcation

boundaries in the problem, equation. (5.16) -(5.21), the same black box system

model can be used. In this case, the inputs are �p and � , and the �tness function

is increased when the distance decreases and the critical eigenvalue real part tends

to zero.

5.4.2 Global Optimal Direction to Avoid Instability

By using a GA with sharing function method, both critical and sub-critical distances

can be obtained. More broadly, the distances computed can be any of the signi�-

cant directions of operation in the space of any power system parameters of interest.

For example, they can be associated with critical/subcritical distances, minimum

damping conditions, saddle node or Hopf bifurcations, load ow feasibility bound-

aries etc. Upon obtaining these directions, the optimum operation direction can be

de�ned thereafter. The approach can be visualized by Figure 5.8, where any two

vectors, for example, the critical and subcritical distance vectors, in the parameter
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space are located by GA sharing function method as ~Vi, where i = 1; 2; :::m. They

form a cutset in the space and de�ne a new vector

~Vo = �
mX
i=1

(kvi ~Vi) (5.22)

where kvi is the weighting factor depending on the inuence of parameter sensitivity

as well as di�erences between jjVijjs. For example, to reveal the inuence of the

critical and subcritical distances toward instability, they can be taken as

kvi /
1

k~Vik
(5.23)

Or in the sense of parameter sensitivity, they can be,

kvi =
@Vi
@pi

(5.24)

Then ~Vo gives the direction of optimum operation which enables, at least in the

meaning of system parameters involved, safest operation direction. Stability prob-

lems of other kinds can be investigated accordingly.
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Figure 5.8: The Cutset of Power System Security Space

5.4.3 Power System Model Analysis Using Genetic Algo-

rithms

Power system models exhibiting nonlinear small signal stability phenomena are

studied here using GAs and the proposed black box system optimization model. In
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the model test systems, the population size is selected in the range from 30 to 200.

It has been discovered that this population size is su�cient to locate the maxima

in the space of power system parameters.

Example 1. Single Machine In�nite Bus Model with Induction Motor

Load

The model has been given in Figure 3.6, and the dynamic equations are described

in equations (3.68)-(3.71) and the dynamic loads are modeled as (3.72)-(3.73).

As compared to the formerly obtained results, which is the solid line boundaries

in Figure 5.9, the closest stability points to the boundaries were located by genetic

algorithm with sharing function method in the same �gure. Note that since GAs

can only locate solutions near optimum, not all of the solutions marked with '�' are

located on the stability boundaries. As a result of the sharing function used, the

solutions are grouped around di�erent global and local optima from the operating

point to the stability boundaries.

One of the genetic optimization �tness statistics is given in Figure 5.10.

Example 2. Three-Machine Nine-Bus Power System Model

The model system is given in Figure 2.8 with equations (3.102) -(3.107) describing its

dynamic properties. The optimal operation direction is given by applying equation

(5.22) after the sharing function method locates the critical and subcritical solutions

- see Figure 5.11- where the critical directions are ~V ec1 and ~V ec2, and the optimal

direction of operation is de�ned by vector ~V ec3 := �k(
~V ec1

jj ~V ec1jj
+

~V ec2
jj ~V ec2jj

).

5.5 Reactive Power Planning with Genetic Algo-

rithm

Modern power systems are often a�ected by inadequate reactive power supply. Be-

sides reduction of the voltage stability margin, insu�cient reactive power can also

have negative e�ect on voltage pro�les, active and reactive losses and cause equip-

ment overloads [48]. Reactive power control can signi�cantly improve on these
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characteristics. It can be realized by several approaches, for instance, transformer

tap control, generator voltage control, controllable and static VAR sources. Most of

these controls are discrete and limited. The task is to provide an optimal reactive

power supply with minimum cost. One of the options to provide VAR supply is

installation of reactive power sources such as Static VAR Conpensators (SVCs),

series compensation capacitors at appropriate buses. The major concern of optimal

placement of reactive devices are [70]:

� locations of VAR devices;

� type and sizes of VAR devices to be installed;

� settings of VAR devices in di�erent system operational conditions

The task of �nding the optimal location and size of VAR devices in the grid is an

important topic for power utilities.

The core of a VAR planning problem is proper selection of the objective function and

the optimization techniques used. The objectives can be more speci�cally expressed

as follows [28, 70, 83, 113]:

� Maximize reactive demand margin of the system, QM ;
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� Retain voltage stability of the system;

� Minimize the expenditure including purchase, installation, maintenance, and

energy cost;

� Provide desired voltage magnitudes by minimizing voltage deviations;

� Minimize line ow deviations;

� Support buses most vulnerable to voltage collapse.

The technique of placing reactive power sources should be able to achieve the best lo-

cations and the best stability enhancements under the most economical cost. There-

fore, this is a multi-objective optimization problem. The problem is expressed by

an objective function subject to equality and non-equality constraints. These func-

tions and constraints are partially discrete, non-di�erentiable, nonlinear functions,

which may cause solution di�culties with traditional optimization methods. Many

methods including linear [41] and nonlinear programming [126], expert systems [83],

neural networks [128], and others have been employed to cope with the problem.

More recently, the simulated annealing and genetic algorithms approaches were used

[28, 48, 70, 83, 101, 113, 128, 138].

Despite the robustness of genetic algorithms, they take a substantial computational

time for large power systems. The computational cost also increases if all buses are

considered for VAR source installation. In practice, it is not necessary; many buses

can be eliminated from consideration.

To reduce the computational cost, a preliminary screening should be done to min-

imize the number of alternative locations. Here, bus participation factors are used

to select the candidate buses for the subsequent VAR source placement. The buses

with higher participation factors are selected �rst, and they are considered in the

second stage where the genetic algorithm technique is employed to optimize the

location, size and type of VAR sources.

5.5.1 Preliminary Screening of Possible Locations

The bus participation factors of the power ow Jacobian matrix are used to de-

termine the critical modes of voltage instability [113, 115]. The computation is
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performed to �nd the critical eigenvalues, eigenvectors and corresponding partici-

pation factors based on the solution of the load ow problem close to the voltage

collapse point. To �nd out the voltage collapse point, a loading procedure is imple-

mented. Several critical bus participation factors [53] are computed based on the

critical eigenvalues. Then the buses with largest participation factors are assumed

to contribute most to voltage instability, and thus VAR devices should be placed at

those buses. The procedure is summarized below:

� Increase the system nodal power loads in the predicted load increase direction

till load ow does not converge.

� Calculation the load ow Jacobian based on the last convened load ow solu-

tions.

� Reduce the load ow Jacobian by, �Q = JR�V where

JR = �
@Q

@�

@P

@�

�1@P

@V
+
@Q

@V
(5.25)

� Find the participation factor by eigenvalue and left/right eigenvector calcu-

lation. For the k � th bus, the participation factor of the i � th mode is

pi;k = �ki�ik, where � and � are the left and right eigenvectors of matrix JR

respectively. The bus participation factor pi;k stands for the contribution of

the i� th eigenvalue to the V �Q sensitivity at the k � th bus [53].

� Buses with higher participation factors are more prone to voltage instability,

and they are selected as candidates for VAR compensation.

� VAR planning based on the candidate buses aimed to provide voltage stability,

while considering economic dispatches.

Since the approach was only an approximation of the �Q=�V assuming �P = 0,

those buses with higher than average or higher than a preset value of participation

factor should be selected as candidate buses. Besides the buses linked with higher

participation factors, those associated with lower than average voltages are also

considered as candidate buses for VAR installation. Upon obtaining these candidate

buses, a Genetic Algorithm based optimizer is used to distribute VAR sources among

these candidate buses within pre-set VAR limits to meet the desired voltage levels,
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reduced real power loss as well as minimized installation and maintenance costs for

VAR devices.

To supplement this screening procedure, several contingency cases should also be

considered to �nd the buses with higher participation factors to be included in the

candidate buses. Also, in this stage, discrete factors as tap changer transfer taps,

VAR units, etc are considered in detail for optimization purposes.

5.5.2 Objective Functions for VAR Planning

The VAR optimal planning aimed to improve the system performance, and enhance

voltage stability as well as reduce the system operational cost. To achieve the

best performance under minimum costs, the objective function plays the key role.

Here the objective function takes consideration of the following factors: (1) active

power loss reduction, (2) voltage deviation referring to the desired voltage levels,

(3) reactive power deviation referring to the desired reactive power level, and (4)

economic consideration including installation costs, and maintenance expenditures.

The function is given in the equations below [83, 138]:

Fobj = w0�Ploss + w1f1(V; V
d) +

+w2f2(Q;Q
d) + w3fc(S) (5.26)

where wi; i = 0; 1; :::; 3 are weighting factors; �Ploss is the reactive power loss re-

duction as compared with the original system without new VAR sources, (P
(0)
loss);

function f1(V; V
d) is the voltage deviation function with respect to the desired volt-

age level V d; and f2(Q;Q
d) is the deviation function for reactive power; fc(S) is

the function including cost of installation and maintenance of VAR devices to be

installed. These functions are expressed as follows:

Ploss =
nlX
k=1

G
(k)
ij (V

2
i +

+V 2
j � 2ViVjcos(�i � �j)) (5.27)

�Ploss = jjPloss � P
(0)
lossjj

2 (5.28)

f1(V; V
d) =

nsX
i=1

k1(i)jjVi � V d
i jj

2 (5.29)

f2(Q;Q
d) =

nsX
i=1

k2(i)jjQi �Qd
i jj

2 (5.30)
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fc(S) =
ncX
i=1

gci � S
cap
i +

+
niX
i=1

gii � S
ind
i (5.31)

where Vi stands for voltage at bus number i, �i is the voltage angle at i � th bus,

V d, Qd are the desired level of voltage and reactive power respectively, S stands for

the value of VAR devices, which can be capacitive, given by cap, or inductive, given

as ind. The constraints are the load ow equations, system component operating

limits, and other pre-set VAR installation limits [101] expressed as:

0 = Pi � Vi
NiX
j=1

Vj(Gijcos�ij +Bijsin�ij); (5.32)

i = 1; 2; :::; NB � 1

0 = Qi � Vi
NiX
j=1

Vj(Gijsin�ij �Bijcos�ij): (5.33)

i = 1; 2; :::; NPQ

Qmin
ci � Qci � Qmax

ci (5.34)

Qmin
gi � Qgi � Qmax

gi (5.35)

Tmin
i � Ti � Tmax

i (5.36)

V min
i � Vi � V max

i (5.37)

fc � fmax
c (5.38)

where NB is the bus number, NPQ is the P-Q bus number, Pi and Qi are active and

reactive injected powers, Gi and Bi are self conductance and susceptance of bus i,

and Ti stands for the tap change transferrer tap position at bus i, fc is the total

cost, min and max stands for the lower and upper limits of these variables.

To summarize, the problem is to minimize the objectives, (5.26), (5.27) {(5.31),

subject to the set of equality and inequality constrains, (5.32) {(5.38).

5.5.3 Power System Example of VAR Planning

A 16 machine 68 bus system which represents the simpli�ed U.S. Northeastern and

Ontario system [36] is studied using the algorithm as shown in Figure 5.12
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Figure 5.12: 16-Machine 68-Bus System

The weighting factors in the objective function decides which item needs more con-

sideration for system planning. Therefore, di�erent weighting factors gives di�erent

planning results. Here two cases are studied, (1) consider all the stated objectives

with evenly distributed weight factors - see Table 5.3; (2) more emphasis is given

to voltage deviation, cost and active power losses - see Table 5.4.

Bus No. VAR size Bus No. VAR size

7 8.30 24 -13.12

8 -1.65 25 -6.84

9 5.61 26 7.45

10 -25.50 28 -3.43

11 -7.15 33 -6.47

17 13.48 37 -25.53

19 -41.73

Table 5.3: 16 Machine System VAR Planning (Case 1).

As shown in these tables, VAR sources are placed to enhance the system voltage

pro�le and reduce active power loss. Clearly, di�erent emphasizes of the objectives

produces di�erent results in the VAR allocation.

For the Case 1 study, the results are represented in the bar plot as shown in

Figure5.13. Buses 7, 9, 17 and 26 are shown positive in VAR value, which means



168 Chapter 5. Genetic Algorithms for Small Signal Stability Analysis

Bus No. VAR size Bus No. VAR size

1 -3.02 39 -0.23

7 -2.11 40 1.10

8 -6.20 43 -1.20

9 -6.03 44 -1.65

30 -2.80 50 1.31

35 -1.51 52 1.09

37 -16.20

Table 5.4: 16 Machine System VAR Planning (Case 2).
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Figure 5.13: VAR Planning Result for the 16-Machine 68-Bus System

the VAR sources to be installed should be operating in inductive mode. While all

others are capacitive VAR sources. This combination of inductive and capacitive

resources is to be expected because the objective to be achieved is partially com-

posed of voltage deviation minimization. For example, some bus voltages may be

higher then the preferred value as a result of installation of capacitive VAR sources

at other buses, and require inductive VAR sources to step down the voltage level

in order to meet the preferred level. Unless some stability index is considered in

the objective function, planning results considering only savings and voltage levels

might actually move the system closer to collapse.

For Case 2 study, as compared with the original system, the power losses are listed

in table 5.5. where Ploss is the total active power loss in the network, average V is

the average voltage of all buses in per unit, lowest V is the lowest voltage among

all the buses of the system, � V is the voltage deviation.
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Normal Contingency Compensated

Ploss 1.7472 5.9821 3.6529

Average V 1.0279 0.9443 1.0311

Lowest V 0.98 0.8000 0.9800

� V 0 -0.0835 0.0032

Table 5.5: Objectives of 16 Machine System VAR Device Optimal Placement

The installation of VAR devices has positive e�ects on system behavior in view of

voltage levels, as shown in Figure 5.14:
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Figure 5.14: Voltage Pro�le of the System: Solid Line: Normal; Dotted Line:

Planned; Dashed Line: Contingency.

The genetic algorithm used here considers elitism and mutation probability control.

The optimization process is quite fast and the result can be improved consistently

with the optimal solution from the former solution as a seed and put into the genetic

algorithm with elitism for further improvement. The statistics as shown in the best

�tness are given in Figure 5.15. As shown in the �gure, within 10 generations, the

GA has already located a solution which is quite close to the �nal solution. Then the

search process terminates after further optimization without evident improvement

(�rst �gure). The remaining �gures show the incremental improvement of the best

�tness using the elitism technique. The negligible increment in the best �tness

values indicates that, the result obtained is a close estimation of the exact global

solution.
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Figure 5.15: The Genetic Optimization Process of VAR Optimal Placement
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5.6 Conclusion

The genetic optimization technique proposed here has been applied to solve prob-

lems in small signal stability analysis and power system planning. As compared with

traditional optimization methods, more comprehensive results can be obtained for

small signal stability analysis using GA. All the system eigenvalues can be con-

sidered for optimization instead by comparison only one of them can be traced

by traditional methods. GAs are especially suitable for use in the power system

planning problem. In the proposed reactive power planning approach, a two stage

solution technique is developed to narrow down the search area for GA aimed at bet-

ter convergence. At the same time, the �rst stage ensures that all the buses which

have critical inuence on voltage stability are selected for consideration. Overall,

the procedure combines reliability and computation e�ciency.



172 Chapter 5. Genetic Algorithms for Small Signal Stability Analysis



Chapter 6

Small Signal Stability Toolbox

173



174 Chapter 6. Small Signal Stability Toolbox

6.1 Introduction

In this chapter, we describe a software toolbox which is aimed to provide a compre-

hensive analytical tool for system stability assessment and enhancement purposes.

The essential functionalities combine several aspects of previous chapters to ful�ll

the aims of the toolbox. They are: (1) power system small signal stability as-

sessment by computing the stability critical conditions and boundaries; (2) power

system optimal VAR planning to reduce the line losses as well as considering other

economic and security issues; (3) power load ow feasibility boundaries computa-

tion in the space of power system parameters; (4) Genetic Algorithm approach to

locating the critical and subcritical stability conditions for optimal control actions;

(5) load ranking analysis to reveal loads having the biggest inuence on power sys-

tem stabilities; and (6) other common power system analysis requirements, such as

load ow, transient simulations.

6.2 The Toolbox Structure

The toolbox incorporates many research outcomes related to power system stability

assessment and enhancement algorithms and methods from the Dynamical Systems

and Control research group of the School of Electrical and Information Engineering

at Sydney University under the supervision of Professor David J. Hill. The toolbox

is in a preliminary version only, which means most algorithms are coded as they

were from the research projects performed during recent years. However, there

are several new modules developed directly for the toolbox; for example, the VAR

planning module is new. Visual Basic, due to its exibility in interface design and

�le I/O functionalities is chosen as overall interface development language. Excel

and C++ are also used in addition to the MATLAB for major algorithms. The

MATLAB only version is available for both PC and UNIX environments, and the

combined VB/Excel/C++/MATLAB version is for PC only.
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6.2.1 Programming Languages

There are three major programming languages used for the toolbox, namely, Matlab,

Visual Basic, Excel and C++. They all have their own speci�c particular usages

in the toolbox development. Matlab modules provide most of the algorithms for

analytical purposes. Visual Basic and Excel build up the overall interfaces and link

all applications under a Windows(R) environment. C++ provides fast computation

for some of the algorithms such as Genetic Algorithms and system identi�cation for

future development.

We now examine each language for important features in modern power system

computation.

Matlab

It is well-known that MATLAB provides high exibility and numerous functions

which make it ideal for software package modular development. MATLAB pro-

gramming, which starts from the scripts in the form of m-�les, has useful features,

in particular:

� It provides high-level complete software development environment.

� It has the ability to develop Graphic User Interface (GUI) applications.

� It has most commonly used numerical methods as build in functions including

sparse matrix operations, optimization methods, etc.

� With proper supplementary toolbox and packages, MATLAB can produce dy-

namically linked Fortran or C subroutines in the form of MEX-�les. They may

speed up the computation speed as compared with the equivalent MATLAB

m-�les.

� MATLAB is especially powerful in matrix manipulation, thus makes eigen-

value and eigenvector analysis for small signal stability analysis easy to achieve.

Besides those stated above, MATLAB o�ers �le I/O functionalities, so the compu-

tation results can be shared by other programs. The GUI functions are easily to

build using MATLAB's graphic objects handling capabilities. Matlab itself can be
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used to build a complete package for power system computations [34, 103]. MAT-

LAB is used for most of the computation algorithms in the package, also a complete

package completely in MATLAB has been developed for the UNIX version.

C++

C++ is an object-oriented language with static binding rather than dynamic bind-

ing, which makes it is superior to other dynamic binding languages in case of imple-

mentation of embedded systems with stringent performance and memory require-

ments. C++ has several useful features, including: (1) it provides exible data type

controls; (2) it o�ers strong memory management; (3) it implements object oriented

programming through inheritance and dynamic binding mechanisms; (4) it supports

template functions and classes [99]; (5) the recent Visual C++ development plat-

form makes the graphical user interface design easy to implement. What's more

important, C++ allows use of abstract methods, which is a method name speci-

�cation without actually de�ning the method. This �ts the situation in software

development when some algorithms, functions, variables or parameters have been

de�ned as classes with programming methods associated, and are supposed to be

de�ned by the user later [10].

In this toolbox, C++ in quickwin mode is used for one of the Genetic Algorithm

approaches. It is designed that C++ should be the primary programming language

for further toolbox design and implementation.

Visual Basic

Visual Basic (VB) is an object-based programming language. It is a useful tool to

create applications for Microsoft Windows(R). Visual Basic includes a method used

to create a graphical user interface(GUI) instead of writing lengthy lines of codes

describing all of the properties, locations and appearances of interface elements.

Besides, it uses the BASIC language and is implemented with many functions, key-

words related directly with Windows GUI. Since it is Microsoft product, the Visual

Basic programming language can also be used for Microsoft Excel and Microsoft

Access, as well as other Windows based programs [144]. As the new Visual Basic

edition emerges, Internet programming is included as a subset of the VB package,
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which makes the applications accessible via Internet.

6.2.2 Package Structure

The over all structure of the toolbox includes data loading and storage, �le I/O

operations, basic power system computation tasks, as well as advanced stability

assessment and enhancement analysis. The results can be visualized by Windows(R)

based program such as Excel/ Visual Basic interfaces or by MATLAB routines. The

major algorithms of the analysis are:

� Basic power system computation including power ow and transient simula-

tions

� Advanced Stability Analysis:

{ Load ow feasibility boundaries computation and visualization.

{ Power system small signal stability boundaries computation and visual-

ization.

{ Power system reactive power planning analysis

{ Power system load ranking analysis to indicate the most inuential loads

toward instability.

� Genetic Algorithm as compared to classic optimization and searching meth-

ods.

The program ow chart is given in Figure 6.1

6.3 Overall Interface Design and Functionality

To incorporate all the functionalities into one user friendly package, Microsoft Visual

Basic is used to build the over all interface for the toolbox PC version. As mentioned

in Section 6.2.1, Visual Basic provides an easy way to build the GUI and incorporate

other programs. Therefore, it is selected as a programming language for the toolbox

package to create the over all interfaces. Upon activation of the package, the user

is prompted to answer a few questions to set up the path information of other
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Figure 6.1: The Program Flow Structure of the Toolbox

applications, such as MATLAB, for later usage. Currently most of the algorithms

are written in MATLAB and some in C/C++, and Fortran, they are left in their

original codes for the trial version. As for later development, they may be converted

into a uniform code such as C++ for faster executing performance.

There are several choices the user may make in the steps towards a case study:

� Programmable media

The user can choose among MATLAB, Excel, Visual Basic or C++ for case

study.

� Systems

The user can either select to run the program for a new study or to visualize
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the existing data.

� Study Models

Several power system models are available for the user to choose for case study.

� Study Algorithms

In this step, several algorithms /techniques are available for the user to choose

from. They include the �-plane method, the general method, di�erent genetic

algorithms, and reactive power planning problems. In the mean time, the user

can try di�erent algorithms for the same problem to compare the results and

performances.

� Computation speed

The user can choose lower, higher standard computation speed for case study.

One of the interfaces with Visual Basic is given in Figure 6.2

Figure 6.2: The main toolbox GUI

6.4 Algorithms

The major algorithms and techniques are described in the following sections.

6.4.1 �-Plane Method

The �-plane method of locating the power system loadow feasibility boundaries is

included in the package. The theoretical aspects of the method and power system
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example have been discussed in Section 4.5.

�-plain Method Interface Design

In a Matlab environment, upon starting the procedure of the toolbox �-plane

method analysis, the user will be asked to choose whether or not to use graphic

user interface. If the selection is yes, the graphic user interface will appear to guide

the user through the �-plain calculation for di�erent study cases. Alternatively,

the user can choose using command prompt to bypass the graphic interface to save

calculation time. Upon selection of GUI usage, the following main �-plane window

appears, Following the main window, the user can choose one of the study cases

Figure 6.3: The main GUI for D-plain usage

from among,

� 16-machine system;

� 3-machine 9-bus system;

� New england test system;

� 50-machine system;

� User de�ned system.

For each study case, there is an associated GUI window for that case. For example,

the 16-machine case prompts the following GUI window,
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Figure 6.4: The GUI for D-plain application to 16-machine system

6.4.2 Small Signal Stability Conditions

Power system small signal stability computation, especially using the general method

to reveal all characteristic points, is also included in the package for usage. Theo-

retical foundations and application examples are given in Section 3.6.

6.4.3 Optimal VAR Planning with Genetic Algorithms

The reactive power planning problem is an important system operation and planning

consideration. The principles of reactive power planning have been discussed in

Section 5.5. We recall that the major concern of optimal placement of reactive

devices are:

� locations of VAR devices;

� type and sizes of VAR devices to be installed;

� settings of VAR devices in di�erent system operational conditions

These concerns are more speci�cally expressed in the case of SVCs - see Section 5.5

- and can be categorized as:

� Maximize reactive demand margin of the system, QM =
P

i�Qi, where �Qi

is the VAR increment of node-i.;

� Retain voltage stability of the system;
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� Minimize the expenditure incurred, including SVC purchase cost, installation

& maintenance cost, energy costs;

� Obtain desired voltage values by minimization of voltage deviation;

� Minimize line ow deviation;

� Enhance buses most vulnerable to voltage collapse.

The technique of placing SVCs should be able to acquire the best available locations

of SVCs, best stability enhancement e�ects under most economical costs. Genetic

algorithms and bus participation factors are used to obtain optimal VAR planning

results for voltage stability enhancement.

The toolbox incorporated several approaches for SVC placement to obtain the most

e�ective solution schemes. Depending on the concrete purpose and system situation,

users can choose their own schemes for SVC placement, e.g. based on economic

considerations, which emphasizes more on savings as a result of VAR planning, or

voltage stability, which puts more weighting on voltage levels after planning, and

other user de�ned weightings for di�erent purposes of planning.

Toolbox User Interface for VAR Planning

The graphical user interface enables the users to choose their own initial system

con�gurations, such as total amount of expenditures, total/max number of SVCs

to be installed, min/max bus voltage limits. as well as di�erent study cases and

calculation algorithms. There are also interface windows available for Genetic Al-

gorithm parameter settings, and helpful information displays as shown in Figures

6.5, and 6.6. On clicking on the command buttons, the functions can be activated

to perform optimization of VAR planning for selected cases and algorithms under

the parameter values set by default or user de�nition.

6.5 Further Development

Upon installation, users can choose to study power system small signal stability, load

ow feasibility boundaries, reactive power planning, as well as other common power
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Figure 6.5: The main GUI for VAR planning (UNIX version)

Figure 6.6: The GUI for Genetic Algorithm Parameter Settings (PC version)

system computations. However, because the major algorithm is based on MATLAB

programs, the computation speed is currently not adequate for large systems. Also,

more power system data are needed. The on-line help documentation need to

be implemented so to provide more detailed help on using the toolbox as well as

providing deeper understanding of the algorithms used for research references.

An important issue for future development is toward Internet based programs.

There are emerging categories of applications being developed are based on Internet

and designed for end users. Network centered applications are stored on a central

server and are downloaded to the client on demand. This enables multiple ver-

sions of the same application. In the United States, OASIS (open access same-time
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information system) which is a Federal Energy Regulatory Commission (FERC)

mandated system, provides real-time information from a network bulletin board. It

permits display of utilities' current available transmission capacity(ATC), as well

as o�ers for the capacity to be received, processed and posted. The accompanying

OASISNet as a simulator can be used to study di�erent aspects of an OASIS net-

work [140]. Similarly, with Visual Basic's Internet functionalities, the toolbox will

be built capable of on-line execution through World Wide Web(WWW) browsers.

Currently, a database for speeding up the application are being built which can be

used in future Internet accessible versions.

To summarize, the future trends of the toolbox can be listed as:

� Converting codes into uniform code for optimal performance in computation

speed, reliability and system software/hardware requirement.

� Incorporating more algorithms and methods for analysis.

� Including more power system examples and facilities which provide a user

with more exibility to build their own power systems for analysis.

� Develop Internet based application version to meet the open access trend.

� Build complete on line help documentation as well as software development

documentation.

� Optimize the codes and GUIs for better user friendly purposes and robust

performance.
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7.1 Conclusions of Thesis

In this thesis several numerical techniques dealing with power system stability anal-

ysis have been studied. The emphasis has been on providing accurate determination

of boundaries and margins of stability.

The results are based on the opinion that under open access conditions, power

system stability will become a more complex problem combining both angle stability

and voltage stability. Some important terms and de�nitions for power system small

signal stability were reviewed at the beginning of the thesis, there being no uniformly

accepted de�nitions for stability. Existing numerical techniques, especially noting

less known contributions in the Russian literature, are reviewed in Chapter 1 and

as appropriate throughout the thesis.

Power system modeling is important for stability studies. Relevant power system

modeling was briey reviewed leading to a generic di�erential-algebraic equation

structure with parametric inuences explicitly shown. Based on the appropriate

power system models, small signal stability can be applied to study the system's

stability properties using eigenanalysis and model linearization. Somewhat more

emphasis is given to load modeling since the importance to stability properties is

less developed in general practice.

Mathematical de�nitions and known techniques for computing di�erent stability

characteristic points, such as saddle node and/or Hopf bifurcations, are reviewed.

Normally, only critical stability characteristic points are of interest. There are

direct and indirect methods to locate such points. These correspond to \one shot"

solution of bifurcation equations and so-called continuation methods respectively.

These approaches are mainly based on eigenvalue conditions derived from the load

ow Jacobian or state matrices where the real parts of the eigenvalues are put to

zero. The imaginary parts are put to zero as well in the case of load ow feasibility

and saddle node bifurcation boundaries.

In this thesis, the �rst major contribution is a comprehensive general optimization

method which is capable of locating all the characteristic points on a ray de�ned by

a certain parameter variation direction within one approach. This compares with

previous traditional approaches, where only one kind of characteristic point can

typically be located for each optimization approach. These characteristic points
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include load ow feasibility points, singularity induced bifurcations, saddle and/or

Hopf bifurcations, and minimum and/or maximum damping conditions. By varia-

tion of the ray in the parameter space, power system stability characteristic points

can be located in all directions in the parameter space. The method was tested and

validated by numerical simulations, comparison with the previous results obtained

for the test systems, and by transient simulations conducted at the characteristic

points.

Besides these individual characteristic points in certain directions, the hypersur-

face containing all these characteristic points is useful to study for power system

operation and control.

The second major contribution given is a robust method to visualize the stability

boundaries in the parameter space in a speci�ed cutplane - called the �-plane

method in the thesis. This method does not require iterative solutions of the set

of nonlinear equations as normally required by most solution techniques developed

in recent years. It is based on the quadratic properties of the load ow problem

by solution of an eigenvalue of the matrix J�1(x1)J(x2). Results of the method

are presented in the space of dependent variables (e.g. nodal voltages given in

rectangular form). It is useful for both visualization and topological studies of the

multiple solution and feasibility domain structures.

Another contribution aimed at visualization of these boundaries, is a parameter

continuation method using the Implicit Function Theorem. This can be used to

trace the bifurcation and load ow feasibility boundaries. These methods combine

an eigenvalue sensitivity approach and special techniques over any discontinuity in

the bifurcation boundaries.

Optimization plays a key role in application of all the technique presented. Be-

cause of the complexity of power systems, traditional optimization techniques may

encounter di�culties in solving the stability problems due to nonlinearity, non-

convexity, and /or non-di�erentiable properties of the problem. To overcome such

solution di�culties, Genetic Algorithms (GAs) are explored in the thesis. GAs are

heuristic optimization techniques, which do not require derivatives of the problem

to be optimized. From the evolutionary process of optimization, GAs are capable

of locating the global optima in the search domain. With the sharing function,

GAs can be applied to locate both the global and local optimal solutions of power
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system small signal stability problem. In this thesis, a black box system model

suitable for GA optimization is developed and applied to locate the globally and

locally closest stability characteristic points in the parameter space. This approach

considers all system eigenvalues during optimization, instead of only one of them

as for traditional optimization approaches.

GAs are also suitable for power system planning problem. In the thesis, a two

stage optimization technique is proposed for power system reactive power planning

problem aimed to enhance voltage pro�les. This technique narrows down the search

area for the GA at the �rst stage in order to allow speed up of GA optimization

convergence. Besides solving this multi-objective problem more e�ciently, it also

ensures that all the buses which are vulnerable to voltage problems are considered

for reactive power source installation.

The �nal contribution is a prototype level software toolbox combining the techniques

of the thesis with selected others. This toolbox has been designed to handle many

power system small signal stability problems: stability assessment, enhancement,

simulation and control.

7.2 Future Development

From the research carried on within the thesis, there are several directions for further

development.

The numerical methods in Section 3.3 about the special problem formulation and

matrix determinant minimization techniques for critical distance assessment can be

furthered for wider application.

The thesis has considered various algorithms: direct vs indirect, analytic vs evolu-

tionary and linear vs high order corrections. More comparisons could be done to

explore which choices work best for certain classes of systems. More promising for

further deeper research is exploration of system structure. We have seen simpli-

�cations in investigations involving parametric dependence (Section 3.3.1, Section

4.3.1) and quadratic power ow (Section 4.5.1).

There are also related basic questions to explore. Conventionally, the power system

feasibility region is assumed to be convex; however, as indicated in Section 4.4.1,
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a nonconvex power system feasibility boundary was observed with a simple power

system addressed by the authors of [69]. Possibilities exists for infeasible areas inside

the main feasibility domain (for large line impedance R=X ratios). There are also

high-sensitivity areas. Another important subject is the limit-induced bifurcations,

where instability occurs suddenly, without an eigenvalue passing the imaginary axis.

Also, how singularity induced bifurcations present themselves in the space of nodal

powers is a promising research area.

Following the investigation of Genetic Algorithms in Chapter 5, it is evident that

GAs are not limited to stability and planning problems only. They have been used

by researchers to solve various optimization problems. In deregulated power system

operation situations, GAs have been used in electricity market pricing, renewable

energy integration, and many other areas. In many cases, especially in the case of

non-convex problems, GAs are the best choice over classic optimization methods

which may fail to provide an adequate solution. This comparison is likely to need

a more conventional level of investigation.

For power system small signal stability problems, GAs are relatively slower than

classic optimization methods, especially when sharing function methods are used, so

it is necessary to �nd a way to speed up the computation. One possible approach to

this issue relies on algorithms used for eigenvalue computation. In case the problem

consists of a very large state matrix, the eigenvalue computation will be very time

consuming. New techniques are being exploited to avoid eigenvalue computation

required for each individual's �tness in the black box system model. When such

techniques are available, the whole computation can be speeded up for large power

system small signal stability analysis.

It appears that fast and more reliable GAs are required to supplement the op-

timization of power system small signal stability problems. Other Evolutionary

Algorithms like Evolutionary Programming (EP) reported in [119] are also very

promising in solving such problems.

Currently, if the problem is simple, di�erentiable or of reasonable scale, which needs

to be judged depending on the exact Genetic Algorithm adopted, a classical opti-

mization method should be used to locate the stability conditions to save com-

putation costs and get more accurate solutions. Otherwise, in case the analytical

optimization approaches fails or apparently fails to converge, Genetic Algorithm
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could be used to obtain the best available solution. One promising line of research

appears to be development of a global optimization strategy which combines tradi-

tional and genetic/evolutionary techniques. For instance, a GA stage could be used

to roughly locate critical distances followed by conventional optimization with the

initial condition provided.

More robust and fast computational algorithms are needed to make the proposed

techniques more applicable for practical usages.
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Appendix A

Matrix Analysis Fundamentals

A.1 Eigenvalues and Eigenvectors

The Lyapunov stability �rst method is the fundamental analytical basis for power

system small signal stability assessment. It is based on eigenvalue analysis. The

properties of eigenvalues and eigenvectors for stability study are listed here. A

power system or any other dynamic system can be represented by a state variable

model after linearization as:

_x = Ax +Bu (A.1)

y = Cx+Du (A.2)

where A is the state matrix, x is vector of state variables, u is vector of control

variables, and y is vector of output variables. The process of �nding the state

matrix's eigenvalues corresponds to �nding nontrivial solutions of,

AV = �V , Avi = �ivi (A.3)

where, if A is n� n matrix, V is a n� n matrix, whose columns are vj, j = 1; :::; n,

and � = diagf�ig is a n� n diagonal matrix. � and V satisfying the equation are

vector of eigenvalues and matrix of right eigenvectors of A respectively. It can be

solved by,

det(A� �I) = 0 (A.4)

where � is the vector of eigenvalues of A. The left eigenvectors can be calculated

by solving,

WA = �A, wT
i A = �iw

T
i (A.5)
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where wi are the i-th left eigenvectors of A corresponding to the i-th eigenvalue �i.

Note that W T is a matrix with left eigenvectors as its rows, and V is the matrix

with right eigenvectors as its columns.

The left and right eigenvectors are orthogonal and as used in the techniques, are

normalized, i.e. they satisfy,

wT
i vj =

8<
: 0; if i 6= j

1; if i = j
(A.6)

A.2 Participation Factors

The participation factors are de�ned using the information provided by the right

and left eigenvalues,

pij = wT
jivij (A.7)

The participation factor pij represents the net participation of the i-th state in

the j-th mode. As followed from the orthogonality property of the right and left

eigenvectors, the sum of the participation factors for one state is one.



Appendix B

Numerical Methods in

Optimization

B.1 The High Order Numerical Solution Tech-

nique

A numerical technique, which is proposed in [85, 86, 91, 104], exploits high order

information to improve convergence of solution of algebraic equations. This is useful

in application to the stages of re�nement of initial values, and numerical solution of

the critical point algorithm. This technique is also useful in continuation approach

to locate the closest saddle node bifurcations as described in Chapter 4.

B.1.1 Solution Motion and Its Taylor Series Expansion

Consider a general set of smooth nonlinear equations given by,

g(z; �) = ��g + g(z) = 0 (B.1)

where z is a vector of dependent variables, � is a scalar parameter, and �g is a

vector of increments.

If @g
@z

is nonsingular, then the function g(z; �) can be considered as an implicit
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function which de�nes the dependence z(�). Di�erentiation of (B.1) yields

(
@g

@z
)(
dz

d�
) + (

dg

d�
) = (

@g

@z
)(
dz

d�
) + �g = 0 (B.2)

If the Jacobian matrix
@g

@z
is nonsingular, we get the di�erential equation

dz

d�
= �[

@g

@z
]�1�g (B.3)

The equation (B.3) de�nes motion of a solution of (B.1) as the parameter � varies.

A solution of (B.3) can be represented as the Taylor series expansion [92]

z(�) = z0 +
1X
k=1

(k!)�1(
dkz

d�k
)(� � �0)k; (B.4)

where � = �0, z = z0 is a nominal solution of (B.1). Substituting � = (�0 � �)

gives

z(�) = z0 +
1X
k=1

(
�k

k!
)�zk (B.5)

where

�zk =
dkz

d�k
j�=0;z=z0 (B.6)

The expansion (B.5) represents the solution function z(�) as a polynomial of the

scalar parameter �.

If �0 = 1, and �g is thought of as a mismatch vector of (B.1) at the point z = z0,

then if the series expansion (B.5) converges for � = 1, it will give a solution of the

problem g(z) = 0.

Due to the impracticality of computing a large number of �zk, the summation (B.5)

must be restricted to a �nite number of terms K. Accordingly, (B.5) becomes an

iterative procedure

zi+1 = zi +
KX
k=1

(
�ki
k!
)�zk;i (B.7)

where i is the iteration number and �zk;i is the k-th correction vector. The �i has

sense of a correction coe�cient which inuences convergence reliability. It can be

easily shown that for K = 1, (B.7) corresponds to the Newton-Raphson method

with an optimal multiplier. If K > 1, then (B.7) becomes a generalization of the

Newton-Raphson method which takes into account nonlinear terms of the Taylor

series expansion. The linear approximation of g(z) that is used in the Newton-

Raphson method is replaced by an approximation that is nonlinear.
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B.1.2 Computation of the correction vectors �zk

Expressions for correction vectors �zk can be obtained by successive di�erentiation

of (B.2) with respect to �. We set � = (�0 � �) = 1 in (B.1) and express g(z) as a

Taylor series, so giving

(1� �0)�g = g(z) = g(z0) + Jg(z
0)�z +

1X
l=2

1

l!
Wl(�z; ��;�z| {z }

l

) (B.8)

where Jg(�) is the Jacobian matrix, and Wl(�) is the l-th order term of the Taylor

series. It is shown in [90, 104] that by substituting �z =
PK

k=1(
�zk
k!
) into (B.8), the

following expressions can be obtained

�z1 = �J�1
g (z0)[(�0 � 1)�g + g(z0)] = J�1

g (z0)�g

�z2 = �J�1
g (z0)[W2(�z1;�z1)]

�z3 = �J�1
g (z0)[3W2(�z1;�z2) +W3(�z1;�z1;�z1)]

�zi = �i!J�1
g (z0)

iX
l=2

X
2
4 s1; s2; � � � ; sK = 0; ��; l

s1 + s2 + � � �+ sK = l

s1 + 2s2 + � �KsK = i

3
5

(B.9)

KY
k=1

(k!)�sk(sk!)
�1Wl(�z1; ��;�z1| {z }

s1

; ��;�zK; ��;�zK)| {z }
sK

The high order termsWl(�) in (B.9) can be expressed through values of the function

g(z). For example, if (B.1) was a set of quadratic equations, then for K = 5, the

following recurrent equalities can be obtained,

�z1 = �J�1
g (z0)[(�0 � 1)�g + g(z0)] = J�1

g (z0)�g

�z2 = �J�1
g (z0)[W2(�z1;�z1)]

�z3 = �J�1
g (z0)[3W2(�z1;�z2)] (B.10)

�z4 = �J�1
g (z0)[3W2(�z2;�z2) + 4W2(�z1;�z3)]

�z5 = �J�1
g (z0)[5W2(�z1;�z4) + 10W2(�z2;�z3)]

where

W2(�zi;�zj) = g(�zi +�zj)� g(�zi)� g(�zj) + g(0) (B.11)

The expressions (B.10),(B.11) are used at each iteration (B.7) of the method.
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B.1.3 Correction coe�cients

To provide reliable convergence of the method, it is necessary to use appropriate

values of the correction coe�cients �i in (B.7). The correct choice of �i gives direct

motion in the space of parameters g. It can be shown that the deviation of the

method from the direct line (�0 � �)�g is evaluated by the norm

k(�0 � �)�g + g(z0 +
KX
k=1

�k

k!
�zk)k � �g (B.12)

It is clear that for � = 0 the norm (B.12) is equal to zero. Increasing � results in the

method taking larger steps, but the deviation (B.12) can also increase. However,

having calculated the correction vectors zk;i at the i-th iteration, and knowing the

speci�ed maximum deviation �g, it is not di�cult to obtain the corresponding value

of �i which keeps the deviation (B.12) within the desired accuracy �g. If the value

of �g is small enough, the method will converge up to a singular point of (B.1) [104].
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Proof of Quadratic Properties of

Load Flow �-plane Problem

Proofs are given of Properties 1-3 in Section 4.5.1, they are taken from [106].

C.1 Proof of Property 1

Property 1. For any two points x1 6= x2 and detJ(x1) 6= 0, the number and location

of singularities of the quadratic problem f(x) = 0 on the straight line through

x1; x2 is de�ned by real eigenvalues of the matrix J�1(x1)J(x2). These singular

points on the line can be found as xj = x1+�j(x2� x1), where �j are computed as

�j = (1� �j)
�1 for all real eigenvalues �j 6= 1 of the matrix J�1(x1)J(x2).

Proof: De�ne the line through x1; x2 as

x = x1 + �(x2 � x1) = x1 + ��x21; (C.1)

For a quadratic function f(x), its Jacobian matrix J(x) consists of elements which

are linear functions of x. So, it can be represented as

J(x) =
nX
i=1

Aixi + J(0); (C.2)

where Ai, J(0) are (n� n) constant matrices of Jacobian coe�cients, and xi is i-th

element of x.
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Using (C.2), it is easy to show that

J [x1 + �(x2 � x1)] = (1� �)J(x1) + �J(x2): (C.3)

As x1 is a nonsingular point, for � 6= 0, expression (C.3) can be written as

J(x) = �J(x1)
h
J�1(x1)J(x2)� (�� 1)��1I

i
; (C.4)

where I is the identity matrix. For � 6= 0, the determinant of J(x) is equal to zero

if and only if

det
h
J�1(x1)J(x2)� �I

i
= 0 (C.5)

where � = (�� 1)��1. It is clear that all singular points on the line (C.1) can be

computed in terms of real eigenvalues �i 6= 1 of the matrix J�1(x1)J(x2):

�i = (1� �i)
�1 (C.6)

2

C.2 Proof of Property 2

Property 2. The maximum number of solutions of a quadratic equation f(x) = 0

on each straight line in the state space Rn
x is two.

Proof: Take the function

�(�) = f t(x + ��x)f(x+ ��x) (C.7)

For a quadratic mismatch function f(x),

f(x + ��x) = f(x) + �J(x)�x + 0:5�2W (�x) (C.8)

where W (�x) is a quadratic term of expansion (C.8). So,

�(�) = kf(x) + �J(x)�x + 0:5�2W (�x)k2 =

= kf(x)k2 + k�J(x)�xk2 +

+k0:5�2W (�x)k2 + 2�f t(x)J(x)�x +

+�3W t(x)J(x)�x + �2f t(x)W (�x):
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Function �(�) equals to zero if and only if f(x + ��x) = 0. At a solution point

x = x�, f(x�) = 0, and function (C.7) is

��(�) = 1

4
�4kW (�x)k2 + �3W t(�x)J(x)�x +

+�2kJ(x)�xk2 = (a�2 + b�+ c)�2:

For any �xed direction �x 6= 0, ��(�) equals to zero in the two following cases

(a) � = 0;

(b) a�2 + b�+ c = 0.

The �rst case gives us the original solution point x = x�. The second case may

correspond to solutions x 6= x� on the straight line directed by �x. But as it

is clear from (C.7), the function (C.7) can not be negative. Thus a�2 + b� +

c � 0; and in the case (b) it is possible to have only one additional solution

except x�, but not two or more. So, on the line we get one original root x =

x�, and we can have only one additional root corresponding to condition (b).

2

C.3 Proof of Property 3

Property 3. For quadratic mismatch functions f(x), a variation of x along a straight

line through a pair of distinct solutions of the problem f(x) = 0 results in variation

of the mismatch vector f(x) along a straight line in Rn
y .

Proof: Let x be a point on the straight line connecting two distinct solutions x1, x2:

x = x1 + �(x2 � x1) = x1 + ��x21; (C.9)

where � - is a parameter, and �x21 = x2 � x1. For quadratic mismatch functions,

f(x)=f(x1)+�J(x1)�x21+0:5�
2W (�x21); (C.10)

f(x2) = f(x1) + J(x1)�x21 + 0:5W (�x21); (C.11)

where 0:5W (�x21) is the quadratic term of the Taylor series expansion (C.11). At

points x1, x2, we have f(x1) = f(x2) = 0. So, from (C.11),

0:5W (�x21) = �J(x1)�x21: (C.12)
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Using (C.12), equation (C.10) transforms to

f(x1 + ��x21) = �(1� �)J(x1)�x21 = ��; (C.13)

where � = �(1��), � = J(x1)�x21. Thus mismatch function f(x1+��x21) varies

along the straight line �� in Rn
y . 2
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