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The system KE+, a tableau-like proof system based on D’Agostino-Mondadori
KE [DM94], is presented in this paper. This system avoids some of the drawbacks
of other proof methods. In fact it is completly analytical, it is able to detect
whether a formula is either a tautology or a contradiction or only a satisfiable
one; in the course of a proof it can detect whether a subformula is a tautology
and it uses this fact in the proof of the main formula.

In what follows we shall use the Smullyan uniform notation [Smu68]; if X is
a signed formula, XC denotes the conjugate of X.

The method KE+ follows consists in verifying whether the truth of the con-
jugate of an immediate subformula of a β formula implies the truth of the other
immediate subformula; if it is implied then we have enough information to af-
firm that the whole formula is provable. This result is obtained through the
fact that in a given branch, the branch beginning with the conjugate, a formula
which leads to the branch closure does not exist (i.e. there are not two formulas
TA, FA) but this is done by proving that the conjugate of the formula occurs in
the branch, i.e. we have to see that in a branch a signed formula appears twice,
and that the two occurrences are derived from appropriate formulas.

KE and KE+ share the same inference rules and differ only with respect to
the proof procedure they use. The main feature of KE is that it is a method
which uses elimination rules and an analytic form of cut (PB). Its rules are
stated as follows:
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KE can be used either as a refutation method or as a direct method of proof, for
more details about KE see [DM94]. Unfortunately, when KE is used directly,
it has to check both the branch starting with the given formula and the branch
starting with the conjugate of the given formula. KE+ does not suffer this
disadvantage, in fact it works straightforwardly with the formula to be proved.

Definition 1. An α-formula is analysed in a branch when both α1 and α2 are
in the branch; a β-formula is analysed in a branch when either: if βC

1 is in the
branch also β2 is in the branch, or if βC

2 is in the branch also β1 is the branch.
A β formula will be called fulfilled in a branch if: either β1 or β2 depending on
β occurs in the branch, or either β1 or β2 is obtained from applying PB on β.

Each formula depends on itself; a formula B depends on A either if it is
obtained through an application of the α-rule or it is obtained through an appli-
cation of KE’s rules on formulas depending on A; a formula C depends on A,B

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


if it is obtained through an application of a β-rule where A,B are its premises;
the formulas obtained through PB depend on the formula PB is applied to; if C
depends on A,B then C depends on A and C depends on B.

Definition 2. A branch is E-completed if all the formulas occurring in it are
analysed; a branch is completed if it is E-completed and all the β-formulas occur-
ring in it are fulfilled. We shall call a branch a βC-branch if its root is obtained
applying PB on a β-formula and it starts with βC

i ; and each branch generated by
PB on a formula occurring in a βC-branch is a βC-branch. Any branch which
is not a βC-branch and is obtained from PB will be called a β-branch. We shall
call a branch a >-branch if it contains only formulas which are equivalent to >
and the formulas depending on them.

The procedure starts from the formula to be proved, then (1) it selects a βC-
branch φ which is not yet completed and which is the βC-branch with respect
to the greater number of formulas; (2) if φ is not E-completed, it expands φ by
means of the α- and β-rules until it becomes E-completed; (3) if the resulting
branch is neither completed nor closed then it selects aformula of type β which
is not yet fulfilled in the branch, if possible a β-formula which results from step
2, and then it applyes PB with β1, β

C
1 (or, equivalently β2, β

C
2 ) then it applyes

step 1; otherwise it returns to step 1

Theorem 1. A formula A ≡ > if either: (1) in one of the βC-branches it
generates there is a formula which appears twice, and one occurrence depends on
βC

i , i ∈ {1, 2} and the other depends on β, or (2) each βC-branch is closed and
the β-branches contain >, or (3) each βC-branch is a >-branch.

Preliminary research into KE+’s complexity and efficiency shows that for certain
classes of formulas it is more efficient than KE. For example, given the tautology
α → (β → α) ≡ ((¬α∨ β) ≡ (α → β)), its shorter and longer proofs, using KE,
consists respectively of 24 and 36 (34) steps, whereas the analogous proofs using
KE+ spend respectively 10 and 19 steps; on the other hand, if we query the
systems with the negation of the above tautology both trees are 23 steps long,
but KE+ tells us that the formula is a contradiction, whereas all information
that KE gives us is that the negation of the formula is satisfiable, but we are
not able to know whether the formula itself is satisfiable.

The approach we have presented can work side by side with KE and it is
useful to build more efficient theorem provers, because, with a pre-analysis of
the formula, we can choose the best strategy to follow in order to prove it, i.e. we
can choose, according to its structure, whether to refute it is more economical
than proving it directly, i.e. which system, for a given formula, is more efficient.
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