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Abstract. Defeasible logic is an efficient non-monotonic logic that It will prove useful in the intended applications of DL mentioned

is defined only proof-theoretically. It has potential application in above, where arguments are a natural feature of the problem domain.
some legal domains. We present here an argumentation semantics forThis paper is structured as follows. In the next section we provide
defeasible logic that will be useful in these applications. Our devel-a brief introduction to DL. In this short paper there is no room for
opment differs at several points from existing argumentation framefull details; for those we refer the reader to [17]. We then provide our
works since there are several features of defeasible logic that hawsgumentation-theoretic semantics for DL in Section 3. We conclude
not been addressed in the literature. with a discussion of related work.

1 Introduction 2 Overview of Defeasible Logic

We begin by presenting the basic ingredients of DL. A defeasible
Defeasible logic (DL) is a practical non-monotonic logic. This logic, theory contains five different kinds of knowledge: facts, strict rules,
and similar logics, have been proposed as the appropriate languagefeasible rules, defeaters, and a superiority relation. We consider
for executable regulations [4], contracts [22], and business rules [13hnly essentially propositional rules. Rules containing free variables
There are several implementations of DL, each of which is capablére interpreted as the set of their variable-free instances.
of handling 100,000’s of rules [5]. Facts are indisputable statements, for example, “Tweety is an

Although DL can be described informally in terms of arguments,emu”. In the logic, this might be expressedemsy(tweety.

the logic has been formalized in a proof-theoretic setting in which ar- - Strict rulesare rules in the classical sense: whenever the premises
guments play no role. In this paper we will provide an argumentationare indisputable (e.g. facts) then so is the conclusion. An example of

theoretic semantics for DL. a strict rule is “Emus are birds”. Written formally:
There are already several different abstract argumentation frame- )
works [10, 8, 15, 20, 23, 24]. However, DL provides several chal- emyX) — bird (X).

Iengl;esDtLhz;t havcf dr)ot ylet been.adﬁressed k?y th.|s vr\:ork: - Defeasible rulesre rules that can be defeated by contrary evidence.
(1) as a "directly scgptlc_a semantics, in t € sense o oY An example of such a rule is “Birds typically fly”; written formally:
[14], also called “conservative” in Wagner’s classification [25]. Most

argumentation-theoretic approaches provide sceptical semantics as bird (X) = flies(X).

the common part of credulous semantics, and so do not address this ) ) o )

sort of scepticism. (2) DL provides three different kinds of rule, in- 1he idea is that if we know that something is a bird, then we may
cluding a rule that cannot support an argument, only defeat one. Mo&onclude that it fliesynless there is other evidence suggesting that it
argumentation-theoretic works have addressed a single kind of ruléhay not fly .

(3) In DL, positive conclusions (that a proposition can be proved) D_efeatersare_ rules that cannot be used _to draw any conclusions.
are not the only consideration; negative conclusions (that a propol heir only use is to prevent some conclusions. In other words, they
sition cannot be proved) are of equal significance. (4) DL exhibitsa"® used to defeat some defeasible rules by producing evidence to the
“team defeat” [12], in which one collection of arguments may defeatcontrary. An example is “If an animal is heavy then it might not be
another, although no single argument defeats every argument in tifPle to fly”. Formally:

other collection. _ o _ heavyX) ~ ~flies(X).

Technically, the main modifications we make to conventional
argumentation-theoretic frameworks are: the explicit introduction ofThe main point is that the information that an animal is heavy is not
infinite arguments, the treatment of teams of arguments, rather thasufficient evidence to conclude that it doesn't fly. It is only evidence
considering each argument only individually, and an iterative defini-that the animaiaynot be able to fly. In other words, we don’t wish
tion of rejected arguments. to conclude-fliesif heavy we simply want to prevent a conclusion

In addition to innovations we make in argument theory, the re-flies.
sulting argumentation-theoretic semantics will be advantageous for The superiority relationamong rules is used to define priorities
DL. The logic currently has no model theory, and the proof theoryamong rules, that is, where one rule may override the conclusion of
is clumsy. The semantics we provide is considerably more eleganainother rule. For example, given the defeasible rules
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which contradict one another, no conclusive decision can be made Thus each attack on the conclusipmust be counterattacked by
about whether a bird with a broken wing can fly. But if we introduce a stronger rule. In other wordsand the rule$ form a team (forq)
a superiority relation> with r’ > r, then we can indeed conclude that that defeats the rules
the bird cannot fly. The superiority relation is required to be acyclic.
It turns out that we only need to define the superiority relation over3
rules with contradictory conclusions.

It is not possible in this short paper to give a complete formalArumentation systems usually contain the following basic elements:
description of the logic. However, we hope to give enough informa-an underlying logical language, and the definitions of: argument,
tion about the logic to make the discussion intelligible. We refer theconflict between arguments, and the status of arguments. The latter

Argumentation for Defeasible Logic

reader to [19, 7, 17] for more thorough treatments.

A rule r consists of itaantecedenfor body) A(r) which is a finite
set of literals, an arrow, and itonsequentor head C(r) which is
a literal. Given a seR of rules, we denote the set of all strict rules
in R by Rg, the set of strict and defeasible rulesRrby Rgq, the set
of defeasible rules iR by Ry, and the set of defeaters by Ry ¢;.
R[q] denotes the set of rules Rwith consequend. If g is a literal,
~(q denotes the complementary literal §ifs a positive literalp then
~(qis —p; and ifqis —p, then~qis p).

A defeasible theory [s a triple(F, R, >) whereF is a finite set of
facts,R a finite set of rules, and a superiority relation oR.

A conclusionof D is a tagged literal and can have one of the fol-
lowing four forms:

—+Aqg, which is intended to mean thqts definitely provable irD
(i.e., using only facts and strict rules).

—Aq, which is intended to mean that we have proved thiatnot
definitely provable irD.

+dq, which is intended to mean thais defeasibly provable iB.
—ag which is intended to mean that we have proved thatnot
defeasibly provable iD.

Provability is based on the concept oflarivation (or proof) in
D = (F,R,>). Aderivation is a finite sequenée= (P(1),...P(n)) of
tagged literals satisfying four conditions (which correspond to infer-

elements are often used to define a consequence relation. In what fol-
lows we present an argumentation system containing the above ele-
ments in a way appropriate for DL. Obviously, the underlying logical
language we use is the language of DL; however, we consider facts
to be strict rules with empty bodies.

Arguments are often defined to be either proof trees or monotonic
derivations in the underlying logic. However, DL requires a more re-
fined definition: as we have seen in the previous section, rules form
teams to support conclusions. Thus we extend the simpler notion of
argument and we allow arguments to be sets of proof trees (see ex-
ample 2 for a more detailed explanation). DL also requires a more
general notion of proof tree that admits infinite trees, so that the dis-
tinction is kept between an unrefuted, but infinite, chain of reasoning
and a refuted chain.

A proof treefor a literal p based on a set of ruld® is a (possi-
bly infinite) tree with nodes labelled by literals such that the root is
labelled byp and for every nodé:

e If by,..., by label the children oh then there is a ground instance
of a rule inRwith bodyb;, ..., b, and headh.

e If, in addition, h is not the root of the tree then the rule must be a
strict or defeasible rule.

The arcs in a proof tree is labelled by the rules used to obtain them.
If the rule at the root of a proof tree is strict or defeasible and

ence rules for each of the four kinds of conclusion). Here we brieflythe proof tree is finite we say it issupportive proof treelf all the

state the condition for positive defeasible conclusions [P{1(i)
denotes the initial part of the sequeriRef lengthi):

+0: If P(i + 1) = +0q then either
(1) +Ag e P(1..i) or
(2) (2.1)3r e Ryy[q]Vac A(r) : +0a € P(1..i) and
(2.2)-A~qeP(1..i) and
(2.3)Vse R[~(q] either
(2.3.1)Jac A(s) : —0ae P(L..i) or
(2.3.2)3t € Ryq[q] such that
Vae A(t) : +0ac P(1..i) andt > s

Let us work through this condition. To show tleails provable de-
feasibly we have two choices: (1) We show thé already definitely
provable; or (2) we need to argue using the defeasible peit ad
well. In particular, we require that there must be a strict or defeasibl
rule with headywhich can be applied (2.1). But now we need to con-
sider possible “attacks”, that is, reasoning chains in suppost qf
To be more specific: to provg defeasibly we must show that g

is not definitely provable (2.2). Also (2.3) we must consider the set
e

of all rules which are not known to be inapplicable and which hav

head~ q (note that here we consider defeaters, too, whereas the

could not be used to support the conclusipthis is in line with the
motivation of defeaters given earlier). Essentially each suclsratle
tacks the conclusioq. Forqto be provable, each such ridenust be
counterattacked by a rulevith headq with the following properties:
(i) t must be applicable at this point, and (iijnust be stronger than

e

rules in a proof tree are strict then we say that it gréct proof tree
As we shall see shortly, proof trees are only indirectly related to DL
derivations.

An argumentfor a literal p is a set of proof trees fgpo. We write
r € A to denote that rule is used in a proof tree in argumeft A
(proper) subargumentf an argumenA is a subtree of a proof tree
in A. We say that an argumeatis finite if every proof tree inA is
finite. An argumentA is strict if every proof tree inA is strict. If
an argument is not strict it idefeasible An argumentA for p is a
supportive argumerif every proof tree fomp in it is supportive.

DL has three kinds of rules and only two of them can be used
to support the derivation of a conclusion. Defeaters can only block
derivations. Intuitively a supportive argument is an argument from
which a conclusion can be drawn, but if we changed its definition,
replacing “every” with “some”, then we would have the following
Scenario: lefA andB be, respectively, the argumerts, : = p,ra:
~> p} and{r3: = —p} wherer; <rz andrs < rp. A would be a
supportive argument, and its conclusiqmn derivable, but DL is not
able to derivet-ap.

An argument is based on an ordered thedy<) if every rule in
he argument is a ground instance of a rul&irClearly, a defeasi-
Ble theory(F, R, <) can be considered an ordered the@fyUR, <).
Argsp is the set of arguments based on the ordered theory

At this stage we can characterize the definite conclusions of DL in
argumentation-theoretic terms.

tl



Proposition 1 Let P be a defeasible theory and p be a literal.

e P +Apiff there is a strict supportive argument for p in Aggs
e P+ —Ap iff there is no (finite or infinite) strict argument for p in
Args

This characterization is straightforward, since strict rules are th
monotonic subset of DL. Characterizing defeasible provability re-
quires more definitions.

An argumentA attacksan argumenB if a conclusion ofA is the
complement of a conclusion &t

An argumentA defeatsa defeasible argumeBtat q if there exists
ra € Aandrg € B with conclusions- g andg, respectively, such that
ra £ re. A set of argumentSdefeats a defeasible argum&it there
is A € Sthat defeat$.

Example 1 Let D be a defeasible theory containing the rules

a =p
p =q

b =-p

rs:
rgq:

ri:
ro:

the factsa, b, and the superiority relation ig < ro. We consider the
arguments

A a = p = ¢

B: b = —-p = -q
A defeatsB both at—p, because 4 < rp, and at—q, because there

is no superiority relation between andrs. B defeatsA at p for the
same reasoA defeats at—p. a

An argumentA team defeata defeasible argumeBtatq if for every
rg € B with conclusiong there exists a supportive rutg € A with
conclusion~qsuch thatg < ra.

Example 2 Let D be a defeasible theory containing the rules

ap
a

by
b

=P
=p

=-p
= -p

ra:
rg:

ri:
ro:

the factsag, ap, by, by, and the superiority relation ig < ry, rg <
ro. Consider the argument,
a1 -

P

a
containing two proof trees\p team defeats:

e the argumenB; : by = —psincerz <ry;
e the argumenB; : by = —psincery < ry;

by
e the argumenBs : N —psincerz < rp andrg < ro.
by O

Example 3 Some explanation is due to justify the exclusion of ar-

SinceA contains a defeater, it cannot team defeat the arguBweoit

the previous example. Let us compare this situation with the defini-
tion of +4. r, cannot be used to deriye it is a defeater. On the other
handr1 could be used to deriveif there is no applicable rule fofip.

But, in this case, we havwg andr4, and, wherry is applicable, we
have a conflict between andr4. However,p could be reinstated if

fhere is an applicable supportive rule stronger tha(2.3.2), but in

this case the only rule stronger thanis the defeater,, and sop
cannot be concluded from andr». a

An argumentA is supporteddy a set of argumentSif every conclu-
sion inAis also the conclusion of a supportive argumert.in

In an ordered theor®, let strong>(S) be the set of arguments of
P, all of whose proper subarguments are supporte8. §ybviously
SC strong:(S). Also note that, ifA;, Ay € strong>(S) are arguments
for a literal g, thenAy U Ay € strong>(S). Thus there is a maximal
argument forg in strong-(S), which we denote bynaxq,S). A de-
feasible argumen is undercutby a set of argumentSif there is a
literal g such thastrong>(S) defeats a proper subargumentcétq,
andA does not team defeatax—q,S) at—q.

Example 4 We consider again the defeasible the@npf example
1. LetS= {a,b} be a set of arguments. The argument

A: a=p=¢q

is undercut byS since the argumerB : b = —p is in strong(S)
and it is the maximal argument ferp. MoreoverB defeats a proper
subargument oA at p, but it is not team defeated Wyat p. ad

That an argumen is undercut byS means that we can show that
some premises & cannot be proved if we accept the arguments in
S, the next example explains the reason for the use of team defeat in
the definition of undercut.

Example 5 Let D’ be the defeasible theory obtained from the de-
feasible theory of example 2 by adding the ryle=- g. And let
S={ay,ap,by, by} be a set of arguments. LA be the argument

" p=4q

ap =
Notice that each of the argumerg, B,, andB3 of example 2 de-
featsA at p, but A is not undercut bys at p since the argumeri
team defeats thmax—p,S) in strongy (S). Heremax—p,S) is the
argumenBgz of example 2. Thus team defeat in the definition of un-
dercut is necessary to be consistent with the use of team defeat at the
top level of arguments. |

It is worth noting that the above definitions concern only defeasi-
ble arguments; for strict arguments we stipulate that they cannot be

guments ending with a defeaters from the notion of team defeat (seghdercut or defeated. ,
also the comment about supportive arguments above). First of all one An argumentA for pis acceptablew.r.t a set of argumentif
of the main aims of such a notion is to help establishing conclusive_L Ais strict. or

arguments (that is, arguments that can be used to draw positive co
clusions). Let us consider a defeasible theDfyobtained from the
defeasible theory of example 2 by replacing the mgldy the de-
featerrs : ap ~ p. Let A be the argument

a
1
p

N
a

%a every proper subargument Afis supported bys, and
2b every argument attacking is either undercut by or team de-
feated byA.

Let P be an ordered theory. We defid@ as follows.

P_
. J% =0
o J, ={acArgs | ais acceptable w.r.if }



The set ofjustified argumentin an ordered theory is JArgs® =  Eventually, bothAy andB; will be rejected, since neither can team
U ,JP. A literal p is justifiedif it is the conclusion of a supportive defeat the other, but this cannot be done until the status_gfis

argument in]ArgP determined. As noted above, this dependBion. Thus the situation
incorporates some sequentiality, wh&e1 must be resolved before
Theorem 2 Let P be a defeasible theory. Let p be a literal. resolvingB;, and this suggests that a characterizatioRAfgs’ must
P+ +0p iff p is justified. be iterative, even after all the justified literals have been identified.

This theorem provides a characterization of positive defeasible e conclude this section with examples demonstrating how two
conclusions in DL by means of justified arguments. traditionally problematic features of argumentation are handled by

our semantics.

. , o
Example 6 Given the theory'” of example 5J = {a1, 2, by, ba}, Example 8 (Self-defeating arguments) In this example we show

and the argumenty, of example 2 is ind;’, since it is acceptable how our framework deals with the so called self-defeating arguments.

D' i i . ; : o
w.rt. Jp': every proper subargument is supported, and the attackingonsider the defeasible theory with no facts, an empty superiority re-
arguments are team defeated. At this point it is immediate to see tha{tion and the following rules:

the argumenty of example 5 is i)', MoreoverJArggy = J9'. O
true=p p=-p
That an argumen is justified means that it resists every reason-
able refutation. However, DL is more expressive since itis able to sa
when a conclusion is demonstrably non provabl@)( Briefly, that
a conclusion is demonstrably non provable means that every possi- A true = p
ble conclusive argument has been refuted. In the following we show Ay: true = p = -p

how to capture this notion in our argumentation system by assignin . . . . Lo
the status rejected to arguments that are refuted. Roughly speakin%,erep‘z is a self-defeating argument. Since the superiority relation is

an argument is rejected if it has a rejected subargument or it cann&t"PY there_ ispnq team defe_dtl, althoug_h supported by, i_s nc_)t
overcome an attack from a justified argument. acceptable i)y since there is an attacking argumefg, which is

An argumentA is rejectedby sets of argumenSandT when not undercut by]OP: no proper subargument @b is defeated by an
argument supported b}@’ For the same reasad¥% is not acceptable

his defeasible theory produces the following conclusiomp. The
rguments that can be built from the theory are:

1 Ais not strict, and either in J§. Consequently} = J§, and therefordArge is empty. Further-
2a a proper subargument #&fis in S, or more, A, € RArd’. The reason why; is rejected is the following:
2b there exists an argumeBtattackingA, such thatB is supported  althoughA, is not justified, it is supported byArgs”, and so it can
by T, andA does not team defe8t be used to stop the validity of another argument, since we have no
means of deciding which one is to be preferred. On the other hand,
We defineRP as follows. A; cannot be rejected since the argument attackingpit is not sup-
o« RP—0 ported byJArgs’: as we have already semie = pis not a justified
RB argument. O

e R"; ={acArgs | ais rejected byR” andJArgs’}
Example 9 (Circular arguments) Here we examine circular argu-
ments. Very often circular arguments are not considered to be true
arguments since they represent a very well known fallacy, and they
are excluded from the set of arguments using syntactical definitions.
Briefly an argument is circular if a conclusion depends on itself as a
premise.

In our approach, circular arguments correspond to infinite argu-
Example 7 The following DL theory illustrates whiRArg® needs ments, and they are not justified. At the same time, however, they are

to be constructed iteratively, even after all the justified literals have'°t automatically rejected. Moreover, such an argument can be used
been identified. to attack (and defeat) other arguments.

There are the following rules, for=1,...,n: ru||;§t us first consider the defeasible thedy consisting of the
true = by aj = b pP=q q=p

b1 = & true = - It is immediate to see that the only possible arguments here are the
infinite arguments

The set ofrejected argumenti an ordered theor is RArgs =
ui‘”:lRiP. A literal p is rejectedif there is no argument iMrgs —
RArgd’ that ends with a supportive rule fpr

Theorem 3 Let P be a defeasible theory. Let p be a literal.
P+ —opiff p is rejected.

and the facbp. The superiority relation is empty.
This  theory produces the following conclusions: AL ... p = dqg = p = (¢
—0aj, —0—aj, +0bj, —9-bj, fori =0,...,n. A, ... g = p =g = p

The arguments defined by this theory are, for éach They are not justified since no proper subargument is justified, and

A true = —a they are not rejected since no proper subargument is rejected and
Bi: true = b = a = b there is no argument attacking them.
The meaning of the theory at hand is thap then normallyg, and
and their subarguments. Notice that if gthen normallyp. Thus this amounts to say that normatiyandq

. are equivalent. We add @ the following rules:
e each argumen; is attacked byB; ata.

e each argumerB; is attacked by;_; atb;_;. q=r true = —r



obtaining the defeasible theoBs». In this scenario each argument REFERENCES

for r is infinite, circular, and rejected since there is a supported argu-

ment for—r. However, the argumemts : true = —r is not justified,

since each argument forattacks it and is not undercut (no argument

attacks a proper subargument of an argument)tor [2]
Finally D3 is obtained fromD, by adding the rulgrue = —p.

Now Az becomes justified since, trivially, the argumégt true=- p

is supported by]%, Ag attacksAy, and therefore each argument for |3

r is undercut. |

(1]

4
4 Related Works a
[16] proposes an abstract defeasible reasoning framework that ig5]
achieved by mapping elements of defeasible reasoning into the de-
fault reasoning framework of [8]. While this framework is suitable 5
for developing new defeasible reasoning languages, it is not appro-[ ]
priate for characterizing DL because:

e [16, 8] do not address direct scepticism. 7

e [8] does not address Kunen’s semantics of logic programs which[8]
provides a characterization of failure-to-prove in DL [18].

e The correctness of the mapping needs to be established if [16] i 9]
to be applied to an existing language like DL. In fact the repre-
sentation of priorities is inappropriate for DL, although results of[10]
[3, 1] might be adapted to remedy this point.

The abstract argumentation framework of [24] addresses both stri€tl]
and defeasible rules, but not defeaters. However, the treatment of
strict rules in defeasible arguments is different from that of DL, andj1)
there is no concept of team defeat. There are structural similarities
between the definitions of inductive warrant and warrant in [24] and
Jip andJArgs, but they differ in that acceptability is monotonic in
Swhereas the corresponding definitions in [24] are antitone. The se-
mantics that results is not sceptical, and more related to stable se-
mantics than Kunen semantics. The framework does have a notion {§f4]
ultimately defeated argumesimilar to our rejected arguments, but
the definition is not iterative, possibly because the framework does
not have a directly sceptical semantics. [15]
Prakken and Sartor [21, 20], motivated by legal reasoning, have
proposed an argumentation system that combines the language of €46l
tended logic programming with a well-founded semantics. The use 57]
this semantics makes Prakken and Sartor's system not directly scep-
tical. Itis worth noting that our definition of defeat is the same as that
of rebut in [21, 20], but the systems differ on the notion of accept{18]
ability of arguments. Moreover, Prakken and Sartor do not address
the question of teams of rules. [19]
On the other hand Simari and Loui’s system [23] deals with teams
of arguments/rules but it is characterized by Dung’s grounded se-
mantics, which corresponds to an ambiguity propagating variant d20]
DL (see [2, 11)). 21]
Among other contributions, [9] provides a sceptical argumenta-
tion theoretic semantics and shows that LPWNF — which is weaker,
but very similar to DL [6] — is sound with respect to this semantics.[22]
However, both LPWNF and DL are not complete with respect to this
semantics.

(23]
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