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via Galliera 3, 40121 Bologna, Italy, Fax +39(0)51-260782

E-mail: governat@cirfid.unibo.it

Introduction

In this paper we present a tableau-like proof system for multi-modal logics based
on D’Agostino and Mondadori’s classical refutation system KE [DM94]. The
proposed system, that we call KEM , works for the logics S5A and S5P(n)

which have been devised by Mayer and van der Hoek [MvH92] for formalizing
the notions of actuality and preference. We shall also show howKEM works with
the normal modal logics K45, D45, and S5 which are frequently used as bases
for epistemic operators – knowledge, belief (see, for example [Hoe93, Wan90]),
and we shall briefly sketch how to combine knowledge and belief in a multi-agent
setting through KEM modularity.

1 Preliminaries

All the systems of Modal Logic we shall be concerned with are couched in a
standard modal language consisting of: propositional variables; the usual logical
constants and operators: ¬,∧,∨,→,≡,2,3 for negation, conjunction, disjunc-
tion, conditionality, biconditionality, necessity, and possibility respectively; the
modal-like operators: 2i,3i for i-necessity and i-possibility, respectively. In what
follows we shall use different names for different modal-like operators. Formu-
las are defined in the usual way. We shall use the letters A,B,C, . . . to denote
arbitrary formulas. A system of Modal Logic will be denoted by L.

We define an extended Kripke model for a logic L (briefly an L-model) to be
a structure < W,Σ1, . . .Σm, R1 . . . Rn, υ > where W is a non-empty set (the
set of “possible worlds”), Σi ⊆ W, (1 ≤ i ≤ m), Ri, (1 ≤ i ≤ n) is a binary
“accessibility” relation onW , and υ is a mapping from S×W to {T, F}where S is
the set of all the formulas of our language. The notion of L-model appropriate for
the logic L can be obtained by restricting Ri to satisfy the conditions associated
with L.

As usual [Smu68b] by a signed formula (S-formula) we shall mean an expres-
sion of the form SA whereA is a formula and S ∈ {T, F}. Thus TA if υ(A, x) = T
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and FA if υ(A, x) = F for some L-model < W,Σ1, . . . Σm, R1, . . . , Rn, υ > and
x ∈ W . We shall denote by X,Y, Z arbitrary signed formulas.

By the conjugate XC of a signed formula X we shall mean the result of
changing S to its opposite. Moreover we assume that the S-formulas listed in the
left column of the following table have as their conjugates both the S-formulas
listed in the other columns.

X XC

T2iA F2iA T3i¬A
F3iA T3iA F2i¬A
F2iA T2iA F3i¬A
T3iA F3iA T2i¬A

Where, for example, T2iA has both F2iA and T3i¬A as its conjugates.

Two S-formulas X,Z such that Z = XC , will be called complementary. For
ease of exposition we shall use Smullyan-Fitting’s “α, β, ν, π” unifying notation,
that classifies S-formulas with respect to their modality, in the generalized form
“α, β, νi, πi”. We begin by giving a concise exposition of the logics we shall be
concerned with (for more details see [MvH92]).

1.1 The Logic S5A

The modal logic S5A is obtained by enlarging the basic modal language with
an actuality operator 4 indicating that a formula is actually true, i.e. holds in
the actual world. The set of S5A-formulas consists of (i) all the S5-formulas and
(ii) all the formulas of the form 4A. In addition to the customary S5 axioms we
have the following axioms:

1. 4(A ∧ B) ≡ (4A ∧4B);

2. 4¬A ≡ ¬4A;

3. 2A→ 4A;

4. 4A→ 24A.

The semantic for S5A is given in terms of a “mixed” S5-D45 Kripke model
(S5A-model) < W,R,A, υ > where W is a non empty set of “worlds”, R is an
equivalence relation on W , A is a constant function on W , so that

A ⊆ R, ∃!a ∈ W : ∀w ∈W,wAa;

υ is as usual with the following additional clause:

υ(4A,w) = T ⇐⇒ ∀a ∈W : wAa, υ(A, a) = T.

A turns out to be serial, transitive and euclidean.



1.2 The Logic S5P(n)

To obtain the logic S5P(n) we introduce in the basic modal language n modal
operators P1, . . . , Pn indicating that a formula holds in a set of “preferred”
worlds. The set of S5-formulas is enlarged to include all the formulas of the
form PiA, (1 ≤ i ≤ n). In addition to the customary S5 axioms we have the
following axioms:

1. 2PiA ≡ PiA;
2. ¬Pi⊥ → (PiPjA ≡ PjA);
3. ¬Pi⊥ → (Pi2A ≡ 2A);
4. 2A → PiA(1 ≤ i ≤ n).

The semantic for S5P(n) is given in terms of a “mixed” S5-K45 Kripke-model
(S5P(n)-model) < W,Σ1, . . . , Σn, R,R1, . . . , Rn, υ > where Σi ⊂W , are subsets
(possibly empty) of preferred worlds; Ri = Σ × Σi ⊂ R are transitive and
euclidean relations on Σi; and R is an equivalence relation on W ; υ is as usual
with the following additional clause:

υ(PiA,w) = T ⇐⇒ ∀x ∈ Σi : wRix, υ(A, x) = T.

2 The System KEM

In this section we describe the computational framework KEM . Like resolution
and tableau systems, KEM is a formalization of the search for countermodels
and it can be adapted to all settings which have a Kripke-model based semantics.

The key feature ofKEM , besides its being based on a combination of tableau
and natural deduction inference rules which allows for a suitably restricted use
of the cut rule, is that it automatically generates models and checks them for
putative contradictions using a label scheme to bookkeep “world” paths. Briefly
and informally, in the KEM -based approach S-formulas are labelled by worlds.
A “world” label is a constant or a variable “world” symbol or a “structured”
sequence of world-symbols we shall call a “world-path”. Intuitively, constant
and variable world-symbols can be viewed as denoting worlds and sets of worlds
respectively, while a world-path conveys information about access between the
worlds in it.

An S-formula SA with an associated label i (a labelled signed formula, or LS-
formula, as we shall call it) means, intuitively, that A is true (false) at the (last)
world (on the path) i. In the course of proof search, labels are manipulated in a
way closely related to the semantics of modal operators and “matched” using a
(specialized, logic-dependent) unification algorithm. That two structured labels
i and k are unifiable means, intuitively, that they virtually represent the same
path, i.e. any world which you could get to by the path i could be reached by
the path k and vice versa. S-formulas whose labels are unifiable turn out to be
true (false) at the same world(s) relative to the accessibility restrictions that
hold in the class of L-models. In particular, two LS-formulas X, i XC , k, whose
labels are unifiable, will stand for formulas which are contradictory “in the same
world”.



Remark. The idea of using a label scheme to bookkeep “world” paths in modal
theorem proving goes back at least to [Fi66]. Similar, or related, ideas are found
in [Fit72, Fit83, Wri85] and, more recently, in [Cat91, JR89, Tap87, Wal90] and
also in the “translation” tradition of [AE92, Ohl91], and in Gabbay’s Discipline
of Labelled Deductive Systems [Gab91] (see also [DG94] tableau extension with
labels).

KEM combines two kinds of rules: rules for processing the propositional part
(which are the same for all modal logics), and rules for manipulating labels
according to the appropriate accessibility restriction. The key features of KEM
are outlined as follows. For a more comprehensive presentation of KEM as
applied to a wide variety of normal modal logics see [AG94, ACG94a].

2.1 Label Formalism

Let Φi
C = {wi

1, w
i
2, . . .} be non empty sets of constant world symbols, and let

Φi
V = {W i

1 ,W
i
2, . . .} be non empty sets of variable world symbols, where 1 ≤ i ≤

n and n is the number of the different 2i in the logic we are considering; for i = 0
(20 = 2) we shall use wj ,Wj . (According to the conditions which hold is S5A
we have Φ1

C = Φ1
V = {a}). We define ΦC =

⋃

0≤i≤n Φ
i
C and ΦV =

⋃

0≤i≤n Φ
i
V .

Thus the set = of labels is defined as follows:

= =
⋃

1≤i

=i where =i is:

=1 = ΦC ∪ ΦV ;
=2 = =1 × ΦC ;
=n+1 = =1 ×=n.

That is a world-label is either (i) an element of the set ΦC , or (ii) an element
of the set ΦV , or (iii) a path term (k′, k) where (iiia) k′ ∈ ΦC ∪ ΦV and (iiib)
k ∈ ΦC or k = (m′,m) where (m′,m) is a label. wj , (Wj) is also used to denote
a given world (a world) for which we do not have enough information to specify
what is its i (i.e. we do not know what kind of label it is). From now on we
shall use i, j, k, . . . to denote arbitrary labels. According to the above intuitive
explanation, we may think of a label i ∈ ΦC as denoting a world (a given one),
and a label i ∈ ΦV as denoting a set of worlds (any world) in some L-model.
A label i = (k′, k) may be viewed as representing a path from k to a (set of)
world(s) k′ accessible from k.

Example 1. The label (W1, w1) represents a path which takes us to the set W1

of worlds accessible from w1; (w2, (W1, w1))) represents a path which takes us to
a world w2 accessible via any world accessible from w1, (i.e., accessible from the
subpath (W1, w1)) and so on. The label (wi

2, w1) represents a path which takes
us to the world wi

2 accessible through Ri from the world w1.

For any label i = (k′, k) we call k′ the head of i, k the body of i, and denote
them by h(i) and b(i) respectively. Notice that these notions are recursive: if b(i)



denotes the body of i, then b(b(i)) will denote the body of b(i), b(b(b(i))) will de-
note the body of b(b(i)); and so on. For example, if i is (w4, (W3, (w3, (W2, w1)))),
then b(i) = (W3, (w3, (W2, w1))), b(b(i)) = (w3, (W2, w1)), b(b(b(i))) = (W2, w1),
b(b(b(b(i)))) = w1. We call each of b(i), b(b(i)), etc., a segment of i. Let s(i)
denote any segment of i (obviously, by definition every segment s(i) of a label i
is a label); then h(s(i)) will denote the head of s(i).

For any label i, we define the length of i, l(i), as the number of world-symbols
in i. The segment of i whose length is n is denoted by sn(i).

We call a label i restricted if h(i) ∈ ΦC , otherwise we call it unrestricted.
We shall say that a label k is i-preferred iff k ∈ =i where =i = {k ∈ = :
h(k) is either wi

m or W i
m, 1 ≤ i ≤ n}, and that a label k is i-ground (1 ≤ i ≤ n)

iff

1. ∀s(k) : h(s(k)) 6∈ Φi
V , and

2. if ∃sm(k) : h(sm(k)) ∈ Φi
V then ∃sj(k), j < m : h(sj(k)) ∈ Φi

C .

2.2 High Unifications

We define a substitution in the usual way as a function

σ : Φ0
V −→ =−

: Φi
V −→ =i, (1 ≤ i ≤ n).

where =− = = − ΦV . For two labels i, k and a substitution σ we shall use
(i, k)σ to denote both that i and k are unifiable (briefly, are σ-unifiable) and
the result of their unification. On this basis we define several logic-dependent
notions of σ-unification [ACG94a, ACG95, AG94]. The notion of two labels i, k
being σL-unifiable, for the logics we are considering is as follows:

(i, k)σ∗ = (i, k)σ ⇐⇒ either
at least one of i and k is restricted, or
i, k ∈ Φ0

V for every s(i), s(k), l(s(i)) = l(s(k)), (s(i), s(k))σ∗;

(i, k)σK = (i, k)σ ⇐⇒
at least one of i and k is restricted, and
for every s(i), s(k), l(s(i)) = l(s(k)), (s(i), s(k))σK ;

(i, k)σD = (i, k)σ;

(i, k)σK45 = (h(i), h(k))σK × (s1(i), s1(k))σK ⇐⇒
l(i), l(k) > 1 and (s2(i), s2(k))σK ;

(i, k)σD45 = (h(i), h(k))σ × (s1(i), s1(k))σ ⇐⇒
l(i), l(k) > 1;

(i, k)σS5 = (h(i), h(k))σ;

(i, k)σS5A = (h(i), h(k))σ;

(i, k)σS5P(n) = (h(i), h(k))σ∗ if
i, k are i-ground,1 ≤ i ≤ n, or
∃s(i), s(k) : h(s(i)), h(s(k)) ∈ Φi, and (h(s(i)), h(s(k))σS5P(n) .



Example 2. The notions of σK- and σD-unification are related in an obvious
way to the idealization condition. Thus, (w2, (W1, w1)), (W3, (W2, w1)) are σD-
unifiable but not σK -unifiable (since the segments (W1, w1), (W2, w1) are not σK-
unifiable by the above definition). The reason is that in the “non idealisable” logic
K the “denotations” of W1 and W2 may be empty (i.e., there can be no worlds
accessible from w1), which obviously makes their unification impossible, while in
the “idealisable” logic D they are not empty, which makes them unifiable “on”
any constant. Similar intuitive motivations hold for the other σL-unifications.

2.3 Low Unifications

We are now able to define what it means for two labels i, k to be σL-unifiable
for L = K45, D45, S5, S5A,S5P(n):

(i, k)σK45 =

{

(i, k)σK l(i), l(k) ≤ 2
(i, k)σK45 otherwise

(i, k)σD45 =

{

(i, k)σD l(i), l(k) ≤ 2
(i, k)σD45 otherwise

(i, k)σS5 = (i, k)σS5

(i, k)σS5A = (i, k)σS5A

(i, k)σS5P(n)
= (i, k)σS5P(n)

Remark. It is worth noting that the notion of σL or “high” unification is meant
to mirror a single constraint on R, while the notion of σL or “low” unification
(which includes the former) is used to simulate the full accessibility restrictions
which hold in the various L-models. In general both high and low unifications
are necessary for multi-modal logics, where we have several modalities acting
differently, and each modality has its own high unification, and the various high
unifications are combined into the low unification which models such logics.

Remark. The modal proof system proposed by Jackson and Reichgelt [JR89] is
the most closely related to ours. The index formalism is almost identical, but
the unification algorithm used to resolve complementary formulas in the various
modal logics does not work for the non-idealisable K logics. This is due to the
fact that their unification scheme is not recursive inside the world path, and the
accessibility relation is external and it is not built-in into the unification as in
our system.

2.4 Inference Rules

The rules of KEM will be defined for LS-formulas. Two LS-formulas X, i, Z, k
such that Z = XC and (i, k)σL will be called σL-complementary. The following



inference rules hold for all the logics we are considering (i, k, and m stand for
arbitrary labels).

α, i

α1, i

α, i

α2, i
(α)

β, i

βC
1 , k

β2, (i, k)σL

[(i, k)σL]

β, i

βC
1 , k

β2, (i, k)σL

[(i, k)σL] (β)

νi, i

ν0, (m, i)
[m ∈ Φi

V and new] (νi)

πi, i

π0, (m, i)
[m ∈ Φi

C and new] (πi)

X, i XC , i
[i restricted] (PB)

X, i

XC , k

×(i, k)σL

[(i, k)σL] (PNC)

Here the α-rules are just the usual linear branch-expansion rules of the tableau
method, while the β-rules correspond to such common natural inference patterns
as modus ponens, modus tollens, etc.

The rules for the modal operators bear a not unexpected resemblance to the
familiar quantifier rules of the tableau method. “m new” in the proviso for the
νi- and πi-rule obviously means: m must not have occurred in any label yet used,
which obviously does not hold for S5A when the actuality operator is involved.

Notice that in all inferences via an α-rule the label of the premise carries over
unchanged to the conclusion, and in all inferences via a β-rule the labels of the
premises must be σL-unifiable, so that the conclusion inherits their unification.

PB (the “Principle of Bivalence”) represents the (LS-version of the) semantic
counterpart of the cut rule of the sequent calculus (intuitive meaning: a formula
A is either true or false in any given world).

PNC (the “Principle of Non-Contradiction”) corresponds to the familiar
branch-closure rule of the tableau method, saying that from a contradiction of
the form (occurrence of a pair of σL-complementary LS-formulas)X, i, XC , k on
a branch we may infer the closure of the branch. The (i, k)σL in the “conclusion”
of PNC means that the contradiction holds “in the same world”.

3 Soundness and Completeness

We shall show that the KEM versions of the logics L we have been considering
are equivalent to their respective axiomatic formulations. In order to do this, we
have to prove (i) that the characteristic axioms and the inference rules of the
axiomatic L are derivable in KEM , and (ii) that the rules of KEM are derived



rules in the axiomatic L. To prove (ii) we show that the rules of KEM hold in
a model for the respective L.

Let F =< W,Σ1, . . .Σm, R1, . . . , Rn > be an extended Kripke frame and
let M =< W,R1, . . . , Rn, υ > be an extended Kripke model with the usual
conditions on their elements; Ri is defined as ΓRiΓ

′ ⇔ {A : 2iA ∈ Γ} ⊆ Γ ′,
where Γ denotes an element of the non empty set W ; and υ is as before.

We now define a translation function g from labels to the model’s frame as
follows: g : = → F so that:

(a) If i ∈ ΦC then g(i) = ∃Γ ∈ W ;
(b) If i ∈ ΦV then g(i) = ∀Γ ∈W ;
(c) If i = a, then g(i) = Γ ∗ (which is intended to denote the “actual world”);
(d) If i ∈ Φi

C , then g(i) = ∃Σm
i ∈ Σi;

(e) If i ∈ Φi
V , then g(i) = ∀Σm

i ∈ Σi;
(f) If l(i) = n > 1 then we denote by im the h(j) such that l(j) = m, m ≤ n,

and j is a segment of i; thus

g(i) = Qg1Qg2(g1Bg2#Qg3(g2Bg3# · · ·#Qgn(gn−1Bgn) · · ·))

where gm denotes the element associated by g to the segment of i of length m;
Qgm denotes ∀Γm, ∃Γm, ∀Σm

i , ∃Σ
m
i , ∅ respectively if its im is W,w,W i, wi, a; #

is ⊃ if the associate Qg is ∀, otherwise it is ∧; gkBgm is gkRig
m if im is W i, or

wi, gkAgm if im is a, othewise it is gkRgm.
Let f be the translation function from LS-formulas to the model defined as:

f(SA, i) = g(i), υ(A, g(h(i))) = S.

Lemma1. For any i, k ∈ =, L = K45,D45,S5,S5A,S5P(n), if X, i and (i, k)σL,
then X, k.

We only give the proofs for S5, S5A,S5P(n); for the other logics see [AG94]

Proof L = S5. Let us suppose that X, i, XC , k and (i, k)σS5, but (i, k)σS5 ⇐⇒
(h(i), h(k))σS5. From the definition of f we have

f(X, i) = g(i), υ(A, g(h(i))) = S,

and
f(XC , k) = g(k), υ(A, g(h(k))) = SC ;

from the equivalence relation of the model we get

f(X, i) = Qg(h(i)), υ(A, g(h(i))) = S,

and
f(XC , k) = Qg(h(k)), υ(A, g(h(k))) = SC .

We now analyse what kind of labels h(i), h(k) are.

1. h(i), h(k) are two constants;
2. h(i), h(k) are a constant and a variable;



3. h(i), h(k) are two variables.

Case 1. Two constants unify iff they are the same constant, and so h(i) = h(k)
and g(h(i)) = g(h(k)), thus obtaining a contradiction.

Case 2. This case implies

f(X, i) = ∀g(h(i)), υ(A, g(h(i))) = S,

and
f(XC , k) = ∃g(h(k)), υ(A, g(h(k))) = SC

which lead to a contradiction.

Case 3. We get a contradiction because a variable unifies with any label, and W
is not empty.

Proof L = S5A. The proof is the same as for S5 apart from the case where h(i)
and h(k) are both a.

Let us then suppose that the lemma does not hold. This means that in the
model we have:

f(X, i) = g(i), υ(A, g(h(i))) = S,

and
f(XC , k) = g(k), υ(A, g(h(k))) = SC .

Since S5A is like S5 and A ⊆ R we have only to analyse the case in which both
labels end with a; but this implies

f(X, i) = g(i), υ(A,Γ ∗) = S,

and
f(XC , k) = g(k), υ(A,Γ ∗) = SC

thus obtaining a contradiction.

Proof L = S5P(n). We analyse only the cases which are different from S5. i, k
unify if they are not two variables of the same type, and for each variable of type
i there is a constant of the same type.

f(X, i) = · · · g1Bg2# · · ·# (1)

Qg(h(i))(g(b(h(i))Bg(h(i)))), υ(A, g(h(i))) = S,

and

f(XC , k) = · · · g1Bg(s2(k))# (2)

· · ·#Qg(h(k))(g(b(h(k))Bg(h(k)))), υ(A, g(h(k))) = SC .

This is done to ensure that the correspondingΣi is not empty. Since each Ri ⊂ R

(1) and (2) imply, respectively

Qg(h(i)), υ(A, g(h(i))) = S,

and
Qg(h(k)), υ(A, g(h(k))) = SC

from which by analysing as before what kind of labels h(i), h(k) are, we get a
contradiction.



Theorem2. `L A⇔`KEM(L) A for L = K45, D45, S5, S5A,S5P(n).

Proof ⇒. The modus ponens and the characteristic axioms for L are provable
in KEM (see [AG93] for the proof of the axioms and [DM94] for a proof that
modus ponens is a derived rule in KE).

We shall give a KEM -proof of the rule of necessitation. Let us assume that
`KEM(L) A. Then the following is the KEM -proof of 2A.

1. F2A w1

2. FA (w2, w1)
3.× (w2, w1)

The closure follows from the fact that A is provable in KEM , i.e. there is a
closedKEM -tree for FA and thatKE andKEM enjoy the “subproof” property
(i.e. the transitivity property of proof, see [DM94]).

As regards the axioms of S5A and S5P(n) we shall show example proofs of
4A→ 24A and ¬Pi⊥ → (PiPjA ≡ PjA) (for the other axioms see [ACG94b]).
`KES5A 4A → 24A

1. F4A→ 24A w1

2. T4A w1

3. F24A w1

4. TA (a, w1)
5. F4A (w2, w1)
6. FA (a, (w2, w1))
7.× a

`KES5P(n)
¬Pi⊥ → (PiPjA ≡ PjA)

1. F¬Pi⊥ → (PiPjA ≡ PjA) w1

2. T¬Pi⊥ w1

3. FPiPjA ≡ PjA w1

4. FPi⊥ w1

5. F⊥ (wi
2, w1)

6. TPiPjA w1

8. FPjA w1

9. TPjA (W i
1 , w1)

10. TA (W j
2 , (W

i
1 , w1))

11. FA (wj
3, w1)

12.× w
j
3

7. FPiPjA w1

13. TPjA w1

14. FPjA (wi
4, w1)

15. FA (wj
5, (w

i
4, w1))

16. TA (W j
3 , w1)

17.× w
j
5

Proof ⇐. The α-rules and PB are obviously derived rules in L. For the β-
rules and PNC: by hypothesis (i, k)σL and hence, by the above lemma and
the definitions of the σL-unifications, the formulas involved have the same value
in i (k) and (i, k)σL; after that these rules become rules of KE, and thus they
are derived rules in L.



For the νi-rules let us suppose that νi is not a derived rule of L; from which
it follows υ(νi, g(i)) = S and g(i)RjΓ, υ(ν0, Γ ) = SC , but the former implies
∀(∃)Γ ∈W, g(i)RjΓ, υ(ν0, Γ ) = S, thus obtaining a contradiction.

The proof for the πi-rules is similar.

4 Proof Search

As usual with refutation methods, a proof of a formula A of L consists of at-
tempting to construct a countermodel for A by assuming that A is false in some
arbitrary L-model. Every successful proof discovers a contradiction in the puta-
tive countermodel. In this section we describe an algorithm which does this job
(and that has been implemented in Prolog, see [ACG94a, ACG94b]).

In what follows by a KEM -tree we shall mean a tree generated by the
inference rules of KEM .

A branch τ of a KEM -tree will be said to be σL-closed if it ends with
an application of PNC. A KEM -tree T will be said to be σL-closed if all its
branches are σL-closed. Finally, by an L-proof of a formula A we shall mean a
σL-closed KEM -tree starting with FA, i.

Given a branch τ of aKEM -tree, we shall call an LS-formulaX, i E-analysed
in τ if either (i) X is of type α and both α1, i and α2, i occur in τ ; or (ii) X
is of type β and one of the following conditions is satisfied: (a) if βC

1 , k occurs
in τ and (i, k)σL, then also β2, (i, k)σL occurs in τ , (b) if βC

2 , k occurs in τ and
(i, k)σL, then also β1, (i, k)σL occurs in τ ; or (iii) X is of type νi and ν0, (m, i)
occurs in τ for some m ∈ ΦV not previously occurring in τ , or (iv) X is of type
πi and π0, (m, i) occurs in τ for some m ∈ ΦC not previously occurring in τ .

We shall call a branch τ of a KEM -tree E-completed if every LS-formula
in it is E-analysed and it contains no complementary formulas which are not
σL-complementary. We shall say a branch τ of a KEM -tree completed if it is E-
completed and all the LS-formulas of type β in it either are analysed or cannot
be analysed. We shall call a KEM -tree completed if every branch is completed.

The following procedure starts from the 1-branch, 1-node tree consisting of
FA, i and applies the rules of KEM until the resulting KEM -tree is either
closed or completed. At each stage of the proof search (i) we choose an open
non completed branch τ . If τ is not E-completed, then (ii) we apply the 1-
premise rules until τ becomes E-completed. If the resulting branch τ ′ is neither
closed nor completed, then (iii) we apply the 2-premise rules until τ becomes
E-completed. If the resulting branch τ ′ is neither closed nor completed, then (iv)
we choose an LS-formula of type β which is not yet analysed in the branch and
apply PB so that the resulting LS-formulas are β1, i

′ and βC
1 , i

′ (or, equivalently
β2, i

′ and βC
2 , i

′), where i = i′ if i is restricted, otherwise i′ is obtained from i

by instantiating h(i) to a constant not occurring in i; (v) if the branch is not
E-completed nor closed, because of complementary formulas which are not σL-
complementary, then we have to see whether a restricted label unifying with both
the labels of the complementary formulas occurs previously in the branch; if such
a label exists or can be built using already existing labels and the unification



rules, then the branch is closed, (vi) we repeat the procedure in each branch
generated by PB.

Remark. As is well known [Smu68a], what destroys analyticity is losing the
(weak) subformula property [Fit90], and not having a cut rule restricted to sub-
formulas. Otherwise each tableau system is not analytic, since from the formula
¬(A → B) we obtain two branches containing respectively ¬A and B, but, ob-
viously, ¬A is not an immediate (strong) subformula of ¬(A → B). Moreover a
clever and ruled use of the cut could reduce sharply the complexity of the proof
[Boo84, DM94]. Finally it can be used to check closure in a modal setting. In
fact step (v) of the above procedure, called “Modal PB”, prescribes that we
apply PB to one of the complementary formulas whose label unifies with both
the labels, thus closing the branches.

The above procedure is based on the procedure for canonical KEM -trees. A
KEM -tree is called canonical iff all the applications of 1-premise rules come
before the applications of 2-premise rules, which precede the applications of the
0-premise rule.

Two interesting properties of canonical KEM -trees are (i) that a canonical
KEM -tree always terminates, since for each formula there are a finite number
of subformulas and the number of labels which can occur in the KEM -tree for
a formula A (of L) is limited by the number of modal operators belonging to A,
and (ii) that for each closed KEM -tree a closed canonical KEM -tree exists.

Let φ be the function which deletes the modal operators from given formulas.

Lemma3. 6`KE φA ⇒6`KEM(L) A

Proof. Obvious. For the details see [ACG95].

This lemma gives a first termination check for the canonical KEM -trees; in fact
a KEM -tree finds out whether complementary formulas exist and it verifies
(through the σL-unifications) whether the paths denoted by the labels of the
complementary formulas lead to the same world, if so the branch is closed, but if
there are no complementary formulas there are no σL-complementary formulas.

We shall define the complexity of an LS-formula as the number of logical
symbols occurring in it.

Theorem4. A canonical KEM -tree always terminates

Proof. We show that each step produces at most a finite number of new LS-
formulas, where with new we mean that the label has not been previously used
with the S-formula.

The procedure for canonical KEM -trees stops either when

1. there are no LS-formulas whose complexity is greater than 1, or
2. there are no β-formulas that cannot be analysed, or



3. there are no complementary formulas which are not σL-complementary and
a label which unifies with both the labels of the given formulas does not
exist.

We prove the theorem by induction on the length of proof.
At the step 0, the α-, νi-, and πi-rules produce a new LS-formula of less

complexity, and PB produces 2 branches where there is a new LS-formula of
less complexity.

At the n-th step α-rule produces at most 2 new LS-formulas of less com-
plexity; and both νi-, πi-rules produce a new LS-formulas of less complexity;
the β-rules produce at most m new LS-formulas of less complexity, where m is
the number of LS-formulas which are the conjugate of an immediate subformula
of a β-formula, and whose labels σL-unify with the label of the β-formula; by
induction m is finite. PB produces 2 branches where there are at most k new
LS-formulas of less complexity, where k is the number of restricted labels which
σL-unify with the label of the formula on which PB is applied; k is finite by
induction.

If there are some complementary formulas which are not σL-complementary,
modal PB controls whether a restricted label which σL-unifies with both the
labels of the complementary formulas occurs in the tree. But the number of the
restricted labels occurring in the tree is finite, since at most it is equal to the
number of the LS-formulas occurring in the tree which is finite.

In what follows we shall use T and C to denote respectively a KEM -tree and
a KEM -canonical tree. Moreover whe shall use `KEM A to mean that there
exists a closed KEM -tree for AC and `KEMc A to mean that there exists a
closed KEM -canonical tree for AC .

For two label i, k, we shall say that i extends k (i � k) if an s(i) so that
(s(i), k)σL exists.

Theorem 5. A KEM -tree for a formula A is closed ⇐⇒ the canonical KEM -
tree for A is closed.

Proof ⇒. The if part is obvious since a canonical KEM -tree is a KEM -tree,
and the steps which are not essential could be freely deleted.

Proof ⇐. We give the proof only for S5A and S5P(n); for the other logics see
[ACG95]

We have to show `KEM A ⇒`KEMc A or its equivalent 6`KEMc A ⇒6`KEM

A.
Let us suppose that the theorem does not hold, which means 6`KEMc A

but `KEM A. According to the previous lemma and the properties of KE (see
[DM94]) we have that, in the proof of a formula A, PB occurs only on subfor-
mulas of the given formulas. And so each unnecessary occurence of PB can be
freely deleted.

If AC is of type α, νi or πi then both T and C have the same development.
The same happens with PB apart from complexity results. The only difference



between a KEM -tree and a KEM -canonical tree relies on the application of
the β-rules.

...

β i (3)

βC
1 j (4)

β2 k, k = (i, j)σL (5)

...

Tφ(β2) → ψ(βC
1 ) l (6)

ψ(βC
1 ) m,m = (k, l)σL (7)

...

βC
1 n, n � m (8)

β2 o, o = (i, n)σL (9)

...

βC
2 p (10)

From the hypothesis we get that β2, o, and βC
2 , p are σL-complementary but

β2, k, and βC
2 , p are not. The correspondent canonical tree does not have β2, o

(9) since its rules do not allow us to use a β-rule on a β formula as a major
premise more than in a “level”, where, roughly, a level represents the set of
formulas obtained from the 1-premise rules before using a β-rule. But it controls
closure using PB with an existing restricted label on complementary formulas
which are not σL-complementary. We are now going to show that the absurd
hypothesis leads to a contradiction; so we have to prove that either (k, p)σL-
unify or o, p do not σL-unify or a restricted label which unifies with both k and
p, exists.

Proof L=S5A. If h(i) ∈ ΦC then k = m = o = h(i) but both (o, p)σS5A and k, p
do not σS5A-unify and so we have a contradiction. If h(i) ∈ ΦV we have to see
what kind of labe p is. If it is unrestricted, then it σS5A-unifies with each label,
and also with k which implies a contradiction. Otherwise let us suppose that
h(p) 6= h(j); if so also in this case it σS5A-unifies with k which is not the case;
but, since βC

2 , p does not depend on φ(β2) → ψ(βC
1 ), l we can apply a β-rule on

β, i and βC
2 , p itself, obtaining β1, h(p) which is one of the σS5A-complementary

formulas of βC
1 , n because h(n) must σS5A-unify with h(i), and their result, o,

σS5A-unifies with p. If n were restricted or different from a then o = h(n) ∈ ΦC ,
but (o, p)σS5A and thus either h(p) ∈ ΦV , which is a contradiction, or o = h(p) =
a which means that h(n) = a or n is unrestricted.

Proof L = S5P(n). In what follows we use the expression “the label i is i-ground”
to mean either that i is i-ground or that the modal PB can generate an i-ground
label unifying with it. Let us suppose also in this case that the theorem does



not hold. We have to analyse what kind of labels are i, k and p. If h(i) ∈ ΦC ,
then k = o = h(i), therefore (k, p)σS5P(n)

, from which we get a contradiction.
We pass now to analyse the case in which i is unrestricted. Let us first suppose
that also j is unrestricted; since they unify, they are i-ground (1 ≤ i ≤ n), and
the result of their unifications is any restricted label which appears in the tree;
we shall call it wi. If also p is unrestricted we have to see the head of n; if
it is unrestricted, o must be a restricted label, wj , different from wi. But since
(o, p)σS5P(n)

, even p is i-ground and therefore, in the canonical tree we must have

applied a β-rule on β, i and βC
2 , p thus obtaining β1, r, where r is a restricted label

unifying with j; this implies that the resulting canonical tree is closed. If i, p are
unrestricted, h(j) = wj , and h(n) = wn then both are i-ground, otherwise they
could not unify with j, and o respectively, and so we can repeat the reasoning
of the previous case. If i, n are unrestricted, h(j) = wj and h(p) = wp therefore
since p is a label already existing and we have βC

2 , p we obtain β1, wp which is
a σS5P(n)

-complementary formula of βC
1 , n; but this implies that the canonical

tree is closed.

5 Final Remarks

We would like to point out some of the advantages of KEM : unlike resolution
or translation based methods it does not require the input formula to be pre-
processed, nor to be transformed either in clausal form or in another formalism
(it is worth noting that certain modal logics like S4 do not have a clausal form
and other logics, like GL, cannot be expressed in a first-order formalism); all
modal logics are treated in the same way and only constraints on the unifica-
tions, which are intended to represent the conditions on the various accessibility
relations, distinguish one logic from another; the rules it uses are strictely related
with the modal semantics; like axiomatic systems it is highly modular. To illus-
trate the last point we summarize how obtain the Kraus and Lehmann’s logic
for knowledge and belief KB [Hoe93]. Knowledge modalities act as S5 modalities
whereas belief modalities act asD45 modalities, and it is well known that adding
reflexivity to D45 leads to S5, therefore our basic high unification is σD45. A
way to have reflexivity in KEM is to assume the following function (reduction)
concerning label: r(i) = b(i) if h(i) ∈ ΦKi

V otherwise r(i) = (h(i), r(b(i))). Finally
low unification works by applying recursively the σD45 either to the labels or to
the possible reductions of the labels. Such items will be investigated in a future
work.
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