
A Family of Defeasible Reasoning Logics and its
Implementation

G. Antoniou, D. Billington, G. Governatori, M.J. Maher and A. Rock 1

Abstract. Defeasible reasoning is a direction in nonmonotonic rea-
soning that is based on the use of rules that may be defeated by other
rules. It is a simple, but often more efficient approach than other non-
monotonic reasoning systems. This paper presents a family of defea-
sible reasoning formalisms built around Nute’s defeasible logic. We
describe the motivations of these formalisms and derive some basic
properties and interrelationships. We also describe a query answering
system that supports these formalisms and is available on the World
Wide Web.

1 Introduction

Defeasible reasoning is a direction in nonmonotonic reasoning [13].
Defeasible logics were introduced and developed by Nute over sev-
eral years [17]. These logics perform defeasible reasoning, where a
conclusion supported by a rule might be overturned by the effect of
another rule. Roughly, a propositionp can be defeasibly proved only
when a rule supports it, and it has been demonstrated that no rule
supports¬p. These logics also have a monotonic reasoning compo-
nent, and a priority on rules. One advantage of Nute’s design was
that it was aimed at supporting efficient reasoning, and in our work
we follow that philosophy.

In previous work we have studied a particular, “standard” de-
feasible logic,DL, and derived results concerning its representa-
tional properties [1] and proof theory [10], relationships to other for-
malisms [11, 3], and computational complexity [12].

Logics for knowledge representation and, in particular, non-
monotonic logics have developed greatly over the past 20 years.
Many logics have been proposed, and a deeper understanding of the
advantages and disadvantages of particular logics has been devel-
oped. There are also, finally, some indications that these logics can
be usefully applied [15, 18].

Unfortunately, it appears that no single logic is appropriate in all
situations, or for all purposes. History clearly indicates that while
one logic may achieve desired results in some situations, in other
situations the outcome is not as successful. This is, no doubt, one
reason for the proliferation of non-monotonic logics.

Furthermore, even with a fixed syntax and a common motivat-
ing intuition, reasonable people can disagree on the semantics of
the logic. This can be seen in the literature on semantics of logic
programs with negation, for example, but the point was made more
sharply by [21] who showed in several different ways a “clash of in-
tuitions” for a simple language describing multiple inheritance with

1 School of Computing and Information Technology, Griffith University,
Nathan, QLD 4111, Australia.
{ga,db,guido,mjm,arock}@cit.gu.edu.au

exceptions. So it appears that no single logic, with a fixed semantics,
will be appropriate.

One way to address this problem is to develop logics that are “tun-
able” to the situation. That is, to develop a framework of logics in
which an appropriate logic can be designed. In fact, families of ap-
proaches have emerged around the classical nonmonotonic systems
of circumscription [14] and default logic [19]. In this paper we show
how the original logicDL can be modified in different directions, to
accommodate different intuitions. In particular, we show how team
defeat (or absence of it) and ambiguity propagation (or blocking) can
be accommodated in our framework. We also show that these ideas
are orthogonal and may be combined as appropriate. A central result
shows the relationship between the various approaches in the form of
increasing deductive power.

As mentioned before one of the advantages of defeasible reasoning
is that it was designed to support efficient reasoning. Therefore pow-
erful implementations can be developed. In this paper we report on an
implementation that supports query answering for defeasible logics.
The experimental evaluation shows that it can deal with knowledge
bases of the order of 100,000 defeasible rules with a response time
of approx. 1 minute [12]. In this paper we will not focus on the ex-
perimental evaluation, but on other interesting features of the system.
For example, it has been implemented in a functional programming
language in a way that mirrors the inference conditions of the for-
malisms it supports. Therefore it can easily be extended to support
further variants.

2 Defeasible Logic

We begin by outlining the constructs in defeasible logics [17]. We
then define the inference rules of a particular defeasible logicDL
that has received the most attention.

2.1 A Language of Defeasible Reasoning

A defeasible theoryD is a triple(F, R, >) whereF is a set of literals
(called facts), R a finite set of rules, and> a superiority relation
on R. In expressing the proof theory we consider only propositional
rules. Rules containing free variables are interpreted as the set of their
variable-free instances.

There are three kinds of rules:Strict rulesare denoted byA → p,
and are interpreted in the classical sense: whenever the premises are
indisputable (e.g. facts) then so is the conclusion. An example of a
strict rule is “Emus are birds”. Written formally:

emu(X) → bird(X).

Inference from facts and strict rules only is calleddefinite inference.
Facts and strict rules are intended to define relationships that are def-
initional in nature. Thus defeasible logics contain no mechanism for
resolving inconsistencies in definite inference.

Defeasible rulesare denoted byA ⇒ p, and can be defeated by
contrary evidence. An example of such a rule is

bird(X) ⇒ flies(X)

which reads as follows: “Birds typically fly”.
Defeatersare denoted byA ; p and are used to prevent some

conclusions. In other words, they are used to defeat some defeasible
rules by producing evidence to the contrary. An example is the rule

heavy(X) ; ¬flies(X)

which reads as follows: “If an animal is heavy then it may not be
able to fly”. The main point is that the information that an animal is
heavy is not sufficient evidence to conclude that it doesn’t fly. It is
only evidence that the animalmaynot be able to fly.

A superiority relationon R is an acyclic relation> on R (that is,
the transitive closure of> is irreflexive). Whenr1 > r2, thenr1 is
calledsuperior to r2, andr2 inferior to r1. This expresses thatr1

may overrider2. For example, given the defeasible rules

r : bird(X) ⇒ flies(X)
r′ : brokenWing(X) ⇒ ¬flies(X)

which contradict one another, no conclusive decision can be made
about whether a bird with a broken wing can fly. But if we introduce
a superiority relation> with r′ > r, then we can indeed conclude
that it cannot fly.

2.2 A Defeasible Logic

As an example of a defeasible logic, we consider the logic of [16],
which has been investigated in [1, 10]. In this presentation we use the
formulation given in [5]. We denote this logic byDL.

A conclusionof a defeasible theoryD is a tagged literal. Conven-
tionally [17, 5] there are four tags, so a conclusion has one of the
following four forms:

• +∆q, which is intended to mean thatq is definitely provable in
D.

• −∆q, which is intended to mean that we have proved thatq is not
definitely provable inD.

• +∂q, which is intended to mean thatq is defeasibly provable in
D.

• −∂q which is intended to mean that we have proved thatq is not
defeasibly provable inD.

Given a setR of rules, we denote the set of all strict rules inR
by Rs, the set of strict and defeasible rules inR by Rsd, the set
of defeasible rules inR by Rd, and the set of defeaters inR by
Rdft. R[q] denotes the set of rules inR with consequentq. In the
following ∼ p denotes the complement ofp, that is,∼ p is ¬p if
p is an atom, and∼ p is q if p is ¬q. A rule r consists of itsan-
tecedentA(r) (written on the left;A(r) may be omitted if it is the
empty set) which is a finite set of literals, an arrow, and itsconse-
quentC(r) which is a literal. In writing rules we omit set notation
for antecedents. Provability is defined below. It is based on the con-
cept of aderivation(or proof) in D = (F, R, >). A derivation is a
finite sequenceP = P (1), . . . , P (n) of tagged literals satisfying the

following conditions. The conditions are essentially inference rules
phrased as conditions on proofs.P (1..i) denotes the initial part of
the sequenceP of lengthi.

+∆: If P (i + 1) = +∆q then either
q ∈ F or
∃r ∈ Rs[q] ∀a ∈ A(r) : +∆a ∈ P (1..i)

−∆: If P (i + 1) = −∆q then
q 6∈ F and
∀r ∈ Rs[q] ∃a ∈ A(r) : −∆a ∈ P (1..i)

+∂: If P (i + 1) = +∂q then either
(1) +∆q ∈ P (1..i) or
(2) (2.1)∃r ∈ Rsd[q] ∀a ∈ A(r) : +∂a ∈ P (1..i) and

(2.2)−∆ ∼q ∈ P (1..i) and
(2.3)∀s ∈ R[∼q] either

(2.3.1)∃a ∈ A(s) : −∂a ∈ P (1..i) or
(2.3.2)∃t ∈ Rsd[q] such that

∀a ∈ A(t) : +∂a ∈ P (1..i) andt > s

Let us illustrate this definition. To show thatq is provable defea-
sibly we have two choices: (1) We show thatq is already definitely
provable; or (2) we need to argue using the defeasible part ofD as
well. In particular, we require that there must be a strict or defeasi-
ble rule with headq which can be applied (2.1). But now we need to
consider possible “counterattacks”, that is, reasoning chains in sup-
port of∼q. To be more specific: to proveq defeasibly we must show
that∼q is not definitely provable (2.2). Also (2.3) we must consider
the set of all rules which are not known to be inapplicable and which
have head∼ q (note that here we consider defeaters, too, whereas
they could not be used to support the conclusionq; this is in line
with the motivation of defeaters given above). Essentially each such
rule s attacks the conclusionq. For q to be provable, each such rule
s must be counterattacked by a rulet with headq with the following
properties: (i)t must be applicable at this point, and (ii)t must be
stronger than (i.e. superior to)s. Thus each attack on the conclusion
q must be counterattacked by a stronger rule.

−∂: If P (i + 1) = −∂q then
(1)−∆q ∈ P (1..i) and
(2) (2.1)∀r ∈ Rsd[q] ∃a ∈ A(r) : −∂a ∈ P (1..i) or

(2.2)+∆ ∼q ∈ P (1..i) or
(2.3)∃s ∈ R[∼q] such that

(2.3.1)∀a ∈ A(s) : +∂a ∈ P (1..i) and
(2.3.2)∀t ∈ Rsd[q] either

∃a ∈ A(t) : −∂a ∈ P (1..i) or t 6> s

The elements of a derivation are calledlinesof the derivation. We
say that a tagged literalL is provablein D = (F, R, >), denoted by
D ` L, iff there is a derivation inD such thatL is a line ofP .

DL is closely related to several non-monotonic logics [2]. In par-
ticular, the “directly skeptical” semantics of non-monotonic inheri-
tance networks [7] can be considered an instance of inference inDL
once an appropriate superiority relation, derived from the topology
of the network, is fixed [4].DL is a conservative logic, in the sense
of Wagner [22].

2.3 The Principle of Strong Negation

The purpose of the−∆ and−∂ inference rules is to establish that it
is not possible to prove a corresponding positive tagged literal. These

rules are defined in such a way that all the possibilities for proving
+∂q (for example) are explored and shown to fail before−∂q can
be concluded. Thus conclusions with these tags are the outcome of a
constructive proof that the corresponding positive conclusion cannot
be obtained. As a result, there is a close relationship between the
inference rules for+∂ and−∂, (and also between those for+∆
and−∆). The structure of the inference rules is the same, but the
conditions are negated in some sense. We say that the inference rule
for +∂ (−∂) is thestrong negationof the inference rule for−∂ (+∂).

The strong negation of a formula is closely related to the function
that simplifies a formula by moving all negations to an innermost
position in the resulting formula. It is defined as follows.

sneg(A ∧B) = sneg(A) ∨ sneg(B)
sneg(A ∨B) = sneg(A) ∧ sneg(B)
sneg(∃x A) = ∀x sneg(A)
sneg(∀x A) = ∃x sneg(A)
sneg(+∂p ∈ X) = −∂p ∈ X
sneg(−∂p ∈ X) = +∂p ∈ X
sneg(¬A) = ¬sneg(A)
sneg(A) = ¬A if A is a pure formula

A pure formula is a formula that does not contain a tagged literal.
Pairs of tags other than+∂,−∂ are treated in an analogous manner
to +∂ and−∂. The strong negation of the applicability condition of
an inference rule is a constructive approximation of the conditions
where the rule is not applicable.

We are led to consider the following Principle of Strong Negation:

For each pair of tags such as+∂,−∂, the inference rule for
+∂ should be the strong negation of the inference rule of−∂
(and vice versa).

ClearlyDL satisfies this principle, as do all the logics we will present
in the following. On the other hand, in Nute’s framework [17] logics
may violate it.

3 New Variants of Defeasible Logic

We now develop several variations ofDL. Our interest here is not to
develop definitive defeasible logics, but to demonstrate the flexibility
of the framework. [11] have already defined an extension ofDL to
allow a failure operator in the body of rules without disturbing the
semantics ofDL on theories without this operator.

3.1 Removing Team Defeat

The defeasible logic we have considered so far incorporates the idea
of team defeat. That is, an attack on a rule with headp by a rule
with head∼ p may be defeated by adifferentrule with headp (see
inference rule+∂). Even though the idea of team defeat is natural, it
is worth noting that several related approaches, such as LPwNF [6]
and most argumentation frameworks, do not adopt this idea.

It is easy to define a variant ofDL that does not include team
defeat. All we need to change in the inference condition+∂ is clause
(2.3.2) that should now look as follows:

(2.3.2)r > s

In other words, an attack on ruler by rules can only be defended by
r itself, in the sense thats is weaker thanr. We use the tag∂ntd to
refer to defeasible provability in this variant.

3.2 Ambiguity Propagation

We call a literalambiguousif there is a chain of reasoning that sup-
ports the conclusion thatp is true, another that supports the conclu-
sion that¬p is true, and the superiority relation does not resolve this
conflict. The following is a classic example of non-monotonic inher-
itance.

Example 1
r1 :⇒ quaker r5 : republican ⇒ footballfan
r2 :⇒ republican r6 : pacifist ⇒ antimilitary
r3 : quaker ⇒ pacifist r7 : footballfan ⇒ ¬antimilitary
r4 : republican ⇒ ¬pacifist

The priority relation is empty.

pacifist is ambiguoussince the combination ofr1 andr3 support
pacifist and the combination ofr2 andr4 support¬pacifist . Simi-
larly, antimilitary is ambiguous.

In DL, the ambiguity ofpacifist results in the conclusions
−∂pacifist and−∂¬pacifist . Sincer6 is consequently not appli-
cable,DL concludes+∂¬antimilitary . This behaviour is called
ambiguity blocking, since the ambiguity ofantimilitary has been
blocked by the conclusion−∂pacifist and an unambiguous conclu-
sion aboutantimilitary has been drawn.

A preference for ambiguity blocking or ambiguity propagating be-
haviour is one of the properties of non-monotonic inheritance nets
over which intuitions can clash [21]. Stein [20] argues that ambiguity
blocking results in an unnatural pattern of conclusions in extensions
of the above example. Ambiguity propagation results in fewer con-
clusions being drawn, which might make it preferable when the cost
of an incorrect conclusion is high. For these reasons an ambiguity
propagating version ofDL is of interest.

In the example above, the ambiguity blocking behaviour ofDL
was caused by the following observation:pacifist is ambiguous, so
−∂pacifist is derivable. Then−∂pacifist is used to invalidate rule
r6, thus leaving the conclusion¬antimilitary without any counter-
arguments.

The solution to achieve ambiguity propagation behaviour is to sep-
arate the invalidation of a counterargument from the derivation of−∂
tagged literals. We do so by introducing a third level of provability
(besides definite and defeasible provability), calledsupportand de-
noted by

∫
. Intuitively, a literalp is supported if there is a chain of

reasoning that would lead us to concludep in the absence of conflicts.
In the example above,pacifist is supported although−∂pacifist
can be derived.

Thus in our modification of the+∂ condition, a counterargument
may be disregarded only if a literal in its body is known not to be
supported (−

∫
), which is stronger than the previous condition that

made it sufficient for a literal in the body not be defeasibly provable.
First we modify the+∂ condition (the−∂ condition is modified ac-
cordingly following the Principle of Strong Negation).

+∂am: If P (i + 1) = +∂amq then either
(1) +∆q ∈ P (1..i) or
(2) (2.1)∃r ∈ Rsd[q] ∀a ∈ A(r) : +∂ama ∈ P (1..i) and

(2.2)−∆ ∼q ∈ P (1..i) and
(2.3)∀s ∈ R[∼q] either

(2.3.1)∃a ∈ A(s) : −
∫

a ∈ P (1..i) or
(2.3.2)∃t ∈ Rsd[q] such that

∀a ∈ A(t) : +∂ama ∈ P (1..i) andt > s

Next we define the inference conditions for support. If we ignore
the superiority relation we could define it simply as follows.

If P (i + 1) = +
∫

q then either
+∆q ∈ P (1..i) or
∃r ∈ Rsd[q] ∀a ∈ A(r) : +

∫
a ∈ P (1..i)

However, in situations where two conflicting rules can be applied
and one rule is inferior to another, the inferior rule should not be
counted as supporting its conclusion. Thus we refine the inference
rule as follows (−

∫
is defined accordingly):

+
∫

: If P (i + 1) = +
∫

q then either
+∆q ∈ P (1..i) or
∃r ∈ Rsd[q] such that

∀a ∈ A(r) : +
∫

a ∈ P (1..i), and
∀s ∈ R[∼q] either

∃a ∈ A(s) : −∂ama ∈ P (1..i) or
r > s

3.3 Combination

It is also worth noting that several features can be easily integrated
in our framework. Here we show the design of an ambiguity propa-
gating defeasible logic without team defeat. To do so we modify the
inference conditions for+∂am and−∂am as follows2:

+∂am,ntd: If P (i + 1) = +∂am,ntdq then either
(1) +∆q ∈ P (1..i) or
(2) (2.1)∃r ∈ Rsd[q] ∀a ∈ A(r) : +∂am,ntda ∈ P (1..i) and

(2.2)−∆ ∼q ∈ P (1..i) and
(2.3)∀s ∈ R[∼q] either

(2.3.1)∃a ∈ A(s) : −
∫

a ∈ P (1..i) or
(2.3.2)r > s

−∂am,ntd: If P (i + 1) = −∂am,ntdq then
(1)−∆q ∈ P (1..i) and
(2) (2.1)∀r ∈ Rsd[q] ∃a ∈ A(r) : −∂am,ntda ∈ P (1..i) or

(2.2)+∆ ∼q ∈ P (1..i) or
(2.3)∃s ∈ R[∼q] such that

(2.3.1)∀a ∈ A(s) : +
∫

a ∈ P (1..i) and
(2.3.2) notr > s

It is quite obvious that+∂am is modified to+∂am,ntd the same
way that+∂ was modified to+∂ntd. This observation underscores
the orthogonality of the two concepts (team defeat, ambiguity prop-
agation).

3.4 Properties and Relationships

First we show that all logics we have described above satisfy the
basic property ofcoherence:

Theorem 1 There is no defeasible theoryT and literal q such that
T ` +δa andT ` −δq, whereδ denotes any of the tags we have
presented (∆, ∂, ∂ntd, ∂am, ∂am,ntd,

∫
).

Next we show that there exists a chain of increasing expressive
power among several of the logics.

Theorem 2 +∆ ⊂ +∂am,ntd ⊂ +∂am ⊂ +∂ ⊂ +
∫

.
For each inclusion there are defeasible theories in which the in-

clusion is strict.

2 The inference conditions+
∫

and−
∫

must be modified to use+∂am,ntd

and−∂am,ntd instead of+∂am and−∂am respectively.

We wish to point out that this result is deeper that it may look on
the surface. For example, the relation+∂a,ntd ⊂ +∂a appears trivial
since the absence of team defeat makes the logic weaker. But notice
that when the logic fails to prove a literalp and instead proves−∂p,
then that result may be used by the logic to prove another literalq that
could not be proven ifp were provable. In fact it is easily seen that
defeasible provability in the original defeasible logic without team
defeat isnot weaker than defeasible provability with team defeat.
Consider the following example:

Example 2
a, b, c, d
r1 : a ⇒ p r4 : d ⇒ ¬p
r2 : b ⇒ p r5 : p ⇒ ¬q
r3 : c ⇒ ¬p r6 :⇒ q
r1 > r3, r2 > r4

Thenq is not defeasibly provable inDL (in the sense of−∂q), but
defeasibly provable inDL without team defeat (+∂amq).

As we have mentioned before, all inference conditions in our
framework follow the Principle of Strong Negation. Together with
the previous theorem it follows:

Theorem 3 −∆ ⊃ −∂am,ntd ⊃ −∂am ⊃ −∂ ⊃ −
∫

.
For each inclusion there are defeasible theories in which the in-

clusion is strict.

4 Implementation

The formalisms illustrated above have been implemented inDeimos,
a query answering system. It is a suite of tools that (i) supports our
ongoing research into defeasible reasoning; and (ii) is provided for
public use to apply defeasible reasoning to practical problems. In
accordance with these goals,Deimoswas designed to satisfy, in de-
creasing order of significance, the following requirements: (1) cor-
rectness; (2) traceability; (3) flexibility and maintability; and (4) ef-
ficiency. With these goals in mind, Haskell was chosen as the imple-
mentation language.

The most important part of the system is the prover, which at-
tempts to prove a literal at a selected level of proof (definite, defeasi-
ble, support) in the appropriate variant (with or without team defeat
and ambiguity propagation), using backward chaining. This must be
traceable to permit the verification of the inference conditions (im-
portant when adding new inference conditions, for student learning,
and as a means of raising the confidence of external users in the sys-
tem). Haskell’s monadic I/O system allows us to provide a traceable
execution while letting the code almost transparently represent the
inference conditions (that we presented earlier in the paper). As an
illustration of the transparency, we show the representation of the+∂
inference condition in Haskell (where appropriate combinators&&&,

|||, fA, tE are used):

(|--) t (Plus PS d q) (|-)

= t |- Plus PS D q |||

tE (rsdq t q) (\r -> fA (ants t r) (\a -> t |- Plus PS d a)) &&&

t |- Minus PS D (neg q) &&&

fA (rq t (neg q)) (\s ->

tE (ants t s) (\a -> t |- Minus PS d a) |||

tE (rsdq t q) (\u ->

fA (ants t u) (\a -> t |- Plus PS d a) &&& beats t u s))

A big advantage ofDeimosis precisely the one-to-one correspon-
dence between the inference conditions and their representation as a
Haskell expression. As such it provides great flexibility as a research
tool because it is easy to verify and easy to modify as new infer-
ence conditions are developed for new defeasible reasoning systems.
In fact the design of the defeasible reasoning logics described above
went hand-in-hand with their implementation. Once the basic frame-
work was put into place, it took us only minutes to implement each of
the variants inDeimos. That way we were immediately able to test
our intuitions on the behaviour of the logics and the relationships
among the logics, before formally proving them.

The prove function prints a trace of all sub-goals. Some state in-
formation is also threaded through the evaluation of the inference
conditions, including a history of all the sub-goals so far encoun-
tered and their corresponding proof status. The history enables loop
detection and saves re-evaluating previously encoutnered goals. The
loop checking guarantees that the prover terminates for all queries. It
should be noted that the history and loop checking functions may be
turned off, if appropriate.

Deimosis available as a command line tool which parses a de-
feasible theory and attempts to prove conclusions, printing a trace if
required.

An alternative user interfact is provided by a CGI version3, which
is also written in Haskell. This web-accessible version is the pre-
ferred interface for most users, and has links to explanatory infor-
mation such as the syntax for all inputs, help, and a complete user’s
manual including the complete code. It also comes with a library of
pre-prepared defeasible theories (we are in the process of enhancing
this library). The present system now consists of about 4000 lines of
Haskell code.

5 Current and Future Work

In this paper we showed that a family of defeasible reasoning for-
malisms can be built around defeasible logic. These formalisms al-
low one to tune the logic according to the needs of some particu-
lar application and according to one’s intuitions. We also described
an implementation of the formalisms, that is designed to be flexible
and easily extendable to include further variants. A main feature of
the implementation is its transparent representation of the inference
conditions; therefore it has been instrumental even in our conceptual
considerations.

Apart from the variants presented in this paper, we are currently
working on further formalisms. We have developed a well-founded
defeasible logic, and are in the process of incorporatingdynamic pri-
orities into the framework. We are also working on a full proposi-
tional version of defeasible logic, called plausible logic, and on the
addition of variables toDeimos. Finally we are studying relationships
to systems of argumentation, and are working on applications in the
areas of modelling regulations and business rules, and the legal do-
main. We believe that defeasible reasoning is promising to be used
in practical applications: on one hand it is simple (rule-based) and
sufficiently efficient, and on the other hand it is declarative with all
the associated advantages.

Acknowledgements

This research was supported by the Australia Research Council. un-
der Large Grant No. A49803544.

3 www.cit.gu.edu.au/∼arock/defeasible/Defeasible.cgi

REFERENCES
[1] G. Antoniou, D. Billington and M.J. Maher. 1998. Normal Forms for De-

feasible Logic. InProc. Joint International Conference and Symposium
on Logic Programming, J. Jaffar (Ed.), 160–174. MIT Press.

[2] G. Antoniou, M.J. Maher, and D. Billington. 1999. Defeasible Logic ver-
sus Logic Programming without Negation as Failure. submitted.

[3] Defeasible Logic versus Logic Programming without Negation as Failure.
Journal of Logic Programming41,1 (2000): 45–57.

[4] D. Billington, K. de Coster and D. Nute. 1990. A Modular Translation
from Defeasible Nets to Defeasible Logic.Journal of Experimental and
Theoretical Artificial Intelligence2: 151–177.

[5] D. Billington. 1993. Defeasible Logic is Stable.Journal of Logic and
Computation3: 370–400.

[6] Y. Dimopoulos and A. Kakas. 1995. Logic Programming without Nega-
tion as Failure. InProc. ICLP-95, MIT Press.

[7] J.F. Horty, R.H. Thomason and D. Touretzky. 1987. A Skeptical Theory
of Inheritance in Nonmonotonic Semantic Networks. InProc. AAAI-87,
358–363.

[8] K. Kunen. 1987. Negation in Logic Programming.Journal of Logic Pro-
gramming4: 289–308.

[9] J. W. Lloyd and R. W. Topor. 1984. Making Prolog more Expressive.Jour-
nal of Logic Programming1(3): 225–240.

[10] M.J. Maher, G. Antoniou and D. Billington. 1998. A Study of Provability
in Defeasible Logic. InProc. Australian Joint Conference on Artificial
Intelligence, 215–226, LNAI 1502, Springer.

[11] M.J. Maher and G. Governatori. 1999. A Semantic Decomposition of
Defeasible Logics.Proc. American National Conference on Artificial In-
telligence (AAAI-99),299–306.

[12] M.J. Maher, A. Rock, G. Antoniou, D. Billington and T. Miller. Efficient
Defeasible Reasoning Systems. Submitted to the1st International Con-
ference on Computational Logic.

[13] V. Marek and M. Truszczynski.Nonmonotonic Logic, Springer 1993.
[14] J. NcCarthy. Circumscription – A Form of Non-Monotonic Reasoning.

Artificial Intelligence13 (1980): 27–39.
[15] L. Morgenstern. 1998. Inheritance Comes of Age: Applying Nonmono-

tonic Techniques to Problems in Industry.Artificial Intelligence, 103, 1–
34.

[16] D. Nute. 1987. Defeasible Reasoning. InProc. 20th Hawaii Interna-
tional Conference on Systems Science, IEEE Press, 470–477.

[17] D. Nute. 1994. Defeasible Logic. In D.M. Gabbay, C.J. Hogger and J.A.
Robinson (eds.):Handbook of Logic in Artificial Intelligence and Logic
Programming Vol. 3, Oxford University Press, 353–395.

[18] H. Prakken. 1997.Logical Tools for Modelling Legal Argument: A Study
of Defeasible Reasoning in Law.Kluwer Academic Publishers.

[19] R. Reiter. A Logic for Default Reasoning.Artificial Intelligence
13(1980): 81–132.

[20] L.A. Stein. 1992. Resolving Ambiguity in Nonmonotonic Inheritance
Hierarchies.Artificial Intelligence55: 259–310.

[21] D.D. Touretzky, J.F. Horty and R.H. Thomason. 1987. A Clash of Intu-
itions: The Current State of Nonmonotonic Multiple Inheritance Systems.
In Proc. IJCAI-87, 476–482, Morgan Kaufmann, 1987.

[22] G. Wagner. 1991. Ex Contradictione Nihil Sequitur. InProc. IJCAI-91,
538–546 , Morgan Kaufmann.

