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Abstract. We present two models of hierarchical structured multi-agents, and
we describe how to obtain a modal knowledge base from distributed sources. We
then propose a computationally oriented revision procedure for modal knowledge
bases. This procedure is based on a labelled tableaux calculi supplemented with
a formalism to record the dependencies of the formulae. The dependencies are
then used to reconstruct the minimal inconsistent sets, and the sub-formulae re-
sponsible for the inconsistencies are revised according to well-defined chains of
modal functions.

1 Introduction

Individuals are able to build a model of the world, and so are institutions. In a common
(even if a little idealized) version of this process of model building, it is assumed that
a knowledge base is usually built using pieces of information collected from “outside”.
The knowledge is only partial, and the process of acquiring data is unending. As data
are acquired, they are also incorporated in theories: a knowledge base is not just a
collection of facts, but also a system of rules connecting them. It is assumed that a set
of rules is present from the beginning; new data are used for improving and refining it. It
may happen that new (reliable) data are not fully compatible with the knowledge base,
so we have to modify (revise) it to accommodate them. Moreover, data are acquired
from several different sources, each one probing a sector of an environment (physical
or conceptual). So, the process of building a knowledge base deals with distributed and
partial data. As information collected from various sources may be contradictory (from
one source we getp and from another source we get¬p), using a modal language seems
natural. In this way the incompatible pieces of informationp and¬p are represented as
3p and3¬p, meaning that both are possible.

In section 2 we present two hierarchical models of agents, then, in section 3 we show
how to construct modal knowledge bases arising from the above models. In sections 4
and 5 we describe a revision procedure for modal knowledge bases, and in section 5.1
we propose a tableau formalism to be used in the process of revision.

2 Sensors, Agents, Supervisors

The Basic Model (SA-model) The basic model, or SA-model, includes two compo-
nents: a set of sensors and one agent. Sensors perform measurements and send the re-
sults to the agent. For the sake of simplicity we assume that the sensors share the same

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


language, consisting of a set of propertiesP . When a sensors performs a measurement
and finds that a propertyp holds in its location, then we say thatp holds ats. If the
propertyp does not hold, then we say that¬p holds.

The agent, on the other hand, has a richer language than the sensors. First, its lan-
guage includes modal operators allowing the coordinatation of information sent by sen-
sors. When the sensorsi informs the agent thatp holds atsi then a factKip is added to
the agent’s theory, meaning that the agent has received the piece of informationp from
the sensorsi. Moreover the language is supplemented with the modal operator2 and
its dual3, conceived of asknowledgeoperators. The meaning of2 and3 is

2p iff all sensors readp 3p iff there is at least one sensor which readsp .

Second the agent is equipped with a number of rules about the world. This means that
the agent, contrary to the sensors, has a theory of the world, which may include rules
expressed in a modal language, using a suitable system of modal logic. The theory the
agent starts with might not be the right one; it might be the case that the information
sent by the sensors is not compatible with the agent’s theory. In this case the theory
must be changed in order to accommodate the new facts.

Different kinds of theory change have been developed, according to different basic
assumptions about the status of old and new information. The simplest case is that in
which the sensors are reliable and the world is fixed. In this case new data are accepted
and will be never contradicted by further evidence. If the agent knowledge base is par-
titioned into defeasible and non-defeasible formulae, then the only defeasible formulae
are the rules the Agent started with (this is the standard case of the AGM approach). An-
other case is that in which the sensors are reliable but the world can change. In this case
(whose study was initiated by [11]) all formulae are defeasible except the last piece of
information. When the sensors are not reliable some kind of preferential model is nec-
essary. In these models, the (possibly contradictory) evidences coming from different
sensors are weighted against a (pre-loaded or incrementally built) factor of confidence
of the different sensors. In this way, evidence may also be rejected. We shall not pursue
this line here, however.

A Hierarchical Model (SAS-model) The basic model described in the previous sec-
tion treats the sensors as slaves: they do not have a theory about the world, do not
perform inferences, do not have to revise theories. The Agent is the only intelligent
component of the system. However, a more complex model can be built assuming that
a set of agents are connected to a supervisor. We may think of autonomous robots, hav-
ing a certain degree of intelligence, which are coordinated by a central computer. Each
robot, in turn, unleashes a number of slave sensors to gather data about the world. The
supervisor has its own theory about the world, and a subset of the theory is shared by all
the agents. It is a higher level theory, which is then specialized by lower level theories
at the Agent level. In this case, theory revision (or update) can occur at two levels and
information might flow in both directions.

Different patterns of communication can be envisioned. The pattern we are con-
cerned with is studied to minimize the interactions between levels: at each stage, only
two (possibly non-adjacent) levels are involved. The difference between communica-



tive events lies in the different status deserved by data sent by the sensors and by the
supervisor.

Van Linder et al. [12] discussing a homogeneous environment, argue in favor of
an individualistic concept: in their wording,seeing is stronger than hearing. In our
structured, hierarchical environment, we would better explore the idea of a priority
accorded to the communications downloaded from the central computer.

Structuring a complex environment in hierarchical layers is a common strategy in
order to keep communication complexity low. Accordingly, the burden of revision (and
maybe decision) can be distributed across the layers.
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In the diagram beside we present a simple framework made of
a supervisorS, which rules over two agentsa1 anda2, and each
agentai (i = 1, 2) has two sensorssi1 andsi2. The arrows deter-
mine the direction in which data flow.

Agents and sensors behave as in the SA-model as long as they
can, that is, they get through a cycle of events of the type:

1a Sensors read data;
2a Sensors send data to their agent(s);
3a Agents get data;
4a Agents revise their own theory against data sent by their sensors and the supervisor

theory.

If an agent cannot restore overall consistency, it means that the supervisor theory itself
is not consistent with the facts the agent has access to. In this case, the agent asks for
the intervention of the supervisor. The supervisor collects the data from all agents and
revises its own theory in order to restore consistency:

1b Supervisor gets data from the agents;
2b Supervisor revises its belief system;
3b Supervisor broadcasts the revised theory to the agents.

However, it is possible that the theory is inconsistent for the agent but not for the super-
visor; so we split the supervisor’s theory into two parts: the first consists of global rules,
i.e., rules that are passed to all the agents; the second contains local rules, i.e., rules that
hold only under particular circumstances, and are transmitted only to given agents. In
an environment withn agents this is implemented byn+1 sets: the set of the rules and
a set of exceptions for each agent. A set of exceptions contains the rules that do not hold
for a given agent. The rules passed to an agent are all the rules minus the exceptions
for that agent. Once the supervisor determines inconsistencies occurring at the agent’s
level but not globally, it adds the culprit rules to the respective sets of exceptions. Note
that the revision cannot change a consistent overall theory (agent+supervisor) into an
inconsistent one; at most, it can change an inconsistent overall theory into a consistent
one.

The last step is on the agents’ side. They might simply accept the new theory, but this
could result in too weak overall theories, in case that, while the now revised supervised
theory was in effect, the agents had revised their own theories beyond need. So, they
restore their original theory, and then revise it against sensors’ data and supervisor’s
theory.



1c Agents get the revised theory from supervisor;
2c Agents restore their original theories;
3c Agents revise their theory against data sent by their sensors and the Supervisor

theory.

This implementation of this scheme depends on how beliefs are represented and revised
by actors.

In order to make communication of rules (and rule modifications) feasible:

a) the knowledge state of an actor is represented by means of a finite set of rules;
b) the revision/update operation is computationally well-defined, and results in a finite

set of rules;
c) the revision (or update) operations should be as local as possible, that is, the change

affects only a limited number of rules.

Condition c) expresses another aspect of minimality, i.e., a minimal change of the-
ory form, which complements the usual views about a minimal change of theory con-
tent.

When an agent passes its revised rules to the supervisor, the latter has to treat the
modal operators as local to the agent, that is, it has to interpret them in the same way
the agent interpreted the sensor’s data. Agents at different levels of the hierarchy share
the same logical structure, so that it is easy to extend the hierarchy through other levels.
However, the knowledge states of actors at different levels differ. The fact that cen-
tral rules are down-loaded to lower-level actors need not mean that all central rules are
down-loaded. We simply say that relevant rules are exchanged. The simplest relevance
criterion is syntactic: only a subset of the central rules are relevant to each lower-level
actor. In turn, the choice might reflect a lexical criterion: each lower-level agent is aware
of only a subset of the features of the world, and so can access only a subset of the vo-
cabulary (atomic constants and predicate symbols). This just means that the supervisor
has to account for the different fields of action of the agents.

3 Modalities for a Multi-agent System

Two main reasons suggest the use of modal logic for the multi-agents framework we
propose: 1) the epistemic interpretation of the notions involved; 2) data are gathered
from different sources, that can be conceived of as possible worlds. In the models two
kinds of modalities are involved:Kij for a sensorsij and2 (and its dual3) for the
agents and the supervisor.

In the SA-model we have an agent receiving data fromn sensors, while in the
SAS-model we have a unique supervisor supervisingn agents. As in the SA-model
each agentai, (1 ≤ i ≤ n) hasim sensors. Both models share the same language,
the same treatment of data, and the same revision methodology, but they differ for the
representation of the knowledge bases involved.

Since the sensors are reliable and the world is locally consistent (no sensor can read
p and¬p at once) we obtain that theKijs modalities are normal, which means they
satisfy the following axiom

Kij(A → B) → (KijA → KijB) . (1)



The axioms connectingKij with 2 and3 are:



i=n,j=im∧

i=1,j=i1

KijA


 → 2A




i=n,j=im∨

i=1,j=i1

KijA


 → 3A (2)

Each agent has at least a sensor able to perform measurements, and the supervisor
supervises at least an agent, therefore from the above axioms we obtain2A → 3A.
Due to the epistemic interpretation of the modal operators2 and3, it is natural to
assume the common axioms for positive introspection (2A → 22A), and negative
introspection (3A → 23A). It is possible that agents or the supervisor are equipped
with on-board sensors; in this case we add the axiom2A → A, so the resulting modal
logics, in which we express the knowledge bases of the agents and the supervisor, are
the well known systemsD45 andS5.

In the SA-model we have to deal only with the knowledge base of the agent con-
sisting of the pairBa = 〈F ,R〉 whereF is the set of facts collected by the sensors,
andR is the set of rules. In the SAS-model we have a knowledge base for the supervi-
sor, and a knowledge base for each agent. The knowledge baseBS of the supervisor is
BS = 〈F ,G, Ea1 , . . . , Ean〉 whereF is the set of facts collected by the sensors;G is the
set of global rules; and eachEai is a subset ofG containing the global rules that do not
hold for the agentai. The knowledge baseBai of an agentai is described in terms of
the triple:Bai = 〈Fai ,Lai ,Gai〉 whereFai is the set of facts collected by the sensors;
Lai is the set of agent’s local internal rules; andGai = G−Eai is the set of down-loaded
rules, i.e., the rules passed to the agent by the supervisor.

We still have to see how data are passed to the agents and the supervisor; we identify
a sensor with the set of information it has collected. So, ifp ∈ sij thenKijp ∈ Fai ,
and thenF =

⋃
i Fai .

It is worth noting that all the pieces of information in the set of the data gathered by
an agent or the supervisor are propositional and are transformed into modal form once
passed to the supervisor. We argue that data in conditional and disjunctive form (e.g.,
p → q, p ∨ q) are meaningless while we accept negative data, for example¬p. Let us
suppose that our sensors are cameras, whose optical field consists ofn pixels. We have
a wall where we have drawn lines of various lengths. We move our camera in front of
each line, thenp stands for “the length of the line isn”, wheren is a given number of
pixels.¬p means that the length of the line actually in front of the camera is not ofn
pixels. In general a negative data corresponds to a measurement beyond given bounds.
Since we accept only measurements in conjunctive and negative form we can reduce
the elements of eachF into literals.

4 Revision of Finite Modal Knowledge Bases

We saw in section 2 that the revision mechanism is central to the behavior of the system.
Different models have been described, depending on: a) which data are defeasible and
which are assumed as certain; b) which modal characterization is given to the underly-
ing theory.

The revision engine that will be described in this paragraph can perform modal re-
visions according to the constraints of finiteness and implementing different schemes of



defeasibility. It is a computationally oriented procedure for revision of finite knowledge
bases.

The classical AGM model ([1], [13]) has been recently criticized (see [14], [9], [7])
for being too liberal about constraints of finiteness and computation. The axiom of re-
covery, saying that the result of adding a piece of knowledge to the result of contracting
it from a knowledge base returns the original base, has been criticized as being unnec-
essarily demanding (see [15], [16] for a thorough analysis).

Our procedure is computationally oriented and does not satisfy the recovery axiom
and yields a minimal change in the sense that the original rules of the knowledge base
are retained, albeit in a modified form, as long as possible. The procedure as described
here does not use information about entrenchment. It can yield non-trivial results also
when no entrenchment information is available, contrary to what happens in the classi-
cal AGM approach, and it can be easily extended to manage them, when available.

We use revision as the primitive operator, although it is often argued that contraction
should be used as a primitive operator (see [8]; see also [4] for a different view); how-
ever, it seems rather unnatural to suppose that our agents should change their minds
about properties of the world were it not for the necessity of incorporating in their
knowledge base a new fact. Exploration by means of sensors always yields new data to
be added in some way into the existing corpus; it never offers a negative view. An ex-
ception should be made for the case in which a sensor tells its agent that a measurement
already done is unreliable. But this amounts to going back to the rule set existing before
that measurement, and revise it using all subsequent measurement except the one that
was declared unreliable. This is not, however, the primitive case, but a rather complex
and sophisticated one, which deserves the role of a derived operation.

There is one more reason for not choosing contraction as a primitive operation, and
it is connected with the choice of dealing with modal revision. The standard account for
contraction goes as follows. Let us assume that baseB implies propositionα. Then, for
some reason,α has to be abandoned. So, we have to contractα from B. The reason for
relinquishingα, however, is not that¬α is found to hold, otherwise we should revise
B by ¬α. Rather, we feel unsure as to which ofα and¬α should be maintained. For
instance, we perform repeated measurements, and sometimes we getα and sometimes
¬α. As we feel that bothα and¬α might be the case, we have no choice other than
to contractα. This fits well with a modal approach, in which the only primitive oper-
ation is revision. Indeed, the revision/contraction contrast may be described in terms
of modalities. The situation described can be restated in the following terms: the base
B implies2α; then, we perform repeated measurements, and sometimes we getα and
sometimes¬α; this means that our theory must berevisedby 3α ∧ 3¬α, properly
expressing the fact that we feel that bothα and¬α might be the case.

5 The Revision Procedure

As noted before, the revision procedure starts when a formula is added to a set of for-
mulae, and some contradiction would arise if no modification is made.

Formulae are divided into two classes: defeasible and non-defeasible. For simplicity
we shall call them, respectively,rulesandfacts,even if a non-defeasible formula might
be, in fact, a rule (e.g., a down-loaded rule), and a fact could be defeasible (e.g., if



we adopt theupdatepoint of view, in which only the last fact is non-defeasible). How
this partition is made depends on the model of exchange and communication between
the levels of the hierarchy. Both rules and facts are expressed in a modal propositional
language. We set no restriction on the form of rules and facts. For the sake of simplicity,
in the examples we shall assume that rules have the formA → B, whereA andB
are arbitrary modal formulae. If this is not the case, a simple manipulation will do (for
instance, replacing an arbitrary formulaC with> → C, where> is the atomic constant
for true).

The procedure is based on the following steps:

1. find all minimal inconsistent subsets of sub-formulae of the original set of formulae;
2. for any subset, weaken all the rules modally and propositionally;
3. reconstruct the set of formulae starting from the revised subsets.

The procedure yields a finite set; the process of finding the inconsistent subsets relies on
the specific modal logic, and is computationally feasible thanks to the properties KEM,
the method we shall use to determine the minimal inconsistent sets (see section 5.1).

The first step is rather standard in principle. Using KEM , however, makes it pos-
sible to construct all minimal inconsistent subsets of formulae at the same time the
inconsistency is proved, resulting in a much better efficiency.

The second step, on the contrary, is not so common. When revision of finite bases is
performed, it is rather standard to restore consistency by deleting one or more formulae
from each inconsistent subset (that is, contracting the base) and then adding the new
fact. Of course, deleting all of them results in a far from minimal mutilation of the
knowledge base; on the other side, if no extra-logical information is supplied as to
which formula has to be deleted, deleting all of them is the only alternative to non-
determinism. The choice is between a revision based on the so-called safe contraction
(too demanding) and a non-deterministic revision. Our proposed algorithm keeps the
flavour of a safe revision, in that it operates on all the formulae in the subsets, but does
not delete them: we simply modify them in order to recover consistency. We want to
avoid non-determinism, which might result in a disaster for the agents, at the same time
retaining as much information is possible.

The third step is, again, rather standard: minimal inconsistent sets are deleted and
replaced by the modified sets.

The resulting formulae are still divided into rules and facts, so the base can be used
as a base for further revisions. However, it should be noted that this division into facts
and rules is not essential to the process. If a fact is the only new piece of code to be
added, and all other pieces are on the same par, the process yields again a reasonable
result, contrary to what happens in the AGM frame, where we end up with just the
consequences of the new fact.

5.1 Modal Tableaux as Contradiction Finders

A well known family of theorem proving methods is based on tableaux. A tableau is a
tree whose nodes are labelled by formulae related to the formula to be proved. Tableaux-
based methods aim to prove a formula by showing that there are no counter-examples
to it, i.e., by showing that any assignment of truth values to the variables makes the



negation of the formula false. While tableaux are usually employed as theorem provers,
they are, literally, contradiction finders. In fact, in the development of a tableau we try
to show that the formula which labels the node under scrutiny cannot be satisfied by
any assignment of truth values. If the root of the tree is labelled not by a formula but
by a set of formulae, showing that all subtrees are closed we prove just the fact that the
set is inconsistent. In this case, we may employ the information gathered in the process
of finding the inconsistency to restore the consistency of the set of formulae through
modification of some of the formulae involved.

We shall use KEM which offers considerable advantages in terms of performance
and flexibility in adapting to different modal systems (see [2]). In order to use KEM
in the process of identifying the sources of contradiction, we augment its formalism by
adding a mechanism able to record which subset of sub-formulae of the original set of
formulae is being used in the development of the branch, and so the subset involved in
the contradiction which closes the branch.

We start from a brief description of KEM (for a detailed exposition see [2]). KEM
is a labelled tableaux system based on a mixture of natural deduction and tableaux
rules which uses labels to simulate the accessibility relation, and a unification algorithm
to determine whether two labels denote the same world. It can be also used to check
the consistency of a set of formulae, and information extracted from the tree helps the
solving of not immediate contradictions; elsewhere [3] a preferences strategy connected
to KEM has been adopted for the same problem. KEM uses two kinds of atomic labels: a
set ofconstant world symbols, ΦC = {w1, w2, . . . } and a set ofvariable world symbols,
ΦV = {W1,W2, . . . } that might be combined intopath labels. A path is a label with
the following form(i, i′), wherei is an atomic label andi′ is either a path or a constant.
Given a labeli = (k, k′) we shall useh(i) = k to denote the head ofi, andb(i) = k′ to
denote the body ofi, where such notions are possibly applied recursively.l(i), andsn(i)
denote respectively the length ofi (the number of world symbols it contains), and the
sub-label (segment) of lengthn counting from right to left. As an intuitive explanation,
we may think of a labeli ∈ ΦC as denoting a world (agivenone), and a labeli ∈ ΦV

as denoting a set of worlds (anyworld) in some Kripke model. A labeli = (k′, k) may
be viewed as representing a path fromk to a (set of) world(s)k′ accessible fromk (or,
equivalently, the world(s) denoted byk).

Labels are manipulated in a way closely related to the accessibility relation of the
logic we are concerned with. To this end it is possible to define logic dependent label
unificationsσL, which will be used in the course of KEM proofs. We start by providing
a substitutionρ : = 7→ = thus defined:

ρ(i) =





i i ∈ ΦC

j ∈ = i ∈ ΦV

(ρ(h(i)), ρ(b(i))) l(i) > 1

Fromρ we define the unificationσ from which it is possible to define the appropriate
unifications for a wide range of modal and epistemic logics (see [2]), as follows:

∀i, j, k ∈ =, (i, j)σ = k iff ∃ρ : ρ(i) = ρ(j) andρ(i) = k



However, in this paper, we present only theσL-unifications for the logics we are con-
cerned with, namelyL = D45, S5.

(i, k)σD45 =

{
((h(i), h(k))σ, (s1(i), s1(k))σ) l(i), l(k) > 1,

(i, k)σ l(i), l(k) = 1
(3)

(i, k)σS5 =

{
((h(i), h(k))σ, (s1(i), s1(k))σ) (h(i), h(k))σ 6= (s1(i), s1(k))
(h(i), h(k))σ otherwise

(4)

Example 1.It can be seen that((W1, w1), (W2, w1))σD45, but the paths(W1, w1) and
w1 do notσD45-unify; this corresponds to the fact that2A → 3A holds inD45, but
2A → A does not.

In defining the inference rules of KEM we shall uselabelled signed formulae, where a
labelled signed formula (LS-formula) is an expression of the formX, i whereX is a
signed formula andi is a world label. Given a modal formulaA, i, theLS-formulae
TA, i and FA, i represent the assertion thatA is true or, respectively, false at the
world(s) denoted byi. TA andFA are conjugate formulae. Given a signed formula
X, by XC we mean the conjugate ofX.

In the following table signed formulae are classified according to Smullyan-Fitting
unifying notation [6].

α α1 α2 β β1 β2

TA ∧B TA TB FA ∧B FA FB

FA ∨B FA FB TA ∨B TA TB

FA → B TA FB TA → B FA TB

ν ν0 π π0

T2A TA T3A TA

F3A FA F2A FA

We shall write[α1, α2] and[β1, β2] to denote the two components of aα-formula
(respectively, of aβ-formula).

KEM builds a tree whose root is labelled with the set of signed formulae{TA1, . . . ,
TAn} and the labelw1, corresponding to the assertion that all propositionsA1, . . . , An

in the original rule set are true in the actual world. Branches are built by means of
inference rules which derive new signed formulae which hold in specific sets of worlds.
In doing so, they build new signed formulae and new world label strings. While the
rules for deriving new signed formulae depend only on propositional logic, the rules
for deriving world label strings depend on the specific modal logic at hand. A branch
is closed when it contains a signed formulaX and its conjugateXC which hold in the
same world. If all branches are closed, the tree is closed, and the root is contradictory.

A characteristic of KEM is the analyticity property, that is, all signed formulae are
sub-formulae of one of the original formulae. This is accomplished by limiting the cut-
rule to one component of aβ formula.

In order to gather information about the inconsistencies of the set of rules, we enrich
KEM with three new sets of labels. The first one records the (component of the) original
signed formula from which the signed formula labelling the node derives. The second
one records the set of (components of the) original signed formulae used in deriving
the signed formula labelling the node. The third one records thead hocassumptions



made by applications of the cut rule. These three labels will be denoted byl, sl andc,
respectively.

A difference from the usual procedure of KEM is that even if all the branches are
closed, we continue deriving new nodes until all the original formulae are used in all
branches. When the procedure stops, we have a number of nodes where the branches
close. Thesl label, together with thec label, identifies a minimal inconsistent set of
rules. The rules insl are to be revised in order to restore consistency.

α-rule
[α1, α2] i l sl c

α1 i l.α1 sl − {l} ∪ {l.α1} c
α2 i l.α2 sl − {l} ∪ {l.α2} c

β-rule
[β1, β2] i l sl c

βC
n (n = 1, 2) j l′ sl′ c′

β3−n (i, j)σL l.β3−n sl ∪ sl′ − {l} ∪ {l.βn} c ∪ c′

ν-rule
ν i l sl c
ν0 (i′, i) l sl c

i′ ∈ ΦV new

π-rule
π i l sl c
π0 (i′, i) l sl c

i′ ∈ ΦC new

⊥-rule
X i l sl c

XC j l′ sl′ c′

⊥ (i, j)σL nil (sl ∪ {l} − c) ∪ (sl′ ∪ {l′} − c′) c ∪ c′

cut-rule
[β1, β2] i l sl c

β1 i l.β1 ∅ c ∪ {l.β1} βC
1 i l.β1 ∅ c ∪ {l.β1}

(similarly whenβ2 is used)

Soundness and completeness for the above calculus are given in [2].
The minimal contradictory sets may contain labels of the forml.s wherel is the

number of a formula ands is a string built by tokens belonging to the set{α1, α2, β1,
β2}, with dots between. This means that the subformula ofl identified bys is responsi-
ble for the contradiction. The other components of the formulal can be retained; only
l.s has to be weakened. So the structure of the labels that tells us which components
have to be weakened.

5.2 How To Weaken the Formulae Responsible for Contradiction

Given a set of rules and facts which yields a contradiction, we may restore consis-
tency by weakening the rules, that is, the defeasible ones. Rules may be weakened both
modally and propositionally. Some of the elements of a minimal contradictory set might
be facts, that is, non-defeasible formulae. If all elements are facts, no revision can be
made; there is no way of restoring consistency. If, on the contrary, at least some of the
formulae are rules, we can weaken them and restore consistency.

Let {Aki → Bki} be the set of rules in thek-th minimal contradictory set, and{Fj}
be the set of facts in thek-th minimal contradictory set. The propositional weakening of
Aki → Bki is the rule(

∨
j ¬Fj∧Ak) → Bki. As all factsFj hold, the antecedent of the



weakened rule is false, and the inference ofBki is blocked. The exact form depends on
the sub-formulae involved. In turn, the exact form of the modal weakening ofαi → βi

depends on the modal system we are working in.
In general, the modal weakening ofAi → Bi includes an antecedent weakening

and a consequent weakening, which are, in a sense, dual of each other. In order to fix
ideas, let’s consider the antecedent weakening. We want to substituteAki → Bki with
σ↓(Aki) → Bki, whereσ↓(Aki) is a modal expression such thatσ↓(Aki) → Aki but
the converse does not hold;σ↓(Aki) → Bki is weaker thanAki → Bki, in the sense
that it is more difficult to find a counter-example toσ↓(Aki) → Bki than it is for
Aki → Bki; this may be expressed by saying that the set of models forσ↓(Aki) → Bki

is greater than the set of models forAki → Bki. However, if we want to perform a
revision according with some criteria of minimality, we need to put some constraints on
the choice ofσ↓. It seems to us that the following constraints are reasonable:

a) σ↓(Aki) is a modal function ofAki, that is, can be built without any information
other thanAki

b) σ↓(Aki) is a positive modal function, that is, no negation except those possibly con-
tained inAki should be used.

c) We should use the weakest modal expression among those satisfying a) and b), in
order to obtain some kind of minimal revision

There are two reasons for using only positive modal functions. First, in using arbitrary
modal functions we might turn a true formula into a false one. Assume that we revise
A → B by A ∧ 3¬A → B. Now, if A happens to be an identically true formula, it
is true also in all the accessible worlds, andA ∧ 3¬A is identically false. While the
original rule was equivalent toB, the new one is simply irrelevant. Second, by limiting
ourselves to positive modal functions we impose constraints on the set of worlds in
which the antecedent must hold in order to derive the consequent, while using arbitrary
functions we are no more able to give such an interpretation to our revised rule.

Condition c) may be difficult to satisfy, because it may be difficult to determine
a unique minimal modal expression. We already said that we want to avoid non-
determinism and excessive mutilation of the knowledge base. Using these guidelines,
we satisfy condition c) by means of the following construction (given a modal logic):

c.1) build the poset [D(A),→], whereD(A) is the set of the positive modal functions
of A;

c.2) intersect all the chains (linear ordered subsets) of [D(A),→] that includeA itself;
this will be a chain itself;

c.3) σ↓(A) is the greatest element of the chain such thatσ↓(A) → A; it is the element
nearest toA “from below”.

Whether step c.3) can be performed or not depends, of course, on the system of logic
we work in. However, it can be shown thatσ↓(A) exists for some common logics. For
example for the logicsD45 andS5 described in section 3, it possible to define exactly
the result of the weakening process. This can be expressed using a chain of modal
functions of an arbitrary formulaφ. It can be proved that the chains of modal functions
in D45 andS5 are

φ ∧ 2φ → φ ∧3φ → φ → φ ∨ 2φ → φ ∨3φ
Chain of modal functions inD45

2φ → φ → 3φ
Chain of modal functions inS5



Steps c.2) and c.3), respectively, guarantee safeness (intersecting all the chains is sim-
ilar to weakening all the formulae) and minimality.

Similarly the weakening of the consequent results by substitutingBki with σ↑(Bki),
a modal expression built using onlyBki and no extra negations such thatBki →
σ↑(Bki) but the converse does not hold.

As a simple example, let us suppose that the rule:A → B is responsible for a
contradiction; let us also assume that the only distinct modal affirmative functions of
x in the language are2x and3x, and that there is a predicateC whose value istrue.
Then, the original rule can be weakened by substituting it with three rules:

2A → B A → 3B A ∧ ¬C → B

Even if the three rules allow a number of non-trivial derivations, they no longer allow
the derivation ofB.

Some justification is due for using modal expressions with no extra negations. This
amounts to using positive modal functions as weakening sensors. There are two rea-
sons for that. In revising the antecedent, we use the weakest suitable modal expression
(the strongest for revising the consequent). This might be insufficient to block the in-
ference responsible for the contradiction. If an inconsistency is still found, we must use
a “stronger” weakening, if available. If not, we have no more options, other than to dis-
card the rule. InS5 we have no second options, due to the fact that22α = 2α. In D45,
however, more possibilities are at hand. If only one of the components of aβ-formula
is included in the contradictory set, then the other can be safely weakened the standard
way, while the component actually implied could need a stricter weakening.

It must be noted that we addfacts, but onlyrulesare revised. This means that if an
inconsistent set includes only facts, no revision is possible: inconsistent facts cannot be
reconciled.

5.3 How to Reconstruct the Set of Formulae Starting from the Revised Subsets

In order to reconstruct a new set of rules from the revised rules in the contradictory sets,
we have first of all to make sure to include all the sub-rules not to be revised. This can
be easily done by adding to the original set the complement of the rules in one of the
contradictory sets. Some examples will clarify the matter. LetA1 ∨ A2 → B1 ∧ B2

be the original rulel, and letl.β1.α2 be in the contradictory set. This means that the
sub-rule actually implied isA2 → B1 ∧B2 We find it by following the structure of the
label l.β1.α2: break the rule in the firstβ-component, taking the secondα-component.
If the labels werel.β1.α2 andl.β2.α1 then the rule implied would beA2 → B1. In our
case, the other sub-ruleA1 → B1 ∧B2 may be safely added to the original set of rules.
Then we have to add the revised rules. In our example, we should addA2 ∧

∨
j ¬Fj →

B1 ∧ B2 as the propositional weakening, and the rule2A2 → B1 ∧ B2 as the modal
weakening. As the third step, we must delete from the set of rules all sub-rules in the
contradictory sets and all the parent rules. The necessity of also deleting the sub-rules in
the contradictory sets stems from the possibility of reintroducing a rulepiecewise, one
sub-rule from each of the sets. Then we have to check for consistency of the modified
rules. It is enough to check the consistency of the rules resulting from the revision on
the rules in the contradictory sets plus the ad-hoc assumptions (the set labelled byc in
the tableaux).



6 Examples
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SExample 2In this example, we employ the most simple but not
trivial structure, i.e., a supervisorS, an agenta and two sensors
s1 ands2 arranged as depicted beside, we show how the revi-
sion procedure works, assumingS5 as the logic for the agent
and the supervisor.

In this example we deal with the knowledge bases, i.e.,
Ba = 〈Fa,La,Ga〉 for the agenta, andBS = 〈F ,G, Ea〉

We start withLa = {2p → 2q}, G = {3q → 2r}, andEa = ∅, therefore
Ga = G. The sensors gather the following information:s1 = {p} ands2 = {p,¬q}
which are passed to the agent in the following form:{K1p, K2p, K2¬q} that means
Fa = {2p, 3¬q}. The agent checks the consistency of its own knowledge base by the
means of the KEM-tree starting with the union of the elements, namelyLa ∪ Ga ∪ Fa.

Ga =
�

1 T3q → 2r w1 1 1 ∅
La =

�
2 T2p → 2q w1 2 2 ∅

Fa =

�
3 T2p w1 3 3 ∅
4 T3¬q w1 4 4 ∅
5 T2q w1 2.β2 2.β1, 3 ∅
6 Fq (w2, w1) 4 4 ∅
7 Tq (W1, w1) 2.β2 2.β1, 3 ∅
8 ⊥ (w2, w1) − 2.β1, 2.β2, 3, 4 ∅

Notice that we have deleted all the inessential steps. In fact, it is immediate to see that no
other contradictions can be derived from the above tree. The set of formulae responsible
for the contradiction is{2.β1, 2.β2, 3, 4}; however only2.β1 and2.β2 should be revised
in so far as 3 and 4 are facts. We apply the revision function obtainingσ↑(2p) → 2q
and2p → σ↓(2q) The first fails,2p is already at the top of the chain; whereas the
second succeeds, beingq = σ↓(2q). Therefore the revised set of internal rules consists
ofL′a = {2p → q} At this point the agent has restored consistency and the sensors may
collect new pieces of information. Let us assume that the new data ares1 = {p,¬r}
ands2 = {p,¬q} The new set of facts turns out to beF ′a = {2p, 3¬q, 3¬r} Again,
the agent runs the KEM tree for its knowledge base.

Ga =
�

1 T3q → 2r w1 1 1 ∅
L′a =

�
2 T2p → q w1 2 2 ∅

F ′a =

8<:3 T2p w1 3 3 ∅
4 F2q w1 4 4 ∅
5 F2r w1 5 5 ∅
6 Tq w1 2.β2 2.β1, 3 ∅
7 F3q w1 1.β1 1.β2, 5 ∅
8 Fq (W1, w1) 1.β1 1.β2, 5 ∅
9 ⊥ w1 − 1.β1,2, 2β1,2, 3, 5 ∅

The contradiction arises from{1.β1, 1.β2, 2.β1, 2.β2, 3, 5}, but only2.β1, 2.β2 have to
be revised by the agent: 3 and 5 are facts and 1 is a global rule that can be revised
only by the supervisor. The revision function leads toσ↑(2p) → q, 2p → σ↓(q), and
2p ∧ 2r → q The first is not applicable for the same reason of the previous case,



the second produces2p → 3q and the third is the propositional weakening of 2. The
resulting state

F ′a = {2p,3¬q, 3¬r} L′′a = {2p → 3q, 2p ∧2r → q} Ga = {3q → 2r}
is inconsistent.

Ga =
�

1 T3q → 2r w1 1 1 ∅
L′′a =

�
2 T2p → 3q w1 2 2 ∅
3 T2p ∧ 2r → q w1 3 3 ∅

F ′a =

8<:4 T2p w1 4 4 ∅
5 F2q w1 5 5 ∅
6 F2r w1 6 6 ∅
7 T3q w1 2.β2 2.β1, 4 ∅
8 T2r w1 1.β1 1.β2, 2.β1, 4 ∅
9 ⊥ w1 − 1.β1,2, 2.β1, 4, 6 ∅

It is easy to see that the inconsistency arises from the conjunction of local and global
rules, namely from2p → 3q and3q → 2r, therefore the agent notifies the incon-
sistency to the supervisor. However the supervisor recognizes a consistent state, being
F = Fa andG = Ga. At this point the agent has to revise again the culprit rule (i.e.,
2p → 3q); unfortunately the only way to revise it is to delete it, no more modal weak-
enings are possible. The resulting set of local rulesL′′′a consists of2p ∧2r → q.
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s1 s2Example 3In this example we assume a slightly more complex
structure to illustrate the use of exceptions. In this framework we
have a supervisorS, two agentsa1 anda2, and each agents has a sin-
gle sensor. According to our model the knowledge bases are:BS =
〈F ,G, Ea1Ea2〉, Ba1 = 〈Fa1 ,La1 ,Ga1〉, andBa2 = 〈Fa2 ,La2 ,Ga2〉
whereLa1 = La2 = ∅, Ea1 = Ea2 = ∅, and G = {2p → 3q}. Therefore
G = Ga1 = Ga2 . The sensors collect the following data:s1 = {p,¬q} s2 = {p, q},
then the sets of local facts are:Fa1 = {2p,2¬q} andFa2 = {2p, 2q} It is im-
mediate to see thatFa1 andGa1 are inconsistent, and the contradiction is due to the
global rule2p → 3q. The supervisor gathers the data from all the sensors obtain-
ing {K1p, K2p,K1¬q, K2q} which impliesF = {2p,3¬q, 3q}. However,F ∪ G
is consistent, so the supervisor adds2p → 3q to the exceptions ofa1 (Ea1 ). The
new knowledge bases are:BS = 〈F ,G, E ′a1

, Ea2〉 andBa1 = 〈Fa1 ,La1 ,G′a1
〉, where

Ea1 = {2p → 3q}, and, consequentlyG′a1
= G − Ea1 = ∅.

The procedure for dealing with exceptions can be viewed as a special kind of modal
weakening. Due to the equivalence(> → A) ≡ A global rules can be conceived of as
consequents of conditional rules whose antecedent is an always true formula. We then
apply the revision functionσ↓(A) obtaining3A, which means thatA holds somewhere.
3A restores consistency, but is too weak for our purposes, we do not know whereA
holds. However the supervisor knows the agent where the exception does not hold, so
instead of changing the formula, it adds it to the set of exceptions.

7 Conclusion

In this paper a model of theory revision based on a hierarchy of agents is explored. In
order to coordinate data acquisition from different agents, a modal language is used. We



extend to the modal case ideas originally put forth for dealing with purely propositional
knowledge. The problem of combining data from different sources is important per se,
and a long standing priority for AI. Besides, the hierarchical models may be seen as
first steps toward a fully distributed model, in which each agent builds and maintains a
model of the other agents’ knowledge.
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