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Abstract. Defeasible logic is an efficient non-monotonic logic that
is defined only proof-theoretically. It has potential application in
some legal domains. We present here an argumentation semantics for
defeasible logic that will be useful in these applications. Our devel-
opment differs at several points from existing argumentation frame-
works since there are several features of defeasible logic that have
not been addressed in the literature.

1 Introduction

Defeasible logic (DL) is a practical non-monotonic logic. This logic,
and similar logics, have been proposed as the appropriate language
for executable regulations [4], contracts [22], and business rules [13].
There are several implementations of DL, each of which is capable
of handling 100,000’s of rules [5].

Although DL can be described informally in terms of arguments,
the logic has been formalized in a proof-theoretic setting in which ar-
guments play no role. In this paper we will provide an argumentation-
theoretic semantics for DL.

There are already several different abstract argumentation frame-
works [10, 8, 15, 20, 23, 24]. However, DL provides several chal-
lenges that have not yet been addressed by this work:

(1) DL has a “directly sceptical” semantics, in the sense of Horty
[14], also called “conservative” in Wagner’s classification [25]. Most
argumentation-theoretic approaches provide sceptical semantics as
the common part of credulous semantics, and so do not address this
sort of scepticism. (2) DL provides three different kinds of rule, in-
cluding a rule that cannot support an argument, only defeat one. Most
argumentation-theoretic works have addressed a single kind of rule.
(3) In DL, positive conclusions (that a proposition can be proved)
are not the only consideration; negative conclusions (that a propo-
sition cannot be proved) are of equal significance. (4) DL exhibits
“team defeat” [12], in which one collection of arguments may defeat
another, although no single argument defeats every argument in the
other collection.

Technically, the main modifications we make to conventional
argumentation-theoretic frameworks are: the explicit introduction of
infinite arguments, the treatment of teams of arguments, rather than
considering each argument only individually, and an iterative defini-
tion of rejected arguments.

In addition to innovations we make in argument theory, the re-
sulting argumentation-theoretic semantics will be advantageous for
DL. The logic currently has no model theory, and the proof theory
is clumsy. The semantics we provide is considerably more elegant.
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It will prove useful in the intended applications of DL mentioned
above, where arguments are a natural feature of the problem domain.

This paper is structured as follows. In the next section we provide
a brief introduction to DL. In this short paper there is no room for
full details; for those we refer the reader to [17]. We then provide our
argumentation-theoretic semantics for DL in Section 3. We conclude
with a discussion of related work.

2 Overview of Defeasible Logic

We begin by presenting the basic ingredients of DL. A defeasible
theory contains five different kinds of knowledge: facts, strict rules,
defeasible rules, defeaters, and a superiority relation. We consider
only essentially propositional rules. Rules containing free variables
are interpreted as the set of their variable-free instances.

Facts are indisputable statements, for example, “Tweety is an
emu”. In the logic, this might be expressed asemu(tweety).

Strict rulesare rules in the classical sense: whenever the premises
are indisputable (e.g. facts) then so is the conclusion. An example of
a strict rule is “Emus are birds”. Written formally:

emu(X)→ bird(X).

Defeasible rulesare rules that can be defeated by contrary evidence.
An example of such a rule is “Birds typically fly”; written formally:

bird(X)⇒ f lies(X).

The idea is that if we know that something is a bird, then we may
conclude that it flies,unless there is other evidence suggesting that it
may not fly.

Defeatersare rules that cannot be used to draw any conclusions.
Their only use is to prevent some conclusions. In other words, they
are used to defeat some defeasible rules by producing evidence to the
contrary. An example is “If an animal is heavy then it might not be
able to fly”. Formally:

heavy(X) ; ¬ f lies(X).

The main point is that the information that an animal is heavy is not
sufficient evidence to conclude that it doesn’t fly. It is only evidence
that the animalmaynot be able to fly. In other words, we don’t wish
to conclude¬ f lies if heavy, we simply want to prevent a conclusion
f lies.

The superiority relationamong rules is used to define priorities
among rules, that is, where one rule may override the conclusion of
another rule. For example, given the defeasible rules

r : bird ⇒ f lies
r ′ : brokenWing ⇒¬ f lies
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which contradict one another, no conclusive decision can be made
about whether a bird with a broken wing can fly. But if we introduce
a superiority relation> with r ′ > r, then we can indeed conclude that
the bird cannot fly. The superiority relation is required to be acyclic.
It turns out that we only need to define the superiority relation over
rules with contradictory conclusions.

It is not possible in this short paper to give a complete formal
description of the logic. However, we hope to give enough informa-
tion about the logic to make the discussion intelligible. We refer the
reader to [19, 7, 17] for more thorough treatments.

A rule r consists of itsantecedent(or body) A(r) which is a finite
set of literals, an arrow, and itsconsequent(or head) C(r) which is
a literal. Given a setR of rules, we denote the set of all strict rules
in R by Rs, the set of strict and defeasible rules inR by Rsd, the set
of defeasible rules inR by Rd, and the set of defeaters inR by Rd f t.
R[q] denotes the set of rules inR with consequentq. If q is a literal,
∼q denotes the complementary literal (ifq is a positive literalp then
∼q is¬p; and ifq is¬p, then∼q is p).

A defeasible theory Dis a triple(F,R,>) whereF is a finite set of
facts,Ra finite set of rules, and> a superiority relation onR.

A conclusionof D is a tagged literal and can have one of the fol-
lowing four forms:

+∆q, which is intended to mean thatq is definitely provable inD
(i.e., using only facts and strict rules).
−∆q, which is intended to mean that we have proved thatq is not
definitely provable inD.
+∂q, which is intended to mean thatq is defeasibly provable inD.
−∂q which is intended to mean that we have proved thatq is not
defeasibly provable inD.

Provability is based on the concept of aderivation (or proof) in
D = (F,R,>). A derivation is a finite sequenceP= (P(1), . . .P(n)) of
tagged literals satisfying four conditions (which correspond to infer-
ence rules for each of the four kinds of conclusion). Here we briefly
state the condition for positive defeasible conclusions [7]. (P(1..i)
denotes the initial part of the sequenceP of lengthi):

+∂: If P(i +1) = +∂q then either
(1) +∆q∈ P(1..i) or
(2) (2.1)∃r ∈ Rsd[q]∀a∈ A(r) : +∂a∈ P(1..i) and

(2.2)−∆ ∼q∈ P(1..i) and
(2.3)∀s∈ R[∼q] either

(2.3.1)∃a∈ A(s) :−∂a∈ P(1..i) or
(2.3.2)∃t ∈ Rsd[q] such that

∀a∈ A(t) : +∂a∈ P(1..i) andt > s

Let us work through this condition. To show thatq is provable de-
feasibly we have two choices: (1) We show thatq is already definitely
provable; or (2) we need to argue using the defeasible part ofD as
well. In particular, we require that there must be a strict or defeasible
rule with headq which can be applied (2.1). But now we need to con-
sider possible “attacks”, that is, reasoning chains in support of∼q.
To be more specific: to proveq defeasibly we must show that∼q
is not definitely provable (2.2). Also (2.3) we must consider the set
of all rules which are not known to be inapplicable and which have
head∼ q (note that here we consider defeaters, too, whereas they
could not be used to support the conclusionq; this is in line with the
motivation of defeaters given earlier). Essentially each such rulesat-
tacks the conclusionq. Forq to be provable, each such rulesmust be
counterattacked by a rulet with headq with the following properties:
(i) t must be applicable at this point, and (ii)t must be stronger than

s. Thus each attack on the conclusionq must be counterattacked by
a stronger rule. In other words,r and the rulest form a team (forq)
that defeats the ruless.

3 Argumentation for Defeasible Logic

Arumentation systems usually contain the following basic elements:
an underlying logical language, and the definitions of: argument,
conflict between arguments, and the status of arguments. The latter
elements are often used to define a consequence relation. In what fol-
lows we present an argumentation system containing the above ele-
ments in a way appropriate for DL. Obviously, the underlying logical
language we use is the language of DL; however, we consider facts
to be strict rules with empty bodies.

Arguments are often defined to be either proof trees or monotonic
derivations in the underlying logic. However, DL requires a more re-
fined definition: as we have seen in the previous section, rules form
teams to support conclusions. Thus we extend the simpler notion of
argument and we allow arguments to be sets of proof trees (see ex-
ample 2 for a more detailed explanation). DL also requires a more
general notion of proof tree that admits infinite trees, so that the dis-
tinction is kept between an unrefuted, but infinite, chain of reasoning
and a refuted chain.

A proof treefor a literal p based on a set of rulesR is a (possi-
bly infinite) tree with nodes labelled by literals such that the root is
labelled byp and for every nodeh:

• If b1, . . . ,bn label the children ofh then there is a ground instance
of a rule inRwith bodyb1, . . . ,bn and headh.

• If, in addition,h is not the root of the tree then the rule must be a
strict or defeasible rule.

The arcs in a proof tree is labelled by the rules used to obtain them.
If the rule at the root of a proof tree is strict or defeasible and

the proof tree is finite we say it is asupportive proof tree. If all the
rules in a proof tree are strict then we say that it is astrict proof tree.
As we shall see shortly, proof trees are only indirectly related to DL
derivations.

An argumentfor a literal p is a set of proof trees forp. We write
r ∈ A to denote that ruler is used in a proof tree in argumentA. A
(proper) subargumentof an argumentA is a subtree of a proof tree
in A. We say that an argumentA is finite if every proof tree inA is
finite. An argumentA is strict if every proof tree inA is strict. If
an argument is not strict it isdefeasible. An argumentA for p is a
supportive argumentif every proof tree forp in it is supportive.

DL has three kinds of rules and only two of them can be used
to support the derivation of a conclusion. Defeaters can only block
derivations. Intuitively a supportive argument is an argument from
which a conclusion can be drawn, but if we changed its definition,
replacing “every” with “some”, then we would have the following
scenario: letA andB be, respectively, the arguments{r1 : ⇒ p, r2 :
; p} and{r3 : ⇒ ¬p} wherer1 < r3 and r3 < r2. A would be a
supportive argument, and its conclusion,p, derivable, but DL is not
able to derive+∂p.

An argument is based on an ordered theory(R,<) if every rule in
the argument is a ground instance of a rule inR. Clearly, a defeasi-
ble theory(F,R,<) can be considered an ordered theory(F ∪R,<).
ArgsP is the set of arguments based on the ordered theoryP.

At this stage we can characterize the definite conclusions of DL in
argumentation-theoretic terms.



Proposition 1 Let P be a defeasible theory and p be a literal.

• P`+∆p iff there is a strict supportive argument for p in ArgsP
• P` −∆p iff there is no (finite or infinite) strict argument for p in

ArgsP

This characterization is straightforward, since strict rules are the
monotonic subset of DL. Characterizing defeasible provability re-
quires more definitions.

An argumentA attacksan argumentB if a conclusion ofA is the
complement of a conclusion ofB.

An argumentA defeatsa defeasible argumentB atq if there exists
rA ∈ A andrB ∈ B with conclusions∼q andq, respectively, such that
rA 6< rB. A set of argumentsSdefeats a defeasible argumentB if there
is A∈ S that defeatsB.

Example 1 Let D be a defeasible theory containing the rules

r1 : a ⇒ p
r2 : p ⇒ q

r3 : b ⇒¬p
r4 : ¬p ⇒¬q

the factsa,b, and the superiority relation isr4 < r2. We consider the
arguments

A : a ⇒ p ⇒ q
B : b ⇒ ¬p ⇒ ¬q

A defeatsB both at¬p, becauser4 < r2, and at¬q, because there
is no superiority relation betweenr1 andr3. B defeatsA at p for the
same reasonA defeatsB at¬p. 2

An argumentA team defeatsa defeasible argumentB atq if for every
rB ∈ B with conclusionq there exists a supportive rulerA ∈ A with
conclusion∼q such thatrB < rA.

Example 2 Let D be a defeasible theory containing the rules

r1 : a1 ⇒ p
r2 : a2 ⇒ p

r3 : b1 ⇒¬p
r4 : b2 ⇒¬p

the factsa1, a2, b1, b2, and the superiority relation isr3 < r1, r4 <
r2. Consider the argumentAp

a1

a2

⇒
⇒ p

containing two proof trees.Ap team defeats:

• the argumentB1 : b1 ⇒¬p sincer3 < r1;
• the argumentB2 : b2 ⇒¬p sincer4 < r2;

• the argumentB3 :
b1

b2

⇒
⇒ ¬p sincer3 < r1 andr4 < r2.

2

Example 3 Some explanation is due to justify the exclusion of ar-
guments ending with a defeaters from the notion of team defeat (see
also the comment about supportive arguments above). First of all one
of the main aims of such a notion is to help establishing conclusive
arguments (that is, arguments that can be used to draw positive con-
clusions). Let us consider a defeasible theoryD′ obtained from the
defeasible theory of example 2 by replacing the ruler2 by the de-
featerr2 : a2 ; p. Let A be the argument

a1

a2

⇒
;

p

SinceA contains a defeater, it cannot team defeat the argumentB3 of
the previous example. Let us compare this situation with the defini-
tion of +∂. r2 cannot be used to derivep: it is a defeater. On the other
handr1 could be used to derivep if there is no applicable rule for¬p.
But, in this case, we haver3 andr4, and, whenr4 is applicable, we
have a conflict betweenr1 andr4. However,p could be reinstated if
there is an applicable supportive rule stronger thanr4 (2.3.2), but in
this case the only rule stronger thanr4 is the defeaterr2, and sop
cannot be concluded fromr1 andr2. 2

An argumentA is supportedby a set of argumentsS if every conclu-
sion inA is also the conclusion of a supportive argument inS.

In an ordered theoryP, let strongP(S) be the set of arguments of
P, all of whose proper subarguments are supported byS. Obviously
S⊆ strongP(S). Also note that, ifA1,A2 ∈ strongP(S) are arguments
for a literal q, thenA1∪A2 ∈ strongP(S). Thus there is a maximal
argument forq in strongP(S), which we denote bymax(q,S). A de-
feasible argumentA is undercutby a set of argumentsS if there is a
literal q such thatstrongP(S) defeats a proper subargument ofA atq,
andA does not team defeatmax(¬q,S) at¬q.

Example 4 We consider again the defeasible theoryD of example
1. LetS= {a,b} be a set of arguments. The argument

A : a⇒ p⇒ q

is undercut byS since the argumentB : b ⇒ ¬p is in strongD(S)
and it is the maximal argument for¬p. MoreoverB defeats a proper
subargument ofA at p, but it is not team defeated byA at p. 2

That an argumentA is undercut byS means that we can show that
some premises ofA cannot be proved if we accept the arguments in
S; the next example explains the reason for the use of team defeat in
the definition of undercut.

Example 5 Let D′ be the defeasible theory obtained from the de-
feasible theory of example 2 by adding the rulep ⇒ q. And let
S= {a1,a2,b1,b2} be a set of arguments. LetAq be the argument

a1

a2

⇒
⇒ p⇒ q

Notice that each of the argumentsB1, B2, andB3 of example 2 de-
featsA at p, but A is not undercut byS at p since the argumentA
team defeats themax(¬p,S) in strongD′(S). Heremax(¬p,S) is the
argumentB3 of example 2. Thus team defeat in the definition of un-
dercut is necessary to be consistent with the use of team defeat at the
top level of arguments. 2

It is worth noting that the above definitions concern only defeasi-
ble arguments; for strict arguments we stipulate that they cannot be
undercut or defeated.

An argumentA for p is acceptablew.r.t a set of argumentsS if

1 A is strict, or
2a every proper subargument ofA is supported byS, and
2b every argument attackingA is either undercut byS or team de-

feated byA.

Let P be an ordered theory. We defineJP
i as follows.

• JP
0 = /0

• JP
i+1 = {a∈ ArgsP | a is acceptable w.r.t.JP

i }



The set ofjustified argumentsin an ordered theoryP is JArgsP =
∪∞

i=1JP
i . A literal p is justified if it is the conclusion of a supportive

argument inJArgP

Theorem 2 Let P be a defeasible theory. Let p be a literal.
P`+∂p iff p is justified.

This theorem provides a characterization of positive defeasible
conclusions in DL by means of justified arguments.

Example 6 Given the theoryD′ of example 5,JD′

1 = {a1,a2,b1,b2},
and the argumentAp of example 2 is inJD′

2 , since it is acceptable
w.r.t. JD′

1 : every proper subargument is supported, and the attacking
arguments are team defeated. At this point it is immediate to see that
the argumentAq of example 5 is inJD′

3 . MoreoverJArgsD′ = JD′

3 . 2

That an argumentA is justified means that it resists every reason-
able refutation. However, DL is more expressive since it is able to say
when a conclusion is demonstrably non provable (−∂). Briefly, that
a conclusion is demonstrably non provable means that every possi-
ble conclusive argument has been refuted. In the following we show
how to capture this notion in our argumentation system by assigning
the status rejected to arguments that are refuted. Roughly speaking,
an argument is rejected if it has a rejected subargument or it cannot
overcome an attack from a justified argument.

An argumentA is rejectedby sets of argumentsSandT when

1 A is not strict, and either
2a a proper subargument ofA is in S, or
2b there exists an argumentB attackingA, such that:B is supported

by T, andA does not team defeatB.

We defineRP
i as follows.

• RP
0 = /0

• RP
i+1 = {a∈ ArgsP | a is rejected byRP

i andJArgsP}

The set ofrejected argumentsin an ordered theoryP is RArgsP =
∪∞

i=1RP
i . A literal p is rejectedif there is no argument inArgsP−

RArgsP that ends with a supportive rule forp.

Theorem 3 Let P be a defeasible theory. Let p be a literal.
P` −∂p iff p is rejected.

Example 7 The following DL theory illustrates whyRArgsP needs
to be constructed iteratively, even after all the justified literals have
been identified.

There are the following rules, fori = 1, . . . ,n:

true ⇒ bi ai ⇒ ¬bi
bi−1 ⇒ ai true ⇒ ¬ai

and the factb0. The superiority relation is empty.
This theory produces the following conclusions:

−∂ai ,−∂¬ai ,+∂bi ,−∂¬bi , for i = 0, . . . ,n.
The arguments defined by this theory are, for eachi :

Ai : true ⇒ ¬ai
Bi : true ⇒ bi−1 ⇒ ai ⇒ ¬bi

and their subarguments. Notice that

• each argumentAi is attacked byBi atai .
• each argumentBi is attacked byBi−1 atbi−1.

Eventually, bothAi andBi will be rejected, since neither can team
defeat the other, but this cannot be done until the status ofbi−1 is
determined. As noted above, this depends onBi−1. Thus the situation
incorporates some sequentiality, whereBi−1 must be resolved before
resolvingBi , and this suggests that a characterization ofRArgsP must
be iterative, even after all the justified literals have been identified.2

We conclude this section with examples demonstrating how two
traditionally problematic features of argumentation are handled by
our semantics.

Example 8 (Self-defeating arguments) In this example we show
how our framework deals with the so called self-defeating arguments.
Consider the defeasible theory with no facts, an empty superiority re-
lation and the following rules:

true⇒ p p⇒¬p

This defeasible theory produces the following conclusion−∂¬p. The
arguments that can be built from the theory are:

A1 : true ⇒ p
A2 : true ⇒ p ⇒ ¬p

HereA2 is a self-defeating argument. Since the superiority relation is
empty there is no team defeat.A1, although supported byJP

0 , is not
acceptable inJP

0 since there is an attacking argument,A2, which is
not undercut byJP

0 : no proper subargument ofA2 is defeated by an
argument supported byJP

0 . For the same reasonA2 is not acceptable
in JP

0 . ConsequentlyJP
1 = JP

0 , and thereforeJArgP is empty. Further-
more,A2 ∈ RArgP. The reason whyA2 is rejected is the following:
althoughA1 is not justified, it is supported byJArgsP, and so it can
be used to stop the validity of another argument, since we have no
means of deciding which one is to be preferred. On the other hand,
A1 cannot be rejected since the argument attacking it (A2) is not sup-
ported byJArgsP: as we have already seentrue⇒ p is not a justified
argument. 2

Example 9 (Circular arguments) Here we examine circular argu-
ments. Very often circular arguments are not considered to be true
arguments since they represent a very well known fallacy, and they
are excluded from the set of arguments using syntactical definitions.
Briefly an argument is circular if a conclusion depends on itself as a
premise.

In our approach, circular arguments correspond to infinite argu-
ments, and they are not justified. At the same time, however, they are
not automatically rejected. Moreover, such an argument can be used
to attack (and defeat) other arguments.

Let us first consider the defeasible theoryD1 consisting of the
rules

p⇒ q q⇒ p

It is immediate to see that the only possible arguments here are the
infinite arguments

A1 . . . p ⇒ q ⇒ p ⇒ q
A2 . . . q ⇒ p ⇒ q ⇒ p

They are not justified since no proper subargument is justified, and
they are not rejected since no proper subargument is rejected and
there is no argument attacking them.

The meaning of the theory at hand is that ifp then normallyq, and
if q then normallyp. Thus this amounts to say that normallyp andq
are equivalent. We add toD1 the following rules:

q⇒ r true⇒¬r



obtaining the defeasible theoryD2. In this scenario each argument
for r is infinite, circular, and rejected since there is a supported argu-
ment for¬r. However, the argumentA3 : true⇒¬r is not justified,
since each argument forr attacks it and is not undercut (no argument
attacks a proper subargument of an argument forr).

Finally D3 is obtained fromD2 by adding the ruletrue⇒ ¬p.
Now A3 becomes justified since, trivially, the argumentA4 : true⇒ p
is supported byJD3

0 , A3 attacksA2, and therefore each argument for
r is undercut. 2

4 Related Works

[16] proposes an abstract defeasible reasoning framework that is
achieved by mapping elements of defeasible reasoning into the de-
fault reasoning framework of [8]. While this framework is suitable
for developing new defeasible reasoning languages, it is not appro-
priate for characterizing DL because:

• [16, 8] do not address direct scepticism.
• [8] does not address Kunen’s semantics of logic programs which

provides a characterization of failure-to-prove in DL [18].
• The correctness of the mapping needs to be established if [16] is

to be applied to an existing language like DL. In fact the repre-
sentation of priorities is inappropriate for DL, although results of
[3, 1] might be adapted to remedy this point.

The abstract argumentation framework of [24] addresses both strict
and defeasible rules, but not defeaters. However, the treatment of
strict rules in defeasible arguments is different from that of DL, and
there is no concept of team defeat. There are structural similarities
between the definitions of inductive warrant and warrant in [24] and
JP
i andJArgsP, but they differ in that acceptability is monotonic in

Swhereas the corresponding definitions in [24] are antitone. The se-
mantics that results is not sceptical, and more related to stable se-
mantics than Kunen semantics. The framework does have a notion of
ultimately defeated argumentsimilar to our rejected arguments, but
the definition is not iterative, possibly because the framework does
not have a directly sceptical semantics.

Prakken and Sartor [21, 20], motivated by legal reasoning, have
proposed an argumentation system that combines the language of ex-
tended logic programming with a well-founded semantics. The use of
this semantics makes Prakken and Sartor’s system not directly scep-
tical. It is worth noting that our definition of defeat is the same as that
of rebut in [21, 20], but the systems differ on the notion of accept-
ability of arguments. Moreover, Prakken and Sartor do not address
the question of teams of rules.

On the other hand Simari and Loui’s system [23] deals with teams
of arguments/rules but it is characterized by Dung’s grounded se-
mantics, which corresponds to an ambiguity propagating variant of
DL (see [2, 11]).

Among other contributions, [9] provides a sceptical argumenta-
tion theoretic semantics and shows that LPwNF – which is weaker,
but very similar to DL [6] – is sound with respect to this semantics.
However, both LPwNF and DL are not complete with respect to this
semantics.
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