
An Automated Approach to
Deontic Reasoning

Alberto Artosi∗, Paola Cattabriga∗∗, Guido Governatori∗∗
∗ Dipartimento di Filosofia, Università di Bologna,

via Zamboni,38, 40126 Bologna (Italy), Fax:+39-51-258326
∗∗CIRFID, Università di Bologna,

via Galliera, 3, 40126 Bologna (Italy), Fax: +39-51-260782
E-Mail: governat@cirfid.unibo.it, paola@cirfid.unibo.it

1 Introduction

It is by now generally accepted in the Artificial Intelligence and Law field that many as-
pects of normative language and reasoning can be modelled in deontic logics based on
modal logic (see e.g. [Jon90], [JS91]). This obviously implies the need for computationally
tractable inference mechanisms for Deontic Logic (see e.g. [Bel87], [McC83], [McC86]).
In this paper we shall be concerned with developing a computationally oriented proof
method for several normal (in [Åqv84] classification normal and strongly normal) deontic
logics. Since this method is arguably more natural and intuitive than other (e.g. resolu-
tion or translation based) proof methods, and it leads to simple and easy implementable
procedures, it seems particularly well-suited for applications in the newly developed area
of “artificial normative reasoning”. Moreover, though in the present version it works for
deontic logics of the simplest kind, it is sufficiently generic and flexible to provide an appro-
priate algorithmic proof framework for deontic logics of greater richness and complexity.
The paper is organized as follows. Section 2 provides a short description of the systems of
deontic logic we will deal with together with an explanation of the logical notation being
used. Section 3 describes the deontic theorem prover KED. Section 4 presents KED
method of proof search, while Section 5 provides concluding remarks. Finally, the last
Section provides (a sample of) the Prolog implementation of the method and gives an
example output of the program.

2 Preliminaries

All the systems of Deontic Logic we shall be concerned with are couched in a standard
modal language consisting of a denumerable set of propositional variables and the primitive
logical connectives ¬,∧,∨,→ P,O for negation, conjunction, disjunction, conditionality,

132

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

permission and obligation, respectively. We shall use the letters A,B,C, . . . to denote
arbitrary formulas of this language. A system of Deontic Logic will be denoted by L. We
define a Kripke model for a logic L (briefly an L-model) to be a triple 〈W,R, υ〉 where
W is a non-empty set (the set of “possible worlds”), R is a binary relation on W (the
“accessibility relation” between the “actual” world and its deontically ideal versions), and
υ is a mapping from W × S to {T, F} where S is the set of all formulas of our present
language. As usual, the notion of L-model appropriate for the logic L can be obtained by
restricting R to satisfy the conditions associated with L. The following table summarizes
the logics to be dealt with.

L Definition Condition on R
OK PC + O(A→ B)→ (OA→ OB) no condition
OM OK + O(OA→ A) almost reflexive
OS4 OM + OA→ OOA transitive, almost reflexive
OUB OM + O(A→ OPA) almost symmetric, almost reflexive
OS5 OS4 + PA→ OPA euclidean, transitive
D OK + OA→ PA idealisation
DM OM + OA→ PA idealisation, almost reflexive
DS4 OS4 + OA→ PA idealisation, transitive, almost reflexive
DUB OUB + OA→ PA idealisation,almost symmetric, almost reflexive
DS5 OS5 + OA→ PA idealisation, euclidean, transitive
OB OK +A→ OPA symmetric
O5 OK + PA→ OPA euclidean
OMB OM +A→ OPA symmetric, almost reflexive
DB D +A→ OPA idealisation, symmetric
D4 DM + OA→ OOA idealisation, transitive
D5 D + PA→ OPA idealisation, euclidean

Table 1: Systems of Deontic Logic and their associated conditions.

To complete the definition, all these logics include modus ponens and the rule of O-
necessitation (if we have already proved A, then we can infer OA). The condition associ-
ated with the D-logics corresponds to the obvious requirement that every world in W has
at least an ideal version.

Remark 1: Of the logics just listed, OK,OM,OS4, OUB,OS5 are identical, respectively,
with the normal systems OK,OM,OS4, OB,OS5 of [Åqv84]. D,DM,DS4, DUB,DS5
are identical, respectively, with [Åqv84] strongly normal systems OK+ ([Han65] D and
[Ch80] D∗), OM+, OS4+, OB+ ([Han65] DB), OS5+. OMB is considered neither by
[Åqv84] nor by [Han65]. OB,O5, DB,D4, D5 are (in Chellas [Ch80] classification) nor-
mal KB-, K5- and KD-systems

As usual [Smu68] by a signed formula (S-formula) we shall mean an expression of the form
SA where A is a formula and S ∈ {T, F}. Thus TA if (υ,A) = T and FA if (υ,A) = F
for some L-model 〈W,R, υ〉 and x ∈ W. We shall denote by X,Y, Z arbitrary signed for-
mulas. By the conjugate XC of a signed formula X we shall mean the result of changing
S to its opposite (thus TA is the conjugate of FA and FA is the conjugate of TA). Two
S-formulas X,Z such that Z = XC , will be called complementary. For ease of exposition
we shall use Smullyan-Fitting’s “α, β, ν, π” unifying notation that classifies S-formulas as
shown in the following table.

133

α α1 α2 β β1 β2

TA ∧B TA TB FA ∧B FA FB

FA ∨B FA FB TA ∨B TA TB

FA→ B TA FB TA→ B FA TB

T¬A FA FA F¬A TA TA

ν ν0 π π0

TOA TA TPA TA

FPA FA FOA FA

Table 2: Classification of signed formulas according to Smullyan-Fitting’s unifying
notation.

3 The system KED

In this section we describe the proof system KED. Like resolution and tableau systems,
KED is a formalization of the search for countermodels. The key feature of KED, be-
sides its being based neither on variants of the resolution method nor on the standard “cut
free” tableau calculus but on a combination of tableau and natural deduction inference
rules which allows for a suitably restricted use of the cut rule, is that it automatically
generates models and checks them for putative contradictions using a label scheme to
bookkeep “world” paths. Briefly and informally, in the KED-based approach S-formulas
are labelled by worlds. A “world” label is a constant or a variable “world” symbol or a
“structured” sequence of world-symbols we shall call a “world-path”. Intuitively, constant
and variable world-symbols can be viewed as denoting worlds and sets of worlds respec-
tively, while a world-path conveys information about access between the worlds in it. An
S-formula SA with an associated label i (a labelled signed formula, or LS-formula, as we
shall call it) means, intuitively, that A is true (false) at the (last) world (on the path) i. In
the course of proof search, labels are manipulated in a way closely related to the seman-
tics of deontic operators and “matched” using a (specialized, logic-dependent) unification
algorithm. That two structured labels i and k are unifiable means, intuitively, that they
virtually represent the same path, i.e. any world which you could get to by the path i
could be reached by the path k and vice versa. S-formulas whose labels are unifiable turn
out to be true (false) at the same world(s) relative to the accessibility restrictions that
hold in the class of L-models. In particular, two LS-formulas X, i XC , k whose labels are
unifiable will stand for formulas which are contradictory “in the same world”.

Remark 2: The idea of using a label scheme to bookkeep “world” paths in modal theo-
rem proving goes back at least to [Fi66]. Similar, or related, ideas are found in [Fit72],
[Fit83] and [Wri85] and, more recently, in [Cat91], [JR89], [Tap87], [Wal90] and also in
the “translation” tradition of [AE92], [Ohl93], and in Gabbay’s Discipline of Labelled
Deductive Systems (see [DG93] tableau extension with labels).

3.1 Label formalism

A world-label is defined to be either (i) an element of a (non empty) set ΦC = {w1, w2, w3, . . .}
of constant world-symbols, or (ii) an element of a (non empty) set ΦV = {W1,W2,W3, . . .}
of world-variables, or (iii) a path term (k′, k) where (iiia) k′ ∈ ΦC ∪ΦV and (iiib) k ∈ ΦC

134

or k = (m′,m) where (m′,m) is a label from now on we shall use = to denote the set of
world-labels. According to the above intuitive explanation, we may think of a label i ∈ ΦC

as denoting a world, and a label i ∈ ΦV as denoting a set of worlds in some L-model. A
label i = (k′, k) may be viewed as representing a path from k to a (set of) world(s) k′

accessible from k. For example, the label (W1, w1) represents a path which takes us to
the set W1 of worlds accessible from (i.e. which are the deontically ideal version of the
“real world) w1; (w2, (W1, w1))) represents a path which takes us to a world w2 acces-
sible by any world accessible from w1, (i.e., accessible by the subpath (W1, w1)) and so
on (notice that the labels are read from right to left). For any label i = (k′, k) we call
k′ the head of i, k the body of i, and denote them by h(i) and b(i) respectively. Notice
that these notions are recursive: if b(i) denotes the body of i, then b(b(i)) will denote
the body of b(i), b(b(b(i))) will denote the body of b(b(i)); and so on. For example, if
i is (w4, (W3, (w3, (W2, w1)))), then b(i) = (W3, (w3, (W2, w1))), b(b(i)) = (w3, (W2, w1)),
b(b(b(i))) = (W2, w1), b(b(b(b(i)))) = w1. We call each of b(i), b(b(i)), etc., a segment of i.
Let s(i) denote any segment of i (obviously, by definition every segment s(i) of a label i
is a label); then h(s(i)) will denote the head of s(i). For any label i, we define the length
of i, l(i), as the number of world-symbols in i. We call a label i restricted if h(i) ∈ ΦC ,
otherwise we call it unrestricted.

3.2 Basic unifications

We define a substitution in the usual way as a function σ : ΦV → =− where =− = =−ΦV .
For two labels i, k and a substitution σ we shall use (i, k)σ to denote both that i and k
are unifiable (briefly, are σ-unifiable) and the result of their unification. On this basis we
define several specialised, logic-dependent notions of σ-unification. We define the notion
of two labels i, k being σL-unifiable in the following way:

(i, k)σO = (i, k)σ ⇐⇒
(i) at least one of i and k is restricted, and
(ii) for every s(i), s(k), l(s(i)) = l(s(k)), (s(i), s(k))σO

(i, k)σD = (i, k)σ

(i, k)σXM = (h(s(i)), h(k))σ × ((h(sm(i)), h(sm(k)))σ × (. . .× (s2(i), s2(k)σX))) ⇐⇒
2 ≤ l(i) < l(k)∀h(s(i)) : l(s(i)) ≥ l(k), (h(s(i)), h(k))σX = (h(i), h(k))σX or

(i, k)σXM = (h(s(i)), h(k))σ × ((h(sm(i)), h(sm(k)))σ × (. . .× (s2(i), s2(k)σX))) ⇐⇒
2 ≤ l(i) < l(k)∀h(s(i)) : l(s(i)) ≥ l(k), (h(s(i)), h(k))σX = (h(i), h(k))σX

where 2 ≤ m < l(i), (l(k)); st(i) denotes the segment of i on any lenght t, and X = O;D
for the O- D- logics respectively.

(i, k)σX4 = h(k)× h(b(k))× (. . .× (t∗(k)× (i, s(k))σX) . . .)) ⇐⇒
l(i) ≤ l(k) and (i, s(k))σX , h(i) ∈ ΦV , or

(i, k)σX4 = h(i)× h(b(i))× (. . .× (t∗(i)× (s(i), sk)σX) . . .)) ⇐⇒
l(k) ≤ l(i) and (s(i), k)σX , h(k) ∈ ΦV

where t∗(k) (resp. t∗(i)) denotes the element of k (resp. i) which immediately follows
s(k) (resp. s(i)) and X = O,D, for the O- and D-logics respectively

(i, k)σOS4 =
{

(i, k)σOM h(shortest{i, k} ∈ ΦC
(i, k)σO4 h(shortest{i, k} ∈ ΦV

135

(i, k)σDS4 =
{

(i, k)σDM h(shortest{i, k} ∈ ΦC
(i, k)σD4 h(shortest{i, k} ∈ ΦV

(i, k)σX5 = (h(i), h(k))σX × (b(b(i)), b(k))σL ⇐⇒
(h(i), h(k))σ and (b(b(i), b(k))σL if h(i) ∈ ΦV , or

(i, k)σX5 = (h(i), h(k))σ × (b(i), b(b(k)))σL ⇐⇒
(h(i), h(k))σ and (b(i), b(b(k)))σL if h(k) ∈ ΦV

where

σL =
{
σX or σX5 if l(i) = l(k)
σX5 if l(i) 6= l(k)

for X = O,D and, if X = O, at least one of h(i), h(k), b(i), b(k) is in ΦC .

(i, k)σOS5 = (h(i), h(k))σO × (s1(i), s1(k))σO

if l(i), l(k) > 1, (s2(i), s2(k))σO

(i, k)σDS5 = (h(i), h(k))σD × (s1(i), s1(k))σD

if l(i), l(k) > 1

The above notions are meant to mirror the conditions on R in the various L-models.
For example, the crucial notions of σO-and σD-unification are related to the idealisation
condition; thus (w2, (W1, w1)), (W3, (W2, w1)) are σD-unifiable but not σO-unifiable (since
the segments (W1, w1), (W2, w1) are not σO-unifiable by condition (i) of the above defini-
tion). The reason is that in the “non idealisable” logic OK the “denotations” of W1 and
W2 may be empty (i.e., there can be no worlds accessible from w1), which obviously makes
their unification impossible, while in the “idealisable” logic D they are not empty, which
makes them unifiable “on” any constant.

3.3 Reductions

For X = 4, B, UB, 5 we define the X-reduction, rX(i), of a label i to be a function rX :
= → = determined as follows:

r4(i) =
{

(h(i), b(b(i))) i restricted and l(i) > 3
(h(i), r4(b(i))), i unrestricted

rB(i) =
{
b(b(i)), i unrestricted and l(i)) ≤ 3 or b(i) restricted
(h(i), rB(b(i))), otherwise

rUB(i) =
{
b(b(i)), i unrestricted and l(i) ≤ 4 or b(i) restricted
(h(i), rUB(b(i))), otherwise

r5(i) =
{

(h(i), b(b(i)) if i, b(i) unrestricted
(h(i), r5b(i)) otherwise

The notion of X-reduction holds for all transitive, symmetric, almost symmetric, and
euclidean logics. As an intuitive explanation, we may think of the X-reduction of a label
i as the deletion of “irrelevant” steps from the path represented by i. Thus for example
the 4-reduction (w2, w1) of the label (w2, (W1, w1)) amounts to deleting the step to an
arbitrary world (in the set) W1 in the path from w1 to a world w2 accessible from all
worlds accessible from w1 since if R is constrained to satisfy transitivity, then this step
turns out to be irrelevant (w2 is accessible from w1 for all W1 accessible from w1).

136

3.4 General unification

We are now able to define what it means for two labels i, kto be σL-unifiable for

L =

OK : (i, k)σOK = (i, k)σO.

OM : (i, k)σOM =
{

(i, k)σO l(i) = l(k)
(i, k)σM l(i) 6= l(k)

OS4 : (i, k)σOS4 =
{

(r4(i, k))σO l(i) = l(k)
(r4(i, k))σOS4 l(i) 6= l(k)

OUB : (i, k)σOUB = (rUB(i, k))σOK

OS5 : (i, k)σOS5 = (i, k))σOS5

D : (i, k)σD = (i, k)σD

DM : (i, k)σDM =
{

(i, k)σD l(i) = l(k)
(i, k)σM l(i) 6= l(k)

DS4 : (i, k)σDS4 =
{

(r4(i, k))σO l(i) = l(k)
(r4(i, k))σDS4 l(i) 6= l(k)

DUB : (i, k)σDUB = (rUB(i, k))σD

DS5 : (i, k)σDS5 = (i, k)σDS5

DMB : (i, k)σDMB = (rUB(i, k))σDM

D4 : (i, k)σD4 =
{

(r4(i, k))σD l(i) = l(k)
(r4(i, k))σD4 l(i) 6= l(k)

D5 : (i, k)σD5 =
{

(r5(i, k))σO l(i) = l(k)
(r4(i, k))σD5 l(i) 6= l(k)

OMB : (i, k)σOMB = (rUB(i, k))σOM

O5 : (i, k)σO5 =
{

(r5(i, k))σO l(i) = l(k)
(r5(i, k))σO5 l(i) 6= l(k)

where rX(i, k) denotes either rX(i) or rX(k) or both.

3.4 Rules of inference

The rules of KED will be defined for LS-formulas. Two LS-formulas X, i, Z, k such that
Z = XC and (i, k)σL will be called σL − complementary. The following inference rules
hold for all the logics we are considering (i, i′, k stand for arbitrary labels).

α, i
α1, i

α, i
α2, i

β, i
βC1 , k

β2, (i, k)σL
[(i, k)σL]

β, i
βC2 , k

β1, (i, k)σL
[(i, k)σL]

ν, i
ν0, (i′, i)

[(i′, i) unrestricted and i′ new] π, i
π0, (i′, i)

[(i′, i) restricted and i′ new]

X, i XC , i
PB [i restricted]

X, i
XC , k
×(i, k)σL

PNC [(i, k)σL]

137

Here the α-rules are just the usual linear branch-expansion rules of the tableau method,
while the β-rules correspond to such common natural inference patterns as modus ponens,
modus tollens, etc. The rules for the modal operators bear a not unexpected resemblance
to the familiar quantifier rules of the tableau method. “i′ new” in the proviso for the ν- and
π-rule obviously means: i′ must not have occurred in any label yet used. Notice that in all
inferences via an α-rule the label of the premise carries over unchanged to the conclusion,
and in all inferences via a β-rule the labels of the premises must be σL-unifiable, so that
the conclusion inherits their unification. PB (the “Principle of Bivalence”) represents the
(LS-version of the) semantic counterpart of the cut rule of the sequent calculus (intuitive
meaning: a formula A is either true or false in any given world). PNC (the “Principle
of Non-Contradiction”) corresponds to the familiar branch-closure rule of the tableau
method, saying that from a contradiction of the form (the occurrence of a pair of σL-
complementary LS-formulas) X, i, XC , k on a branch we may infer the closure of the
branch. The (i, k)σL in the “conclusion” of PNC means that the contradiction holds “in
the same world”.

3.5 Soundness and completeness

Soundness and completeness of KED derive from the following

THEOREM 1 `L A⇔`KED(L) A for each L

where as usual we write `L A to mean that there is a proof of A in the axiomatic L and
`KED(L) A is used to denote that there is a proof of A in the KED version of L. For the
proof of this theorem see [AG93].

4 Proof search

As usual with refutation methods, a proof of a formula A of L consists of attempting to
construct a countermodel for A by assuming that A is false in some arbitrary L-model.
Every successful proof discovers a contradiction in the putative countermodel. In this
section we describe an algorithm which does this job and that can be easily implemented
in Prolog (see the last section). In what follows by a KED-tree we shall mean a tree
generated by the inference rules of KED. A branch τ of a KED-tree will be said to
be σL-closed if it ends with an application of PNC. A KED-tree T will be said to be
σL-closed if all its branches are σL-closed. Finally, by a L-proof of a formula A we shall
mean σL-closed KED-tree starting with FA, i. Given a branch τ of KED-tree, we shall
call a LS-formula X, i E-analysed in τ if either (i) X is of type α and both α1, i and α2, i
occur in τ ; or (ii) X is of type β and one of the following conditions is satisfied: (a) if
βC1 , k occurs in τ and (i, k)σL, then also β2, (i, k)σL occurs in τ , (b) if βC2 , k occurs in τ
and (i, k)σL, then also β1, (i, k)σL occurs in τ ; or (iii) X is of type ν and ν0, (i′, i) occurs
in τ for some i′ ∈ ΦV not previously occurring in τ , or (iv) X is of type π and π0, (i′, i)
occurs in τ for some i′ ∈ ΦC not previously occurring in τ . We shall call a branch τ of a
KED-tree E-completed if every LS-formula in it is E-analysed and there are no comple-
mentary formulas which are not σL-complementary. Finally, we shall call a LS-formula
X, i of type β fulfilled in a branch τ if either β1, i

′ or β2, i
′ occur in τ , where either (i)

i′ = i, or (ii) i′ is obtained from i by instantiating h(i) to a constant not occurring in i, or

138

(iii) i′ = (i, k)σL for some βCi, k, i = 1, 2, such that (i, k)σL. We shall say that a branch
τ of a KED-tree is completed if it is both E-completed and all the LS-formulas of type
β in it either are fulfilled or cannot be fulfilled.. We shall call a KED-tree completed
if every branch is completed. Let us denote by ∆ (delta) the set of LS-formulas which
occur non analysed, by Λ (lambda) the set of analysed LS-formulas, and by L the set of
labels. The KED algorithm runs as follows (the quotations in brackets refer to the Prolog
implementation in the section 5). To prove a formula A of L

STEP 0. Assign to A an arbitrary constant label i, and put A,i in ∆ and its label i in
L.

STEP 1 (cke 1). If a pair of σL-complementary L-formulas occurs in ∆, then the tree
is σL-closed. A is a theorem of L.

STEP 2 (cke 3). Every literal is deleted from ∆, and added to Λ. If ∆ is empty, then
the tree is completed.

STEPS 3, 4 (cke 5,6). For each formula π,i (ν,i) in ∆, (i) generate a new restricted
(unrestricted) label (i′,i) and add it to L; (ii) delete π,i (ν,i) from ∆; (iii) add π0,(i′,i)
(ν0,(i′,i)) to ∆; and (iv) add π,i (ν,i) to Λ.

STEP 5 (cke 7). For each formula α,i in ∆, (i) add α1,i, and α2,i to ∆; (ii) delete α,i
from ∆; and (iii) add α,i to Λ.

STEP 6 (cke 8). For each formula β,i in ∆, such that either β1,k or β2,k is in ∆ ∪ Λ
and (i, k) σL, (i) delete β,i from ∆; and (ii) add β,i to Λ.

STEP 7 (cke 9,10). For each formula β,i in ∆, such that either βC1 ,k orβC2 ,k is in ∆∪Λ
and (i, k) σL for some label k, (i) add β2(i,k)σL or β1(i, k)σL to ∆; (ii) delete β,i from ∆;
and (iii) add the labels resulting from the σL-unification to L; and (iv) add β,i to Λ.

STEP 8.1 (cke 11). For each formula β,i in ∆, if ∆∪Λ does not contains formulas βC1 ,k
such that i, k are not σL-unifiable, then form sets ∆1 = ∆ ∪ β1,m and ∆2 = ∆ ∪ βC1 ,m
where (i,m)σL, and m is a given restricted label.

STEP 8.2 (cke 12). For each formula β,i in ∆, if ∆ ∪ Λ does not contains formulas
βC2 ,k so that i, k are not σL-unifiable, then form sets ∆1 = ∆∪β2,m and ∆2 = ∆∪βC2 ,m
where (i,m)σL, and m is a given restricted label.

Remark 3:The steps 8.1 and 8.2 are logic and label dependent. This mean that if the label
of X is restricted, its immediate subformulas have the same label as X, otherwise we have
to deal with two cases: a) search whether L contains restricted labels which σL-unify with
the label of X; if so the rule is applied to all such labels; b) if L is an idealisable logic then,
if the search fails, h(i) is instantiated to a new constant label not previously occurring.

STEP 9 (cke14). If Λ contains two complementary but not σL-complementary for-
mulas, search in L for restricted labels which σL-unify with both the labels of the com-
plementary formulas; if we find such labels then the tree is closed. A is a theorem of
L.

STEP 10 (cke15). If Λ contains two complementary but not σL-complementary for-
mulas, search in L for restricted labels which σL-unify with both the labels of the comple-
mentary formulas; if we do not find such labels then the tree is completed and A is not a
theorem of L

This procedure is based on the procedure for canonical KED-trees. A KED-tree is canon-

139

ical iff all the applications of 1-premise rule come before the applications of 2-premise rules,
which preceed the applications of the 0-premise rule. Some interessing property of canon-
ical KED-trees are stated in the followings

THEOREM 2. A canonical KED-tree always terminates.

THEOREM 3. A KED-tree for a formula A is closed iff the canonical KED-tree for A is
closed.

The proof of theorem 2 derives from the fact that at each step there are at most a finite
number of new LS-formulas of less complexity, and that the number of labels which can
occur in the KED-tree for a formula A (of L) is limited by the number of modal operators
belonging to A. The proof of theorem 3 follows from the fact that a canonical KED-tree
is a KED-tree and that a KED-tree explores all the possibile alternatives that can imply
closure (for detail see [ACG94b]).

Remark 4:The above procedure closely follows the canonical restriction of Mondadori’s
([Mon88]) classical proof system KE in applying the cut rule PB only to immediate
signed subformulas of LS-formulas of type which occur (unfulfilled) in the chosen branch,
and only when the branch has been E-completed. As D’Agostino and Mondadori ([DM94])
proved, the canonical restriction of KE retains all the desirable properties of the analytic
tableaux (subformula property and easy proof search), while uniformly and essentially
improving on them from the point of view of computational efficiency.

5 Final remarks

In our opinion, the interest in the system thus presented is that it offers several advantages
over most automated theorem proving systems for non-classical logics currently available.
Here we mention only a few:

• it requires no preprocessing of the input formulas (i.e., no conversion to any normal
form or translation procedure);

• it provides a simple and uniform treatment of a wide variety of normal modal logics
(see [AG94]);

• it supports a deduction method closely related to the semantics of modal operators;

• it directly implements familiar inference patterns and yields proofs in a good natural
inference style;

• it avoids loop-checking and reduplication (see Section 4 above);

• it works for modal logics whose characteristic semantic properties have no first-order
characterization (such as the Gödel-Löb logic of provability [Bo79]).

Furthermore, as said before it provides an appropriate algorithmic proof framework for
more expressive and sophisticated deontic logics which have become of some importance
in the Artificial Intelligence and Law field, such as deontic logics of conditional obligation
or Jones and Pörn [JP85] system DL (as indicated in [ACG94a]).

140

6 A sample of a KED Prolog program

The following Prolog implementation of KED is based on that of the classical proof system
KE by Pitt and D’Agostino (see [DP94]). KED selects a deontic logic L and it runs the
KED rules for L. If the input formula is a theorem of L the program will output the entire
reserch path with the final answer “closed”, and KED stops to run. If the input formula
is not L-satisfiable, KED selects another logic and try to find the solution. The complete
Prolog version of KEM (“M” for “modal”) can prove formulas of the following logics
K,D, T,K4, D4, S4,K5, D5,KB,DB,B,K4B,K45, D45, and S5 (see [ACG94b]). The
“:” operator attaches labels to formulas and “ labeltree()” records the labels. In this
way the labels have a semantical control concurrent function over the syntactical inference
rules. In the program ->, +, &, ~ , $, @ stand respectively for →,∨,∧,¬,O,P.

Example

We show the Prolog output of the D-theorem

(PA ∨ OB)→ P(A ∨B)

| ?- pr(d,[~((@a + $b) -> @(a+b))]).
output
[i(w(1),w(1)): ~ (@a+ $b-> @ (a+b))]<--->[]
alpha elimination
[i(w(1),w(1)): @a+ $b,i(w(1),w(1)): ~ @ (a+b)] <---> [i(w(1),w(1)): ~ (@a+ $b-> @(a+b))]
ni elimination
[i(w(1),w(1)): @a+ $b,i(vw(1),i(w(1),w(1))): ~ (a+b)] <---> [i(w(1),w(1)): ~ @ (a+b),i(w(1),w(1)): ~ (@a+ $b->
@ (a+b))]
alpha elimination
[i(w(1),w(1)): @a+ $b,i(vw(1),i(w(1),w(1))): ~a,i(vw(1),i(w(1),w(1))): ~b]<--->[i(vw(1),i(w(1),w(1))): ~ (a+b),
i(w(1),w(1)): ~ @ (a+b),i(w(1),w(1)): ~ (@a+ $b-> @ (a+b))]
literal
[i(w(1),w(1)): @a+ $b,i(vw(1),i(w(1),w(1))): ~b]<---> [i(vw(1),i(w(1),w(1))): ~a,i(vw(1),i(w(1),w(1))): ~ (a+b),
i(w(1),w(1)): ~ @ (a+b),i(w(1),w(1)): ~ (@a+ $b-> @ (a+b))]
literal
i(w(1),w(1)): @a+ $b, i(w(1),w(1)): @a unify in d
pb1
branch 1
[i(w(1),w(1)): @a, i(w(1),w(1)): @a+ $b]<---> [i(vw(1),i(w(1),w(1))): ~b,i(vw(1), i(w(1),w(1))): ~a,i(vw(1),
i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ @ (a+b),i(w(1),w(1)): ~ (@a+ $b-> @ (a+b))]
pi elimination
[i(w(2),i(w(1),w(1))):a, i(w(1),w(1)): @a+ $b]<--->[i(w(1),w(1)): @a,i(vw(1),i(w(1),w(1))): ~b,i(vw(1),
i(w(1),w(1))): ~a,i(vw(1),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ @ (a+b),i(w(1),w(1)): ~ (@a+ $b-> @ (a+b))] literal
i(vw(1),i(w(1),w(1))): ~a, i(w(2),i(w(1),w(1))):a unify in d
[i(w(2),i(w(1),w(1))):a,i(w(1),w(1)): @a,i(vw(1),i(w(1),w(1))): ~b,i(vw(1),i(w(1),w(1))): ~a,i(vw(1), i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ @ (a+b),i(w(1),w(1)): ~ (@a+ $b-> @ (a+b))]***closed
branch 2
[i(w(1),w(1)): ~ @a,i(w(1),w(1)): @a+ $b]<---> [i(vw(1),i(w(1),w(1))): ~b,i(vw(1),i(w(1),w(1))): ~a, i(vw(1),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ @ (a+b),i(w(1),w(1)): ~ (@a+ $b-> @ (a+b))]
ni elimination
[i(vw(1),i(w(1),w(1))): ~a,i(w(1),w(1)): @a+ $b]<---> [i(w(1),w(1)): ~ @a,i(vw(1),i(w(1),w(1))): ~b, i(vw(1),i(w(1),w(1))): ~a,i(vw(1),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ @ (a+b),i(w(1),w(1)):
~ (@a+ $b-> @ (a+b))]
literal
i(w(1),w(1)): @a+ $b, i(w(1),w(1)): ~ @a unify in d
[i(w(1),w(1)): @a+ $b]<--->[i(vw(1),i(w(1),w(1))): ~a, i(w(1),w(1)): ~ @a, i(vw(1),i(w(1),w(1))): ~b, i(vw(1),i(w(1),w(1))): ~a, i(vw(1),i(w(1),w(1))): ~ (a+b), i(w(1),w(1)): ~ @ (a+b),i(w(1),w(1)): ~ (@a+ $b-> @ (a+b))] beta elimination 1
[i(w(1),w(1)): $b]<--->[@a+ $b,i(vw(1),i(w(1),w(1))): ~a,i(w(1),w(1)): ~ @a, i(vw(1),i(w(1),w(1))): ~b, i(vw(1),i(w(1),w(1))): ~a, i(vw(1),i(w(1),w(1))): ~ (a+b), i(w(1),w(1)): ~ @ (a+b), i(w(1),w(1)): ~ (@a+ $b-> @ (a+b))] ni elimination
[i(vw(1),i(w(1),w(1))):b]<--->[i(w(1),w(1)): $b,@a+ $b,i(vw(1),i(w(1),w(1))): ~a,i(w(1),w(1)): ~ @a, i(vw(1),i(w(1),w(1))): ~b,i(vw(1),i(w(1),w(1))): ~a,i(vw(1),i(w(1),w(1))): ~ (a+b),
i(w(1),w(1)): ~ @ (a+b),i(w(1),w(1)): (@a+ $b-> @ (a+b))]
literal
i(vw(1),i(w(1),w(1))): ~b, i(vw(1),i(w(1),w(1))):b unify in d [i(vw(1),i(w(1),w(1))):b,i(w(1),w(1)): $b,@a+ $b,i(vw(1),i(w(1),w(1))): ~a, i(w(1),w(1)): ~ @a,
i(vw(1),i(w(1),w(1))): ~b,i(vw(1),i(w(1),w(1))): ~a, i(vw(1),i(w(1),w(1))): ~ (a+b),i(w(1),w(1)): ~ @ (a+b), i(w(1),w(1)): ~(@a+ $b-> @ (a+b))]***closed
unsatisfiable in d

in 200 msecs.

141

