
Representing and Reasoning on XForms Document

Peng Yew Cheow Guido Governatori

School of Information Technology and Electrical Engineering
The University of Queensland

Brisbane, Queensland, QLD 4072, Australia
Email: s4019325@student.uq.edu.au, guido@itee.uq.edu.au

Abstract

Forms are the most common way to interface users and Web-based ap-
plications. Traditional forms cannot provide the functionality needed to
fulfil the requirements of complex applications. As such, there is a need
for a more advanced format of forms to support Web-based application.
We argued that XForms easily fit into this criterion of forms. In addi-
tion, we observed that there is a need for a tool to reason about the forms
with respect to user needs and application requirements. We propose to
use Description LogicALCOQ I to reason about forms generated by
XForms.

1 Introduction

Web-based applications have been increasing in size
and complexity ever since the sudden explosion of E-
commerce in the 1990s. It has been observed that most of
these applications are database-driven and exploit a com-
mon interface called forms for computer users to interact
with applications. As such, these are the two important
roles that determine the successful deployment of Web-
based applications, namelydatabasesandforms. The us-
age of the database is to facilitate the storage of applica-
tion data via schemas. A schema describes the structure
of the data stored in a database and often applications re-
quire schemas from various data sources to perform their
intended tasks. This may pose a problem when data from
various sources must be integrated as each schema has its
own independent rules of describing the structure of the
data. However, it is possible for the schemas of the vari-
ous data sources to be conceived of as ontologies; in this
way both conceptual and logical aspect of these schemas
be represented in a formal language such as Description
Logic [2]. It is thus feasible for the language to integrate
data from the ontologies and check the consistency of the
integrated data.

Forms on the other hand are connected to databases
for either gathering data from users, or accessing the data
from a database, or both. Over the years, Web applica-
tions have however sparked better forms for users with
richer interactions. Traditional forms, generated by us-
ing Hypertext Markup Language (HTML), may be quite
a tedious chore to perform the above mentioned tasks due
to their limitations such as heavy dependence on scripting
languages, design of page flow in forms and etc [13, 1, 14].
XForms[10] on the other hand offer a powerful and ver-
satile tool to interface the Web and databases. Although
XForms are still in their embryonic state, there has been
much excitement about them on the Web and many com-
panies have started to develop forms based on XForms1.

Copyright c©2004, Australian Computer Society, Inc. This paper
appeared at Fifteenth Australasian Database Conference (ADC2004),
Dunedin, New Zealand. Conferences in Research and Practice in Infor-
mation Technology, Vol. 27. Klaus-Dieter Schewe and Hugh Williams,
Ed. Reproduction for academic, not-for profit purposes permitted pro-
vided this text is included.

1See for example Formfaces (http://www.formfaces.com), TrustForm Sys-

In this paper, XForms are used as the standard for Web
forms. XForms are chosen as the standard mainly due to
the fact that they use XML schema as part of the compo-
nent in the model element. The schema plays a critical
role as the schema provides information about the domain
of the form, which is then used to represent the semantics
of the form. Moreover it is believed that XForms are going
to inherit the role of generating web forms from HTML in
the near future, due to their promising advantages.

Although XForms could resolve much of the weakness
in the current markup languages, there are still limitations
in the forms used by current Web applications. There has
been no improvement made on the forms in terms of user
needs and requirements of Web applications. Different
users have different needs and, at the same time, differ-
ent Web applications may require different domains of the
field of that application. Hence forms should have the
ability to intelligently suit both computer users and the
requirements of the application systems. But, one may
wonder, why is there still a need to verify the validity and
logical design of forms, especially when the application’s
designers have already performed software requirement
specification (SRS) on the needs of their applications? Ac-
cording to our knowledge, system developers tend to focus
more on the application’s needs than users, which in some
instances may not realize actual user’s needs aspect and
vice visa. Whereas our approach takes into consideration
of both party’s needs, users and application respectively,
when generating forms. Thus solving some of the limita-
tion of current Web forms.

The problems of user needs and system requirements
can be categorized into form validity and logical design
of forms. For example, one of the most problems of form
validity is that some of the fields in the form may be either
irrelevant or inappropriate for users, making the form not
fillable. In some other instances, the correct input of a user
in some of the fields may perhaps produce wrong data in
the subsequent fields, therefore making the form invalid
for the user. Forms that are not well formed or do not
conform to the specifications of their markup languages
may produce erroneous form interactions to the user. As
such, the syntax and semantics of a form play a very cru-
cial role in determining the validity of the form. The logic
design of some forms may require users to go through a
certain number of forms to carry out their intended goals.
Very often there are many unnecessary steps. These steps
could however be reduced by embedding one form onto
another, without causing interruptions to the workflow of
the forms.

In order to improve logical design and the validity
of the form, factors such as reasoning mechanisms for
embedding of forms, and syntactic and semantic aspects
need to be taken into consideration. Currently there is
no reasoning mechanism for forms, especially for the new
emerging XForms. Therefore the main aim of this paper
is to provide a formal reasoning mechanism for XForms.

tem (http://trustform.comsquare.co.kr) and the W3C XForms web page
www.w3c.org/MarkUpX/Forms/ for more examples.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This objective is achieved by representing XForms docu-
ments in Description Logic. According to our knowledge,
there is no research in applying Description Logic to rea-
son about the semantics of XForms; moreover the current
approaches to XForms validity focus only on the syntactic
aspects, that is whether an XForms document conforms to
the syntax of XForms. As such, there is a need to explore
the context of semantic validity. In addition, the proposed
reasoning mechanism could be implemented into an exist-
ing DL system such as FaCT system [12] to reason with
and about XForms documents. Extensible Stylesheet Lan-
guage Transformations (XSLT) would be use to form a
communication bridge between XForms documents and
DL systems.

The semantics of an XForms document would be trans-
lated by XSLT into a data format that is interpretable by
the DL system. This data would then be used by the DL
system and using the proposed reasoning framework to
reason about form validity and form embedding. The DL
system would update the data format on addition or dele-
tion of data. After the data have been reasoned/updated,
the new data format is translated by XSLT back into the
original format interpretable by the XForms document,
and a new Web form would be generated based on the rea-
soned XForms document. Thus the use of an expressive
formal language enables us reason with and about XForms
and the proposed implementation implies that user needs
can be effectively captured and analysed, hence leading
to interaction improvements between the forms and their
users.

The paper is organized as follows. In Section 2,
XForms are introduced and the basic reasoning task on
forms are defined. In Section 3, the Description Logic
ALCOQ I is presented. In Section 4, the mapping pro-
cess of XForms document to Description Logic is devel-
oped. In Section 5, we outline how to reason on form.
Finally, conclusions are drawn in Section 6.

2 XForms

XForms, an extension module for XHTML, are the lat-
est effort by the World Wide Web Consortium (W3C) to
replace HTML forms with a more advanced format that
could resolve many of the drawbacks and limitations of
current markup languages. They are designed to be flex-
ible and to work with other standard XML languages.
XForms are to be integrated with other markup languages,
and not adopted as a free-standing document type. It is
theoretically possible to attach XForms’s functions to al-
most everything [14]. This is important as Web develop-
ers then do not have to learn a new language, but they
can simply use XForms for integration with the exist-
ing markup language such as XHTML, Scalable Vector
Graphics (SVG), XSL and VoiceXML. The main advan-
tages of XForms [1] over HTML are as follows:

1. Powerful actions, event model and validation
rules: XForms provide a wide range of client-side
processing and reduce the number of round-trips to
the server without the need for scripting languages.

2. Clean separation of data, logic and presentation:
This implies ease in generating data-bound controls.

3. Highly regular XML structure : The regular XML
structure makes it possible to build WYSIWYG user
interface (UI) development environments.

4. Abstract controls: This type of controls enable ab-
stract application design that gets translated to device
specific rendering.

2.1 XForms Document Structure

The structure of an XForms-based document can be de-
scribed by using the XForms document of Figure 1. The

<model> element in the<head> tag described a form def-
inition, which controls a set of “rules” of how each form
should conform to. In addition, this<model> element is
also been used as a container for elements defined in the
entire XForms model. The<model> element consists of
submission information, schema, instance, data bindings
and event handlers.

The <schema> element enables developers to define
constraints for the returned data and is possible to link
to an external documents rather than defining the data’s
constraints in the form itself. In addition to that, the
<schema> element contains all the elements used in the
form. The <instance> element references initial in-
stance data and all XForms controls refer back to this
element to store information provided by the user. The
<instance> element can also be used to pre-populate a
form. The data bindings, event handlers and submission
information form the logic components of the form, which
are then used to define the behaviour of the form. Data
binding enables the specification of the types of the data
entries, which can be related to other elements of the form,
and includes some other features such as calculation and
determining the relevance of the corresponding element’s
field via XPath. Events handlers are part of form controls
defining how a form should behave when certain actions
are triggered. Finally a form would be incomplete with-
out the definition of some way of communicating with the
back-end server. The function of the<submission> el-
ement is to pass, when activated, the data structure and
the data to the location specified for the processing. The
<body> contains the actual form controls used to collect
inputs from users, populating forms, and specifying the
presentation of the form. Form controls are expressed
through both atomic and compound controls. The former
are used to populate a form, while the latter are used to
organise and group atomic objects.

2.2 Reasoning on Forms

The basic types of reasoning we can perform on forms are
semantic and syntactic validity, and form embedding. Se-
mantic validity is the verification of whether the form can
be filled, integrated or if the form is consistent, while syn-
tactic validity is the verification of whether the form con-
forms to its specifications. Form fillability is concerned
with the relevance of the field’s data with respect to its
scheme constraint. Form integration, which very often re-
quires the use of ontology servers, ensures that the form
contains the essential and relevant fields needed for user
input. Consistency of the form is to identify whether the
field’s data of the form correctly interpret its correspond-
ing fields’ data. Form embedding determines whether one
form could be embedded in another form. Addition or
deletion of fields in the forms will be based on these fac-
tors.

It is important to highlight at this point that the paper
will be focusing only on the semantic validity and embed-
ding of forms. Syntactic validity is not taken into consid-
eration as form conforming to its specification could be
easily verified by using commercial tools available in the
Internet.

3 Description Logic ALCOQ I

In this section we introduce the description logic that will
be used in Section 4 to represent XForms documents. The
basic building blocks of Description Logics are concepts
and roles [3]. Concepts are denoted as classes, describing
the common properties of a collection of individuals while
roles are interpreted as binary relations between objects.
Complex concepts are built from a set of atomic concepts
and a set of atomic roles by applying concept and role
constructors.

<html xmlns="http://www.w3.org/1999/xhtml" xmlns:xforms="http://www.w3.org/2002/01/xfroms">
<head>

<xforms:model>
<xforms:schema><!-- Information on form validation -->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="amexcard">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="fullName" type="xsd:string"/>
<xsd:element name="password" type="xsd:string"/>
<xsd:element name="personalInfo" maxOccurs="1">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="name" type="nameType"/>
<xsd:element name="homeAddress" type="homeaddressType"/>
<xsd:element name="ownMobile" type="xsd:string"/>
<xsd:element name="mobileNumber" type="xsd:integer"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
...

</xsd:element>
<xsd:complexType name="nameType">

<xsd:sequence>
<xsd:element name="title"/>
<xsd:element name="firstName" type="xsd:string"/>
<xsd:element name="middleName" type="xsd:string"/>
<xsd:element name="lastName" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="homeaddressType">

<xsd:sequence>
<xsd:element name="homeaddr" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:integer"/>

</xsd:sequence>
<xsd:attribute name="suburb" type="xsd:string"/>

</xsd:complexType>
...

</xsd:schema>
</xforms:schema>
...
<xforms:instance xmlns=""> <!-- The initial and final XML instance document -->
</xforms:instance>
...
<xforms:submission method="..." action="..." />
...
<!-- Event definitions -->
...
<!-- Binding information -->
<xforms:bind nodeset="my:amexcard/my:fullName" required="true()" type="xsd:string"/>
<xforms:bind nodeset="my:amexcard/my:password" required="true()" type="xsd:string"/>
<xforms:bind nodeset="my:amexcard/my:personalInfo/my:name/my:title" required="true()" type="xsd:string"/>
<xforms:bind nodeset="my:amexcard/my:personalInfo/my:name/my:firstName" required="true()" type="xsd:string"/>
<xforms:bind nodeset="my:amexcard/my:personalInfo/my:mobileNumber" relevant="../my:ownMobile =’ Y’"/>
...

</xforms:model>
</head>
<body>

<!-- Actual forms controls reside in the body of the document. -->
...
<xforms:input ref="my:amexcard/my:personalInfo/my:name/my:firstName">

<hint>Enter your first name.</hint>
<help>Enter your first name.</help>

</xforms:input>
...
<xforms:selectOne ref="my:amexcard/my:personalInfo/my:name/my:title" selectUI="radio">

<xforms:choices>
<xforms:itemset>

<xforms:value>Mr Mrs Ms Dr</xforms:value>
<hint>Select your title.</hint>
<help>It’s selected your title.</help>

</xforms:itemset>
</xforms:choices>

</xforms:selectOne>
...

</body>
</html>

Figure 1: A partial XForms document used for an online credit card application.

Description LogicALCOQ I has a rich combination
of constructors, beside the basic constructors, it includes
also qualified number restrictions, inverse roles, nominals
and inclusion assertions of a general form. These con-
structors enableALCOQ I to be powerful enough to pro-
vide a unified framework for object-oriented languages
and semantic data models as illustrated in [9, 4] and can
represent XML documents [6]. In this paper we show
that this logic can be used to capture the semantics of
the XForms document. Concept descriptions in Descrip-
tion Logic ALCOQ I , which define how concepts and
roles are formed, are built according to the syntax rules
as shown:

C,C′→A|¬C|CuC′|CtC′

|∀R.C|∃R.C|∃≥mR.C|∃≤mR.C|{a1, . . . ,an}
R→P|P−

where,A andP, denote atomic concepts and atomic roles
respectively,C andR denote arbitrary concepts and roles,
m is a positive integer and{a1, . . . ,an} are individual
names. The basic reasoning tasks to be performed on con-
cept expressive are satisfiability and subsumption. The
former is used to test whether a newly defined concept
is contradictory while the later is used to deduce whether
a concept is more general than another. The constructors
used to form concept expressions are the basic set oper-
ators, namely complement (¬), union (t) and intersec-
tion (u) that are denoted as negation, disjunction and con-
junction respectively. For example the concept of “person
without children” can be expressed as

(MaletFemale)u¬Parent

where we use the union (disjunction) of the conceptsMale
andFemale for the notion of person and we intersect it
with the complement (negation) of the conceptParent.

In addition,ALCOQ I admits inverse roles and sev-
eral forms of quantification to denote the inverse of a given
relation and the representation of relationships existing be-
tween the objects in two classes respectively. In particu-
lar ALCOQ I allows value restiction (∀R.C), existential
quantification (∃R.C) and number restriction (∃≤mR.C).

For example the concept∀workIn.Male denotes the
set of organizations with only male employees, while
∃workIn.Male identifies the set of organizations with at
least one male employee; finally

∃≤3workIn.Male

defines the concept of organization with less than 4 male
employees. More formally it denotes the set of instances
of the concept defined the above expression are connected
through the roleworkIn only to no more than 3 instances
of the conceptMale.

ALCOQ I uses the role constructor that is the inverse
role to denote the inverse of a given relation as:

∃≤3workIn−

One can for example state that there are 3 people who are
unemployed by using the above expression. The logic also
allows us to use individual names (nominals) not only in
the ABox but also in the description language. The basic
constructor for nominals is the “set” (orone-of) construc-
tor represented by the expression

{a1, . . . ,an}

wherea1, . . . ,an are individual names. With the nomi-
nals constructor, it is possible to define the concept of
countries participating in the commonwealth countries
as {SINGAPORE, AUSTRALIA, INDIA, MALAYSIA,
UNITED KINGDOM}.

Concepts are interpreted as subsets of a domain and
roles as binary relations over the domain. An interpreta-
tion I = (∆I , ·I) over a setA of atomic concepts and a set
P of atomic roles consists of a nonempty finite set∆I (the
domain ofI) and a function·I (the interpretation function
of I) that maps every atomic conceptA ∈ A to a subset
AI of ∆I (the set of instances ofA) and every atomic role
P∈ P to a subsetPI of ∆I ×∆I (the set of instances ofP).
The interpretation function can be extended to arbitrary
concepts and roles with the following inductive definition:

(¬C)I = ∆I \CI

(C1uC2)I = CI
1 ∩CI

2

(C1tC2)I = CI
1 ∪CI

2

(∀R.C)I = {o∈ ∆I |∀o′.(o,o′) ∈ RI → o′ ∈CI }
(∃R.C)I = {o∈ ∆I |∃o′.(o,o′) ∈ RI ∧o′ ∈CI }

(∃≥nR.C)I = {o∈ ∆I |]{o′|(o,o′) ∈ RI ∧o′ ∈CI } ≥ n}
(∃≤nR.C)I = {o∈ ∆I |]{o′|(o,o′) ∈ RI ∧o′ ∈CI } ≤ n}

(P−)I = {(o,o′) ∈ ∆I ×∆I |(o′,o) ∈ PI }
{a1, . . . ,an}I = {aI

1, . . . ,aI
n}

3.1 Knowledge Bases inALCOQ I
Description LogicALCOQ I provides facilities for set-
ting up knowledge base through the use of concept expres-
sions and assertions about individuals. A knowledge base
is composed of two components, namely Terminological
Box (TBox) and Assertional Box (ABox). The TBox con-
tains intensional knowledge in the form of a terminology
and is constructed through definition that states general
properties of concepts and roles as follows:

AvC (inclusion assertion)
A≡C (equality assertion)

where A is an atomic concept andC is an arbitrary
ALCOQ I concept expression. The first definition is
usually interpreted as inclusion assertion, which means
that only necessary conditions are used for classifying in-
stances of the conceptA. Equality assertion (logical equiv-
alence) specifies both necessary and sufficient conditions
for the instances of the class.

The ABox contains extensional knowledge, describing
concrete situations through assertions about individuals.
The assertions to be used in this paper are concept and
role assertion respectively, which are specified as follows:

C(a), R(b,c)

whereC andRdenote concepts and roles respectively, and
individuals asa, b, c; for example:

Student(PengYew) workIn(ITEE,Guido)

Lastly, the last constructor to be used is the “fills” role for
a roleR which is denoted asR : a and the semantic of this
constructor is given as:

(R : a)I = {d ∈ ∆I |(d,aI) ∈ RI }

whereR : a denotes the set of those objects that havea as
filler of the roleR. Thus we can interpret the following
expression

workIn : Guido

as Guido is currently holding a job in an organization, and
the expression denotes the organizations Guido works for.
Notice that this constructor makes possible to express role

assertions through concept assertions, that is an interpre-
tation satisfiesR(a,b) iff it satisfies(∃R.{b})(a).

The semantics of a knowledge based is specified
through the notion of satisfaction of assertions as specified
in [9]. Given a knowledge base, an interpretation satisfies
the inclusion assertionAvC if AI ⊂CI and it satisfies the
equality assertionA≡C if AI = CI . In addition, one can
consider an interpretation is a model of a knowledge base
if it satisfies all terminological assertions in it.

3.2 Reasoning Tasks inALCOQ I
The fundamental reasoning tasks that can be carried out on
the intensional level of the knowledge base are knowledge
base satisfiability, concept consistency and logical impli-
cation. The formal definition of these types of reasoning
according to [9] are given below:

1. Knowledge base satisfiability: A knowledge base K
is satisfiable if and only if it admits a model.

2. Concept consistency: A conceptC is consistent in
a knowledge base K if and only if K admits a model
where the interpretation ofC is not empty.

3. Logical implication : A conceptC1 implies a concept
C2, C1 vC2 in a knowledge base K if and only if in
all models of K the interpretation ofC1 is a subset of
the interpretation ofC2.

Concept consistency and logical implication general-
ize concept satisfiability and concept subsumption when
we consider a knowledge base. These notions enable an
user to deduce implicit knowledge from the knowledge
that is explicitly contained in the knowledge base.

3.3 Applying Description Logic to Reason About
Forms

As we have alluded to in Section 2.2 the basic types of
reasoning we can perform on forms are form validity and
form embedding. Here we examine how these operations
can be carried out in Description Logic

1. Consistency of forms: We can use logical impli-
cation to verify whether a particular field has been
correctly interpreted according to its corresponding
field’s data.

2. Embedding of forms: Given a representation of two
formsF1 andF2 we have thatF1 is embedded inF2 if
F2 v F1.

3. Form integration with ontologies: Knowledge base
satisfiability and concept consistency can be used to
decide whether a form contain all the essential and
relevant fields, according to given ontologies.

4. Form fillability : Concept consistency can be used to
verify the relevancy of the field’s data; then this data
is used to check the consistency of the form.

4 Representing XForms in Description Logic

To correctly represent XForms documents in Description
Logic we have to examine four components of an XForms
document: the XML Schema and<bind> elements de-
clared in the head element of the document, XPaths de-
clared in the whole document, and form controls declared
in the<body> element of the document. The Knowledge
Base of an XForms document is derived from these com-
ponents. The resulting Knowledge Base is then used to
verify the validity and logical design of the form. The
schema, binding elements, XPath sand, sometimes, the
form controls are used to structure the TBox in the Knowl-
edge Base of an XForms document while the ABox is

Figure 2: Graphical version of an XForms document used
for an online credit card application.

structured via the form controls component. Figure 1
shows a partial XForms document for applying for a credit
card and Figure 2 is the graphical version of that partial
document. This example will be used in the rest of the
paper to illustrate the mapping process from XForms to
Description Logic.

4.1 Structuring the TBox

The tags of XML schema, attributes of binding element,
XPaths and sometimes the form controls of an XForms
document are used to structure the TBox in a Knowledge
Base.

The schema of the document determines how the el-
ements in it are represented as either atomic or complex
concepts, and in case of complex concept it establishes the
roles to be used and the type of quantification needed to
define the complex concepts. Form controls are used only
when pieces of information like cardinality constraints,
are missing from the schema. The<bind> elements and
XPath are used to verify or include additional information
to the TBox.

Only element tags and their associated attributes are
used to map the elements of the schema to concepts of
Description Logic. Each element declared in the schema
belongs to a domain of concepts, denoted as either atomic
or complex concept.

Definition 1 A function called ConceptName is intro-
duced to map each (complex) element in the schema to
an assertion. This function receives an XForms document
as input and aims to differentiate elements between atomic
and complex concepts as output of that XForms document.
type(e) denotes the basic (built-in) type of the elemente.

For each elemente in an XForms documente is the
concept corresponding to it inALCOQ I . Then

If e’s data type is built-in or simple then
ev type(e)

If e’s data type is user-defined then
If e’s data type is complex then

If e is of type<xsd:sequence> then
ev u(RoleConcept(e′) : e′ ∈ <xsd:sequence>)

If e is of type<xsd:all> then
ev u(RoleConcept(e′) : e′ ∈ <xsd:all>)

If e is of type<xsd:choice> then
ev t(RoleConcept(e′) : e′ ∈ <xsd:choice>)

If ehas attributeref=xpath then

If xpath points to elements
ev u(e′ ∈ XPathE(xpath))

If xpath points to values
e(v) for all v∈ XPathV(xpath)

where XPathE(xpath) and XPathV(xpath) are, respec-
tively, the set of elements and the set of values an XPath
expressionxpathrefers to (see Definition 4).

The first element of the schema is defined as the type of
the root element (document element), that is the element
that specifies a document type. Each element has a name
and may have a number of optional attributes of which
only two attributes are relevant for the mapping, namely
data typeandcardinality constraints. The name of each
element corresponds to the name of the concept. The data
type of the element is used to verify whether the element
itself is an atomic or a complex concept and cardinality
constraints are used to establish the appropriate quantifiers
and roles for complex concepts.

There are two methods for defining the data type of an
element: built-in and user-defined. Element with built-in
data type are mapped to atomic concepts. Elements with
user-defined data type can be further broken down into
simple and complex data types. The former data type is
mapped to an atomic concept while the latter is mapped
onto a complex concept. Notice that in some instances, an
element of complex data type may use<xsd:attribute>
tag instead of<xsd:element> tag to denote a child el-
ement. The former tag behaves exactly the same as
the latter tag. As such, when encountered element with
<xsd:attribute>, the attribute is treated as an element
and follows exactly the same mapping process of a normal
element.

Elements with simple data types are defined nor-
mally by using tags such as<xsd:restriction>,
<xsd:enumeration> and others. These tags are, how-
ever, not relevant in mapping elements to concepts and
therefore tags in simple data types are ignored. Complex
data types are defined from existing data types by defining
some attributes (if any) and by using<xsd:sequence>,
<xsd:all> and <xsd:choice>. An elements contain-
ing a sequence of elements uses conjunction to con-
struct the corresponding complex concept. Likewise for
<xsd:all>, conjunction is also used in building complex
concept.2 Elements with<xsd:choice> are represented
by the disjunction of the collection of elements, of which
one will be chosen.

A complex concept is built by combining atomic and
complex concepts with the functionRoleConcept(Defi-
nition 2). This function establishes the types of quanti-
fier and role for complex concept through cardinality con-
straints (minOccurs, maxOccurs) of the element and the
element corresponding binding element information re-
spectively.

The relationship between the elements in a complex
concept is represented by a role, which is derived from
the attributes of the binding element. The attributes of
the binding element that are used to interpret role arere-
quired andrelevant. The meaning of required is to indi-
cate whether the domain of the corresponding element can
be empty. The intuition behind the attribute relevant is that
the existence of values for the element the attribute refers
to depends on the values of other elements. The attribute
required has two values, which can either be ‘True()’
or ‘False()’. When the value is set to ‘True()’, the role
is represented bychild-e in conjunction with existential
quantification, and when set to ‘False()’ the role is used
with universal quantification.

2The order of the elements is relevant when an element is specified to be se-
quence of sub-elements. On the other hand, semantically, this does not change the
meaning of the element itself. Technically there are no difficulties to represent such
structure, However In this paper we are interested in the semantic meaning of the
elements, thus we will ignore this difference.

Definition 2 The function RoleConceptestablishs the
types of quantifier and roles for complex concept. Each el-
ement in the schema is checked for cardinality constraints,
wheren and m are integers and then the element corre-
sponding binding element’s attribute for its role.

Letebe an element (attribute) in an XForms document.

If ehas attributerelevant="xpath=‘value’ ", then
RoleConcept(e) = Relevant(e)

otherwise
RoleConcept(e) = Concept(e).

The functionRelevantis thus defined

Relevant(e) = (Role(xpath):{value}uConcept(e))
u¬Role(xpath):{value}

On the other hand the functionConceptis thus defined

If ehas attributerequired=True() then
Concept(e) = ∃Role(e).e

If ehas attributerequired=False() then
Concept(e) = ∀Role(e).e

If ehasminOccurs= 0 then
Concept(e) = ∀Role(e).e

If ehasminOccurs= 1 then
Concept(e) = ∃Role(e).e

If ehasminOccurs= n then
Concept(e) = ∃≥nRole(e).e

If ehasmaxOccurs= n then
Concept(e) = ∃≤nRole(e).e

If ehasminOccurs= n andmaxOccurs= m then
Concept(e) = ∃≥nRole(e).eu∃≤mRole(e).e

In some cases, it may be possible to omit the cardi-
nality constraints in the schema, but rather specify it in
the body of the form. As such, when the cardinality con-
straints of the element is not specified in the schema, it
is necessary to look into the corresponding form control
in the body of the document. In cases, where the cardi-
nality constraints of the element is not defined neither in
the schema nor the body of the form, we have to use value
restiction to describe the relationship between the complex
element and the corresponding child.3

Definition 3 The function Role maps elements of an
XForms document to roles inALCOQ I . Let e be an ele-
ment of an XForms document, then

Role(e) = child-e

Thenodeset attribute of a<bind> element is used to
bind an instance to the binding expression via an XPath.
There are two ways to specify XPaths: an XPath expres-
sion can be either an absolute or arelative path expres-
sion. When encountered binding element via relative path
expression, each child element corresponding to the path
must be defined.

According to Definitions 1, 2 and 3 the structure of the
TBox of an XForms document is created but in a “weak”
state. XPath and<bind> element are then used to in-
clude additional information to strengthen the TBox. An
XPath expression contains meaningful information on the
elements or the values it is pointing to. This information
is used to interpret its related concepts or domains. In ad-
dition, XPath and binding elements are also used to verify
or enhance the roles and quantifiers established by Defi-
nition 2. Most frequently declarations of XPath are found
in the tags of binding elements, form controls and at times

3Here we would like to point out a conflict between the specifications for XML
Schema and XForms. If an element is defined in the schema without any cardinal-
ity constraints then the specification for the XML Schema assume the default value
minOccurs= 1, on the other hand the specifications for XForms state that the de-
feault value for the attribute required is false(). HoweverminOccurscan be defined
only in the schema while required only in the other part of an XForms document.

Figure 3: Form displaying additional field mobileNumber
when user selected ‘Y’ as ownMobile‘s value.

in XML schema. In the<bind> element, an XPath ex-
pression is used for various binding expression such as
model binding expression, UI or action binding expres-
sion and computed expression. In this paper, we focus
on the model, action and relevant of computed expression.
Although it is possible to capture the semantics of the rest
of the computed expression, it is not within the scope of
this paper.

Definition 4 The functionsXPathEand XPathV take as
input an XPath expressionx and return, respectively, a set
of elements and a set of values according to the following
algorithm

XPathE(x) := /0
XPathV(x) := /0
For each nodet in the document comparex with the path
of t
If x matches an elemente then

XPathE(x) := XPathE(x)∪{e}
If x matches an valuev then

XPathV(x) := XPathV(x)∪{v}
The element<amexcard> in Figure 1 is a complex con-
cept. It has three child elements located inside the se-
quence tag. The first two elements,<fullName> and
<password>, are atomic concepts and the last element,
<personalInfo>, is a complex concept.

According to Definition 1, the partial mapping of the
complex conceptamexcard is described as:

amexcardv RoleConcept(fullName)
uRoleConcept(password)
uRoleConcept(personalInfo)

The children of<amexcard> do not contain the attribute
relevant, thus allRoleConceptin the above definition
turn out to beConceptfunctions.

The elements<fullName> and<password> have no
cardinality constraint specified in the schema or the body
of the form, therefore the quantification for the role
must be universal. The element<personalInfo> has
maxOccurs= 1, hence number restriction must be used.

According to on Algorithm 2, the mapping of complex
conceptamexcard is described as follows:

amexcardv ∀child-fullName.fullName

u∀child-password.password

u∃≤1child-personalInfo.personalInfo

The binding statements in Figure 1 specify that the ele-
ments<fullName> and<password> are required fields
via the attributerequired and nodeset. The nodeset
points to elements in the schema/document; the attributes
are used to indicate the type of relationships between the
node corresponding to the Xpath expression and its parent
element. The representation of the<bind> elements for
<fullName> and<password> gives us the following two
assertions

amexcardv ∃child-fullName.fullName

amexcardv ∃child-password.password

Consequently the complete definition ofamexcard is

amexcardv ∀child-fullName.fullName

u∃child-fullName.fullName

u∀child-password.password

u∃child-password.password

u∃=1child-personalInfo.personalInfo

Element<homeAddress> in Figure 1 has five children
of which suburb is declared as an attribute. As explained
before, an attribute is treated as an element. The attribute
suburb is of built-in data type and thussuburb is atomic
concept. The<title> element does not have a data type
specified in the schema. The user therefore has to look
into the corresponding field of the element in the body to
determine the data type. The<title> element defines an
atomic concept as its date type is of user-defined but sim-
ple type as no elements are specified within it. There are 4
values namely Mr, Mrs, Ms and Dr inside the<choice>
tag associated with<title>. Among these values, only
one is selected as the value for<title> element (selec-
toneform control), therefore resulting in a cardinality con-
straint ofminOccur is 1. The mapping of the atomic con-
cepttitle is described as:

titlev {Mr,Mrs,Ms,Dr}
We use the last binding statement in Figure 1 to illustrate
the mapping of the attributerelevant. First of all the el-
ement<personalInfo> generates the following expres-
sion:

personalInfov ∀child-name.name

u∀child-homeAddress.homeAddress

u∀child-ownMobile.ownMobile

u∀child-mobileNumber.mobileNumber

The element<mobileNumber> depends on the value of
element<ownMobile>. The expression we obtain from
this is:

personalInfo = (ownMobile:{Y}u
∃child-mobileNumber.mobileNumber)

t¬ownMobile:{Y}
Figure 3 shows the form of Figure 2 with the additional

field <ownMobile> when the user keyed in ‘Y’ into the
value of element<ownMobile>. Subsequently the inter-
pretation of the fillerownMobile:{Y} will be satisfied by
the instance of the conceptpersonalInfo, and at the same
time negation of the filler is false. Accordingly the result-
ing expression can be embedded in the full definition of
personalInfo.

personalInfov∃child-name.name

u∃child-homeAddress.homeAddress

u∃child-ownMobile.ownMobile

uownMobile:{Y}
u∃child-mobileNumber.mobileNumber

Figure 4: Form displaying without field mobileNumber
when user selected ‘N’ as ownMobile‘s value.

Figure 4 shows the form of Figure 2 when the user
keyed in ‘N’ instead of ‘Y’ into the value of the ele-
ment <ownMobile>. Subsequently the interpretation of
ownMobile:{Y} is not satisfied. This would make the
whole conjunction false and the expression which would
be returned is:

personalInfov ¬ownMobile:{Y}

and embedded into the original conceptpersonalInfo as
shown below:

personalInfov ∃child-name.name

u∃child-homeAddress.homeAddress

u∃child-ownMobile.ownMobile

u¬ownMobile:{Y}

4.2 Structuring the ABox

The body of the form contains form controls that are used
to structure the ABox in a knowledge base and for spec-
ifying the user interface of the form. Only form controls
with attributeref and that receive input from users are
used in structuring the ABox. Form controls with attribute
ref are<input>, <secret>, <textarea>, <select1>,
<select> and<range>. Attribute ref references an el-
ement in the instance document, which also belongs to a
concept in the TBox. As such, the value of the form con-
trol denotes the value of that concept (concept assertions).

The first three form controls, namely<input>,
<secret> and<textarea>, are simple and straightfor-
ward when used for structuring the ABox but the re-
maining controls, namely<select1>, <select> and
<range>, need additional steps. Both the selection form
control (<select1> and <select>) provides a list of
items, which are defined by using<label> and<value>
tags. The former tag gives the description of an item while
the latter is the value associated with the item. It is noted
that in most cases<value> tag do not carry significant in-
formation about its corresponding<label> tag and there-
fore, it is necessary to take into consideration both tags
when determined the domain of that concept.

In <range> form control, the referencing of the do-
main for a concept is determined by its attributes, namely
start, end andstep. Thestart attribute provides the

lexical starting bound for the range and denotes the first
value, while theend attribute gives the ending bound for
the range and denotes as the last value of the domain. The
step attribute is applied to increment or decrement the
value, and is used to determine the values inside the range.

As discussed, the role represents the relationship be-
tween the elements in a complex concept. By using role
assertions, one can state thatc is a filler of the roleR for b,
whereb is the ID of the root element of a complex concept
and thatc is the value (interpretation) of a concept. This
is illustrated as:

R(b,c).

For instance,

child-name(amexcard123,Charlie),

whereCharlie is the value of element<firstName>, im-
plies thatamexcard123has a first name’s field, whose
value isCharlie. XML Schema uses attribute names to
represent elements but in some instances, there may be
more than one element with the same name. For instance,
an element named person with cardinality constraint of
maxOccurs=2. As such, a unique ID is assigned to each
element. This ID aims to identify each unique element and
is derived from the attribute name of the element. In the
case of elements with duplicate name, the ID will still in-
herit the name of the element but will append a numbering
order at the end of the ID. In this case, the first element’s
ID is person1 while the latter element’s ID is person2.

5 Perform Reasoning Tasks

In the previous section, we have defined and illustrated
the methodology of structuring the knowledge base of an
XForms document. In this section, we will explain the
reasoning tasks one can perform on XForms documents.
Foremost, the reasoning on validity and logical design of
form as specified in Section 2.2 can immediately be re-
duced to the fundamental problem of checking the satisfi-
ability of the knowledge base’s domain. This verification
of satisfiability is performed via using the reasoning tasks
available inALCOQ I .

Consistency of forms

Once the schema and the binding elements of the form
have been mapped into the knowledge base, each mapped
binding element is checked whether the mapped bind-
ing element is embeddable into its associated mapped
schema’s element as shown below:

Mapped(binding)vMapped(schema)

The data of the field is correctly interpreted by its cor-
responding field’s data in a form if the interpretation
of Mapped(binding) is a subset of the interpretation of
Mapped(schema).

Let us consider for example the following (partial)
Knowedlge Base.

personalInfov∃child-name.name

u∃child-homeAddress.homeAddress

u∃child-ownMobile.ownMobile

u ((ownMobile:{Y}
u∃child-mobileNumber.mobileNumber)
t¬ownMobile:{Y})

This Knowledge Base has an elementownMobile con-
tained in the complex conceptpersonalInfo, which the
user has chosen ‘Yes’ as the value forownMobile. As-
suming in the form, there is a particular field displaying

the value ofownMobile as ‘No’. The interpretation of this
particular field will be reflected as:

ownMobileF = {No}

Based onconsistency of formsdefinition, this particu-
lar field is verify whether it could be embedded into the
mapped schema as:4

personalInfoF v personalInfoS

The representation of the field could not embedded into
the mapped schema, as the interpretation of the mapped
field OwnMobileF is ‘No’ which is not equivalent to the
interpretation ‘Yes’ ofOwnMobile of the mapped schema
personalInfoS . Therefore the data of this field is not con-
sistent with its corresponding element’s data, making the
form invalid or inconsistent for the user.

Embedding of forms

Given two formsA and B, form B can be embedded in
form A if

Mapped(f ormA)vMapped(f ormB)

One form can be embedded into another if the interpreta-
tion of Mapped(f ormB) is a subset of the interpretation
of Mapped(f ormA).

Assuming there is an enrollment task, which requires
the user to fill in two forms, A (application form for
joining a course) and B (application form for newslet-
ter that is relevant to that course). Form A requirea
applicant personal details such as name, residential and
company address while Form B requirea applicant name
only. Both form A and B have some identical fields
namely<firstName>, <middleName> and<lastName>
as shown below:

Partial Knowledge Base of Form A

namev ∃child-title.title

u∃child-firstName.firstName

u∃child-middleName.middleName

u∃child-lastName.lastName

titlev {Mr,Mrs,Ms,Dr}
firstNamev string

middleNamev string
lastNamev string

Knowledge Base of Form B

namev ∃child-firstName.firstName

u∃child-middleName.middleName

u∃child-lastName.lastName

firstNamev string
middleNamev string

lastNamev string

Based onembedding of formsdefinition, we have to check
whether formB can be embedded in formA, namely

nameA v nameB

wherenameB is form B andnameA is form A. The com-
plex conceptname in formAcontains elementsfirstName,
middleName and lastName. The interpretation of these

4F is used to refer the map of the fields in the form whileS denotes the map of
the schema of the form.

elements is identical to the interpretation of form B’s el-
ements because both identical element’s value is equiva-
lent. The identical fields in form B can be embedded into
the mapped schema of Form A. Form B is therefore em-
beddable into form A thus reducing the number of forms
for the user to fill.

Form fillability:

Once the schema and the binding elements of the form
have been mapped into the knowledge base, the interpre-
tation of domain of the embedded binding element and
schema’s element is checked for emptiness as shown be-
low:

Mapped(binding)uMapped(schema)v⊥

The data of the field is relevant to the semantic of the form
if the embedded binding element and schema’s element
has a non-empty interpretation.

In the Knowledge Base

personalInfov ∃child-name.name

u∃child-dob.dob

u∃child-homeAddress.homeAddress

u∀child-timeHAddr.timeHAddr

u∃child-ownMobile.ownMobile

u¬ownMobile:{Y}

there is a elementownMobile contained in complex
conceptpersonalInfo, where the user chosen ‘No’ as the
value ofownMobile. Although the user choosen ‘No’ for
the value ofownMobile, in the form there is another field
corresponding tomobileNumber, where the user has to in-
put his mobile phone number. Since the user does not own
a mobile phone, the field would be empty, namelly:

mobileNumberF = /0

According to the definition ofform fillability, the inter-
pretation of domain of the fieldmobileNumber and the
conceptpersonalInfo is checked for emptiness as:

personalInfoF upersonalInfoS v⊥

personalInfoS does not contain the element
mobileNumber and therefore the domain of the
personalInfoS would not contain any interpretation
of mobileNumber. This implies that the interpreta-
tion of personalInfoS is empty. The conjunction of
mobileNumberF with personalInfoS would resulted in a
empty (inconsistent) interpretation. This causes the field
corresponding tomobileNumber to be not relevant to the
semantics of the form, in turn making the form not fillable
or invalid to the user.

Integration of forms with ontologies:

Once the schema and the binding elements of the form
have been mapped into the knowledge base, the embed-
ded binding elements and schema’s elements are verified
against a predefined ontology, provided eventually by an
ontology server. Then the interpretation of domain of
the embedded binding element and schema’s element are
checked for emptiness and embedding; that is:

Mapped(ontology)uMapped(f orm)v⊥

and
Mapped(ontology)vMapped(f orm)

The form contains the essential and relevant fields if the
embedded binding element and schema’s element is ad-
mitted by the knowledge base and has a nonempty inter-
pretation. The concept of integration of forms is the com-
bination of form fillability and consistency of forms. Due
to the page constraint, the reader is advised to imagine the
examples used by form fillability and consistency to un-
derstand the concept of integration of forms.

6 Conclusions

The main contribution of the paper is the development of
a framework to reason about XForms document based on
ALCOQ I . We have demonstrated the process of captur-
ing the semantics of the XForms documents and mapping
it to knowledge bases in Description Logic. Thereafter
reasoning tasks are applied to the knowledge base of the
document to verify the validity and logical design of the
forms. In addition, we argued that theALCOQ I is ex-
pressively enough for this specific task.

There are several research directions that are worth
pursuing. In this paper, we relied onALCOQ I to rep-
resent and reason about forms, other logics such as First
Order Logic (FOL) and Propositional modal logics are not
taken into consideration. As such, the first research area
is using other logics to represent and reason about forms.
Comparsion can be made in terms of expressiveness and
complexity to determine which is the most appropriate
logic to represent and reason about form.The second re-
search area is further aspects of the XPath and binding
element could be captured in order to present other prop-
erties of the XForms document such as calculate and con-
straint property. This will challenge the expressive power
of ALCOQ I as whether the logic is capable of represent-
ing other properties of XForms documents.

The third research area is exploring the generation of
web forms with respect to the integration of ontologies
[11]. As mentioned in the introduction, schemas can be
viewed as ontologies therefore it is possible to generated
forms based on the ontologies [7, 5, 8]. The main issue is
to study whether the generated forms are consistent with
respect to the ontologies, indeed the a form may inter-
operate with several ontologies thus we have to study how
to integrate ontologies to produce a global ontology for
the form.

Finally as discussed in the introduction, the proposed
reasoning framework could be implemented into the ex-
isting DL system such as FaCT system to reason about
XForms document with respect to the requirements of the
users and applications. Depending on the reuirement of
the system using the framework the validation of forms
can be carried out either online or offline.

References

[1] Novell xforms strategy. Technical report, Novell
XForms Technology Preview, 2003.

[2] Franz Baader, Diego Calvanese, Deborah
McGuinnes, Daniele Nardi, and Peter Patel-
Schneider, editors.The Description Logics Hand-
book. Cambridge University Press, Cambridge,
2003.

[3] Franz Baader and Werner Nutt. Basic description
logics. In Baader et al. [2], chapter 2, pages 43–95.

[4] Alex Borgida and Ronald J. Brachman. Conceptual
modelling with description logics. In Baader et al.
[2], chapter 10, pages 349–372.

[5] Diego Calvanese, Giuseppe De Giacomo, and Mau-
rizio Lenzerini. Information integration: Conceptual
modelling and reasoning ssupport. InCoopIS’98,
pages 280–291, 1998.

[6] Diego Calvanese, Giuseppe De Giacomo, and Maur-
izio Lenzerini. Representing and reasoning on XML
documents: A description logic approach.Journal
of Logic and Computation, 9(3):295–318, 1999.

[7] Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, Daniele Nardi, and Riccardo Rosati. De-
scription logic framework for information integra-
tion. In 6th International Conference on Princi-
ples of Knowledge Representation and Reasoning
(KR’98, pages 2–13, 1998.

[8] Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, Daniele Nardi, and Riccardo Rosati. Data
integration in data warehousing.International Jour-
nal of Cooperative Information Systems, 10(3):237–
271, 2001.

[9] Diego Calvanese, Maurizio Lenzerini, and Daniele
Nardi. Description logic for conceptual data model-
ing. In Jan Chomicki and Gunter Saake, editors,Log-
ics for Databases and Information Systems, chap-
ter 8, pages 229–263. Kluwer, Norwell, MA, 1998.

[10] W3C Consortium.XForms. W3C Consortium, Au-
gust 2003.

[11] Marlon Dumas, Lachlan Aldred, Mitra Heravizadeh,
and Arthur H.M. ter Hofstede. Ontology markup for
web forms generation. InWorkshop on Real World
RDF and Semantic Web Applications, May 2002.

[12] Ian Horrocks. Using an expressive description logic:
FaCT of fiction. InProceeding 6th International
Conference on Principles of Knowledge Represen-
tation (KR’98, pages 636–647. Morgan Kaufmann,
1998.

[13] Joel Rivera and Len Taing. Get ready for xforms.
Technical report, IBM, September 2002.

[14] Sebastin Schnitzenbaumer.XForms: The next gen-
eration of Web technology. Software AG - The XML
Company.

