
An algorithm for the induction of defeasible logic theories from
databases

Benjamin Johnston Guido Governatori

School of Information Technology and Electrical Engineering
The University of Queensland

Brisbane, Queensland, Australia
Email: superhero@benjaminjohnston.com.au, guido@itee.uq.edu.au

Abstract

Defeasible logic is a non-monotonic logic with applications in
rule-based domains such as law. To ease the development and

improve the accuracy of expert systems based on defeasible
logic, it is desirable to automatically induce a theory of the

logic from a training set of precedent data. Empirical evi-
dence suggests that minimal theories that describe the train-
ing set tend to be more faithful representations of reality. We

show via transformation from the hitting set problem that this

global minimization problem is intractable, belonging to the
class of NP optimisation problems. Given the inherent diffi-

culty of finding the optimal solution, we instead use heuristics

and demonstrate that a best-first, greedy, branch and bound al-
gorithm can be used to find good theories in short time. This

approach displays significant improvements in both accuracy

and theory size as compared to recent work in the area that
post-processed the output of an Apriori association rule-mining

algorithm, with comparable execution times.

Keywords: Defeasible Logic, Machine Learning, As-
sociation Rules

1 Introduction

Expert and decision support systems are slowly mak-
ing inroads into the legal community, but unfortu-
nately they currently appear to be limited in terms of
either the difficulty of their construction or their in-
ability to justify their reasoning processes to the user.
Existing systems could be roughly classified into two
broad categories: expert systems that are constructed
by manual encoding of knowledge (Zeleznikow &
Hunter 1994), and classification tools that are auto-
matically trained from precedent data using machine
learning or data mining techniques (Zeleznikow &
Stranieri 1997, Brüninghaus & Ashley 1999). Unsur-
prisingly, the expense involved in employing human
experts and the difficulty that experts have in express-
ing the reasoning behind their “intuition” can elim-
inate the option of building expert systems in spite
of the benefits that such a system can offer. Other
approaches focus on automatically inducing models
from precedent data using AI techniques such as neu-
ral networks, decision trees and association rules. One
challenge of this approach is that the stringent de-
mands for verification and correctness in law can elim-
inate such approaches on the grounds that the under-
lying model is a ”black-box”. Instead, it is desirable
to attempt to find a middle ground between these ap-
proaches - using an underlying model more typical of

Copyright c©2003, Australian Computer Society, Inc. This pa-
per appeared at Fourteenth Australasian Database Conference
(ADC2003), Adelaide, Australia. Conferences in Research and
Practice in Information Technology, Vol. 17. Xiaofang Zhou
and Klaus-Dieter Schewe, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

expert systems, but facilitating construction via au-
tomatic induction.

Recent work in the field of non-monotonic logics
suggests the suitability of the formalism as an un-
derlying model for such reasoning, that turns out (as
we will show) to be conducive to automatic induc-
tion. Non-monotonic logics, such as defeasible logic,
were originally developed to simplify reasoning with
incomplete information (Ginsberg 1993). In contrast
to monotonic logics whereby a conclusion of a theory
remains valid irrespective of how many assertions are
added to the theory, non-monotonic logics can reach
tentative conclusions that may be overridden (and re-
placed with a contrary conclusion) in light of addi-
tional information. Defeasible logic is one of many
non-monotonic logics in use, but is particularly desir-
able for use in information systems because it matches
the non-monotonicity of legal reasoning and is com-
putationally efficient without sacrificing too much ex-
pressiveness. The extension of a defeasible logic the-
ory has been shown to be computable in linear time
(Antoniou, Billington, Governatori & Maher 2001,
Maher 2001), as opposed to the NP-hardness or even
undecidability of most non-monotonic and monotonic
logics (Prakken 1997, Ginsberg 1993). While some
expressiveness is sacrificed in using defeasible logic
over first order logic, it still remains quite suited to
legal domains. Antoniou et al (1999) have demon-
strated the extremely high correspondence between
regulatory documents and their equivalent expression
as defeasible logic theories, in some cases the corre-
spondence is almost 1-1 between sentences in legal
documents and logical rules.

2 Defeasible Logic

In this section we will present a formal explana-
tion of defeasible logic. Because we are focussing
our attention to a specific application of defeasible
logic, for simplicity our terminology slightly devi-
ates from that used in other papers. A more com-
plete definition of propositional defeasible logic ap-
pears in (Antoniou, Billington, Governatori, Maher
& Rock 2000, Nute 1993).

A defeasible logic theory is a collection of rules
that permit us to reason about a set of facts, or known
truths, to reach a set of defeasible conclusions. Be-
cause multiple conflicting rules may be applicable in
any given situation, a defeasible logic theory addition-
ally includes a relation for resolving these conflicts.

For example, consider the theory about criminal
law in Figure 1. The theory consists of two compo-
nents:

• a set of rules that can be used to conclude the
guilt or innocence of the defendant in the event
of certain facts being presented in the court of
law, and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rule Explanation
r1: ⇒ ¬guilty Innocence is presumed
r2: evidence ⇒ guilty Evidence can show guilt
r3: ¬motive ¬guilty Lack of motive can suggest innocence
r4: alibi ⇒ ¬guilty An alibi can prove innocence

r4 � r3, r3 � r2, r2 � r1

Figure 1: Hypothetical Criminal Law Theory

• a partially ordered relation1 (called the superior-
ity relation) that indicates the relative strength
of each rule.

Suppose that we are given the theory of Figure 1,
and that the set of facts {evidence, alibi} have been
presented to the court of law and are assumed true,
then we can defeasibly prove the innocence of the de-
fendant, because:

• We note that r4 permits us to conclude ¬guilty,
and

• The necessary conditions for the application of
r4 hold, namely it is known that alibi is a fact
(or has been defeasibly proven true), and

• Of the remaining rules, the only one that reaches
the contradictory conclusion guilty and for which
its necessary conditions are satisfied, is r2, but
r4 is stronger than r2 (i.e., r4 � r2) so r2 does
not override the conclusion.

We now formalize the ideas and terminology in the
example, and present a proof theory.

A defeasible logic theory T is a pair (R,�) where
R is a finite set of rules and � is a partially ordered2

relation defining superiority over R.
Rules are defined over literals, where a literal is

either an atomic propositional variable a or its nega-
tion, ¬a. Given a literal, p, the complement, ∼p of
that literal is defined to be a if p is of the form ¬a,
and ¬a if p is of the form a.

There are two kinds of rules, defeasible rules and
defeaters. Defeasible rules can be used to defeasibly
prove some conclusion, but defeaters can only be used
to prevent a conclusion being reached. Typically a
third kind of rule is permitted, strict rules, which have
a more classical meaning in that they are monotonic
and cannot be defeated. We disregard strict rules in
application to the automatic induction of defeasible
theories because it is impossible to conclude a strict
correlation with only the partial knowledge possible
with finite datasets (in any case, strict rules can be
simulated with defeasible rules that are ‘high’ in the
superiority relation such that they can rarely be de-
feated).

A defeasible rule is denoted by Q ⇒ p where Q
is a set of literals denoting the premises of the rule,
and p is a single literal denoting the conclusion upon
application of the rule. A rule of this form can be
interpreted to say that whenever the literals in Q are
known to be facts or to be defeasibly provable, then
we can defeasibly prove p (by “defeasibly”, we mean
that we can only prove p tentatively, and is subject
to possible defeat by other, stronger, rules).

A defeater is a rule that is likewise denoted by
Q p where Q is a set of literals denoting the
premises of the rule, and p is a single literal denoting

1We have only denoted the relevant mappings, the actual supe-
riority relation would in fact be the least acyclic transitive relation
containing the mappings denoted – in this case, the transitive clo-
sure of these mappings.

2Though, in the general case, the superiority relation is simply
a binary relation over the set of rules.

the counter-conclusion that can be used upon applica-
tion of the rule. A rule of this form can be interpreted
to say that whenever the literals in Q are known to be
facts or to be defeasibly provable, then we can only
reach a conclusion that is consistent with p (subject
to defeat by other rules); that is, we cannot prove ∼p,
but may prove p if there are other rules supporting
this position, otherwise we may reach no conclusion
at all. Note that with a pair of rules of the form
Q a and Q ¬a, each at the same superiority, we
can block any conclusion with respect to a.

We define Ante(r) = Q where r is a rule of the
form Q ⇒ p or Q p; that is, Ante(r) is the set of
premises or antecedents of the rule r (i.e., Ante(r) is
the left hand side of the rule).

We reason about a set of facts (of a given case) F
with respect to a defeasible theory T to reach defea-
sible or tentative conclusions of that particular case.
A conclusion of a defeasible theory T and facts F is
conventionally a tagged literal of one of the following
forms:

• +∂p, which is intended to mean that p is defea-
sibly provable in T over F

• −∂p, which is intended to mean that p is not
defeasibly provable in T over F .

We define an entailment relation, T, F ` c,
which indicates that c is a conclusion of the set
of facts F with respect to theory T . The entail-
ment relation is defined by the proof mechanism
expounded in (Antoniou, Billington, Governatori &
Maher 2000, Antoniou, Billington, Governatori, Ma-
her & Rock 2000), and which is briefly presented here
for completeness.

A proof within a defeasible logic theory T given a
set of facts F is a finite sequence P = 〈p1, p2, . . .〉 of
tagged literals satisfying the two inference rules that
follow. P (1..i) denotes the initial part of the sequence
P, of length i, and P (i) denotes the ith element of P.
Rd denotes the set of defeasible rules in R (i.e., those
rules that are not defeaters) and R[q] denotes the set
of rules in R with conclusion q.

+∂:
If P (i + 1) = +∂p then either
p ∈ F or

(1) ∃r ∈ Rd[p]∀q ∈ Ante(r) : +∂q ∈ P (1..i) and
(2) ∀s ∈ R[∼p] either

(a) ∃q ∈ Ante(s) : −∂q ∈ P (1..i) or
(b) ∃t ∈ Rd[p] such that
∀q ∈ Ante(t) : +∂q ∈ P (1..i) and t � s.

−∂:
If P (i + 1) = −∂p then
p 6∈ F and

(1) ∀r ∈ Rd[p] ∃q ∈ Ante(r) : −∂q ∈ P (1..i) or
(2) ∃s ∈ R[∼p] such that

(a) ∀q ∈ Ante(s) : +∂q ∈ P (1..i) and
(b) ∀t ∈ Rd[p] either
∃q ∈ Ante(t) : −∂q ∈ P (1..i) or t 6� s.

If we consider only theories for which the set of all
possible premises is disjoint from the set of all conclu-
sions, then it is the case that all inferences can be per-
formed in a single step. Because a single-step mode
of operation precludes the need for recursive evalua-
tion of the backing of a rule (i.e., there is no need to
defeasibly prove the truth of the antecedents, beyond
checking facts), we can simplify the above inference
rules to give the following simpler proof mechanism:

+∂:
If T, F ` +∂p then
(1) ∃r ∈ Rd[p]∀q ∈ Ante(r) : q ∈ F and
(2) ∀s ∈ R[∼p] either

(a) ∃q ∈ Ante(s) : ∼q ∈ F or
(b) ∃t ∈ Rd[p] such that
∀q ∈ Ante(t) : q ∈ F and t � s.

−∂:
If T, F ` −∂p then
(1) ∀r ∈ Rd[p] ∃q ∈ Ante(r) : ∼q ∈ F or
(2) ∃s ∈ R[∼p] such that

(a) ∀q ∈ Ante(s) : q ∈ F and
(b) ∀t ∈ Rd[p] either
∃q ∈ Ante(t) : ∼q ∈ F or t 6� s.

Or, in plain English, we use the conclusion of
the strongest of the defeasible rules that have all
premises satisfied. If no such rule exists, or if there is
any defeater with the opposite conclusion that is not
stronger, then we have no conclusion.

For simplicity, we disregard the tagging, and in-
stead represent T, F ` +∂p as simply T, F ` p, and
use T, F `?a to denote the case that both T, F ` −∂a
and T, F ` −∂¬a holds (that is, T, F `?a denotes
the case that nothing can be defeasibly proven with
respect to a). With a partially ordered superior-
ity relation, only these three possibilities can occur
(Antoniou et al. 2001, Billington 1993).

3 Complexity of the Induction Problem

Given the apparent similarities of defeasible logic with
legal expression and reasoning, we turn our attention
to the problem of inducing a defeasible logic theory
from precedent data (i.e., a set of training examples).
That is, we require an algorithm that, given a training
dataset of cases and their corresponding conclusions,
will produce a theory that, when applied to each el-
ement of the training dataset, will reach the same
conclusions. Two results are important here; that it
is possible to find a theory that describes a dataset,
and that finding the optimal solution is an NP op-
timisation problem. We begin with some definitions
first.

We define a dataset D as a finite set of pairs of
the form (F, c), where F is a set of literals denoting
the known truths or facts of the particular precedent,
and where c is either a literal or the term ?a indi-
cating that no conclusion could be reached with re-
spect to propositional variable a. We say a dataset
is consistent if every conclusion is formed from the
same propositional variable, and if for all records
d1 = (F1, c1) ∈ D and d2 = (F2, c2) ∈ D, if F1 = F2
then c1 = c2. In other words, a dataset is consistent
if no two identical cases have different conclusions.
Given a consistent dataset D we define Var(D) = a,
where a is the propositional variable that appears in
every conclusion.

For convenience we will assume that all datasets
are consistent. Whenever this assumption is invalid,
it can be corrected by pre-processing the dataset.
This might mean deleting the records that are caus-
ing the inconsistency, using the result from the recent

record, or replacing all such inconsistent records with
a new record of the form (F, ?a) to indicate that given
the particular facts F that are causing the inconsis-
tencies, we do not have any known conclusion.

It should be noted that the definition of a dataset
includes the assumption of a single propositional vari-
able to be used over all the conclusions. In applica-
tions where multiple conclusions are necessary, this
limitation can be trivially overcome by processing
each class of conclusions with a different dataset and
repeated application of the algorithm presented later,
in Section 4 of this paper.

We say a defeasible logic theory, T , has an ac-
curacy of x% with respect to a given dataset, D,
if for x% of the records d = (F, c) ∈ D, it can be
proven that T, F ` c. We say a theory describes a
dataset if it is 100% accurate, that is for each record
d = (F, c) ∈ D, it can be proven that T, F ` c.

Theorem 1 Given any consistent dataset D, there
exists at least one theory that describes the dataset.

Proof. By Construction.
Let a = Var(D), we construct a theory T = (R,�),
from rules

R = {F ⇒ c|(F, c) ∈ D ∧ c 6=?a} ∪
{F a|(F, c) ∈ D ∧ c =?a} ∪
{F ¬a|(F, c) ∈ D ∧ c =?a}

and superiority relation

�= {(r1, r2)|r1, r2 ∈ R ∧Ante(r2) ⊂ Ante(r1)}.

This theory describes the dataset, for given any record
r = (F, c) ∈ D, we have T, F ` c. By the reasoning
mechanism of defeasible logic, we know that only the
rules in

{r|r ∈ R ∧Ante(r) ⊆ F} =
{r|r ∈ R ∧Ante(r) = F}∪
{r|r ∈ R ∧Ante(r) ⊂ F}

can be applied in the reasoning process. The dataset
is consistent (by assumption), and the theory has
been constructed from each element of the dataset, so
we know that the theory T will contain either exactly
one defeasible rule with Ante(r) = F and conclusion
c, or exactly two defeaters with Ante(r) = F which
will give conclusion ?a = c. This means that applying
the rules in

{r|r ∈ R ∧Ante(r) = F}

will give us the correct conclusion. It is clear that the
rules in

{r|r ∈ R ∧Ante(r) ⊂ F}
will have no effect on this outcome, for the superiority
relation defines those rules where Ante(r) ⊂ F , to be
weaker than the rules where Ante(r) = F .

In fact, it turns out that for any given dataset D,
there can be many theories that describe the dataset.
While we could use the theory generated in the con-
struction used for the proof of Theorem 1, this is un-
satisfying because using such a theory becomes no
more than a primitive case-based reasoning system.
Instead, we look to find the theory that describes the
dataset and has the minimal number of rules. Be-
cause a minimal theory has few rules, we would ex-
pect each rule to carry more significance and have
greater predictive power than might the rules of a
larger theory describing the same dataset. For this
reason we expect that a minimal theory would give

the best generalisation of the dataset and would be
most likely to perform well on unseen cases. Finding a
minimal theory also simplifies the comprehension ef-
fort required to have a human expert verify a theory,
and more closely matches our expectations that hu-
man experts in their own practice would themselves
typically avoid reasoning with convoluted rules or on
an individual case-based-reasoning approach. Unfor-
tunately, though, finding the minimal theory turns
out to be intractable, we show this by transformation
from the hitting set problem.

Garey and Johnson report that the hitting set
problem is NP-complete (by transformation from the
vertex cover problem by Karp in 1972). The problem
is as follows:

Input Given a collection C of subsets of a finite set
S, and a positive integer k ≤ |S|

Problem Is there a subset S′ ⊆ S with |S′| ≤ k such
that S′ contains at least one element from each
subset in C.

Theorem 2 Given a dataset D and positive integer
k′ ≤ |D|, the problem of deciding whether there exists
a theory T = (R,�) of size |R| ≤ k′ that describes D
is NP-hard. (We refer to this problem as the Describ-
ing Theory Problem.)

Proof. If we assume the existence of an algorithm for
solving the describing theory problem, we can solve
the hitting set problem (Problem SP8 in (Garey &
Johnson 1979)) via transformation to the inputs of
such an algorithm:

• The collection of the hitting set problem can be
encoded in polynomial time to a dataset, then

• An algorithm that solves the describing theory
problem can be used to reach a decision for the
hitting set problem.

The describing theory problem is therefore NP-hard,
because if there exists a polynomial-time algorithm
that can solve the describing theory problem, we can
solve the hitting set problem in polynomial time,
and therefore all NP-complete problems in polyno-
mial time. This transformation is possible because of
a correspondence between a minimum hitting set and
a minimum describing theory.

Given a collection C of subsets of a finite set S, and
a positive integer k ≤ |S|, these inputs are encoded
as follows:

• Create a new propositional variable, a, not ap-
pearing in S,

• Construct a dataset

D = {(E, a)|E ∈ C ∧ E 6= ∅} ∪ {(∅,¬a)},

• Execute an algorithm that solves the describing
theory problem, with input D and k′ = k + 1, if
the algorithm returns “true”, then there exists a
hitting set for C of size k.

Noting the correspondence between a minimum hit-
ting set and a minimum describing theory, the cor-
rectness of the above encoding can be seen:

The dataset, D, of the above construction has
several interesting properties. Any theory that de-
scribes the dataset must contain the rule ∅ ⇒ ¬a.
This is because when reasoning about the record
d = (∅,¬a) ∈ D, the only applicable rules are those
with Ante(r) = ∅, so because we need to reach con-
clusion ¬a given the facts F = ∅, we must have a rule
of the form ∅ ⇒ ¬a. Furthermore, any other rule in

the theory will be stronger than the rule ∅ ⇒ ¬a and
will be of the form F ⇒ a for F 6= ∅ because all the
remaining records d ∈ D\{(∅,¬a)} have the conclu-
sion a. While it is possible for a theory to describe
the dataset with additional rules such as defeaters or
rules of the form F ⇒ ¬a for F 6= ∅, a simpler the-
ory can be produced by eliminating such redundant
rules and for this reason a minimal theory would not
contain such rules.

Now, we note that when reasoning about some
facts, F 6= ∅, with the rules of a minimal theory
Tmin = (R,�) as above, a given rule r ∈ R is appli-
cable if Ante(r) ⊆ F . In fact, a minimal describing
theory of a dataset D is a theory such that for each
record d = (F, c) ∈ D where F 6= ∅, it holds that

∃r ∈ R | Ante(r) ⊆ F

(this property is quite close to the definition of a hit-
ting set). Finally, by noting that if we have a rule
r = (Q⇒ a) that applies to a record d = (F, c) ∈ D,
we can choose any element s ∈ Q to produce a new
rule r′ = ({s} ⇒ a) so that it is still the case that

Ante(r′) ⊆ F ∧Ante(r′) 6= ∅.

Thus, if we are given a minimal theory Tmin for a
dataset that has been constructed from a hitting set
problem, we can simplify each rule (with the positive
conclusion a) in the theory Tmin to give a new theory

T ′
min = (R′,�′)

so that the premise of the rule is a singleton set. This
simplification neither adds nor removes rules, so we
still have a minimal theory – but by taking the union
of the premises of each rule we have a minimum hit-
ting set

S′ = ∪{Ante(r)|r ∈ R′}.
We see that this is indeed the case because for each
record d = (F, c) ∈ D, it holds that

∃r ∈ R′ | Ante(r) ⊆ F

and since each Ante(r) is singleton, this is equivalent
to

∃s ∈ S′ | s ∈ F

(i.e., S′ is a hitting set). By the same reasoning,
we can construct a minimal describing theory from
a minimum hitting set by creating a rule with single-
ton premise set for each element of the hitting set (of
course, in addition to the rule ∅ ⇒ ¬a).

That is, given a minimal theory Tmin , size k′ =
|R|, of such a dataset, we can produce a minimum
hitting set size,

k = S′ = k′ − 1,

of the corresponding collection C, by selecting from
the premise of each rule one element. And likewise,
we can produce a minimal theory from a minimum
hitting set. So that if there is a theory of size |R| ≤
k′ that describes the dataset, then there will exist a
hitting set of size

|S′| ≤ k = k′ − 1

for the collection.

Theorem 3 Given a dataset D and positive integer
k′ ≤ |D|, the problem of deciding whether there exists
a theory T = (R,�) of size |R| ≤ k′ that describes D
is NP-complete.

set theory, T = (∅, ∅)
do

invoke Rule Search Routine (Figure 3), to find a new rule r
if r 6= nil

set T , to T + r
while r 6= nil

Figure 2: Defeasible Theory Search Algorithm

Proof. The decision procedure can be solved in NP
time. An algorithm is as follows:

1. Non-deterministically, generate a theory T of size
|R| ≤ k′ over the propositional variables in D.

2. For each record (F, c) ∈ D, use the linear time
algorithm in (Maher 2001) to check T, F ` c.

3. If the theory T describes the dataset D, succeed.

The correctness of this algorithm can be seen im-
mediately, for it simply checks that the nondeter-
ministically generated theory of step 1 describes the
dataset. Clearly, this algorithm runs in nondetermin-
istic polynomial time. Given that the decision proce-
dure is also NP-hard (Theorem 2) we conclude that
the decision procedure is NP-complete.

4 A New Algorithm

While the above results pertain to a decision pro-
cedure, the problem of finding the smallest the-
ory that describes a dataset belongs to the class
of NP Optimisation problems (defined in (Ausiello,
Crescenzi, Gambosi, Kann, Marchetti-Spaccamela &
Protasi 1999)), and is consequently NP-hard. These
results follow immediately from the definition of
NPO, or can be proven via transformation from Prob-
lem SP7 in (Ausiello et al. 1999) using a similar map-
ping as that used Theorem 2.

The important consequence of these results is that
it is unlikely that there is a tractable algorithm that
finds the global optimum, but that it is necessary to
use heuristics to find an approximate solution.

In light of the inherent difficulty of the problem,
it is necessary to take a pragmatic approach in seek-
ing an algorithm that produces “reasonable” theories
in “reasonable” time. A new algorithm, HeRO, that
uses a greedy, branch-and-bound, best-first search
strategy, suits these criteria – producing meaningful
output on realistic data.

The algorithm starts with an empty theory and
iteratively adds rules to the theory in a greedy fash-
ion so as to improve the accuracy of the theory. With
every iteration the search space of possible rules is ex-
plored using a branch and bound algorithm to select
the rule with the highest gain. This greedy mode of
operation is not unrealistic because rules that offer a
high degree of predictive power should naturally of-
fer the greatest degree of improvement in accuracy of
the theory (and indeed, practice confirms that this is
the case or at least a suitable approximation of real-
ity). Pseudocode for the high-level operation of the
algorithm is detailed in Figure 2.

We now turn our attention to the search algorithm
used for selecting rules and their appropriate positions
to add to the theory.

If a rule r = (Q ⇒ c) or r = (Q c) is added
at some position in the superiority relation � of a
theory T = (R,�), to give a new theory T ′, we define
the gain, gainT,r,T ′ , of that rule to be the difference

between the number of records, d = (F, c) ∈ D, for
which T ′, F ` c and the number of records for which
T, F ` c. That is, the gain of a rule is the increase in
the accuracy of a theory that is a result of adding the
rule to the theory.

This definition of gain can be equivalently stated in
terms of “incorrect conclusions that are corrected by
adding the new rule”, and “correct conclusions that
are blocked by adding the new rule”, as follows:

gainT,r,T ′ =#{(F, c) ∈ D|T ′, F ` c}−
#{(F, c) ∈ D|T, F ` c}

=#{(F, c) ∈ D|T ′, F ` c ∧ T, F 6` c}−
#{(F, c) ∈ D|T ′, F 6` c ∧ T, F ` c}

We derive an upper bound for gainT,r,T ′ by noting
that if the rule r is refined by adding literals to the
premises to make the rule more specific, then the
number of “incorrect conclusions that are corrected
by adding the new rule” must decrease because a sub-
set (but no more) of these “corrections” will still be
applicable after refining the rule, and the number of
“correct conclusions that are blocked by adding the
new rule” will also decrease because for the same rea-
son a subset (and no more) of these “blocks” will still
be applicable after refining the rule. Under ideal cir-
cumstances, the refinement of a rule would result in
no reduction of “corrections”, but would eliminate all
“blocking”. It is this ideal condition that leads us to
the upper bound, maxgainT,r,T ′ for any refinement of
the rule r:

maxgainT,r,T ′ = #{(F, c) ∈ D|T ′, F ` c ∧ T, F 6` c}

These expressions for gainT,r,T ′ and maxgainT,r,T ′

can be further refined if required to support a legal
practice that is known to evolve over time. Instead
of simply counting records with the # operator, it is
possible to compute a weighted sum, with the contri-
bution of each record inversely proportional to the age
of the record. This approach places greater emphasis
on more recent conclusions, and allows theories to be
generated for datasets that may contain evolutionary
change.

Now, by either best-first or simply breadth-first
search, we can explore the search space by maintain-
ing a variable that holds the best rule found so far,
and only exploring those branches of the search space
where the upper bound, maxgainT,r,T ′ , is strictly
greater than the value of gainT,r,T ′ for bestgain. The
bestgain can then be added to the current theory T
(if it would result in a positive gain), before repeating
the search again for the next iteration (or halting if
no more rules exist that result in positive gain).

By only considering totally ordered superiority re-
lations, it is possible to obtain an efficient implemen-
tation of this algorithm. For each position in the total
order, the weaker rules are immediately applied to the
dataset to give tentative conclusions and the records

set best gain so far, bg ← 0
set best premises, bp← nil
set best conclusion, bc← nil
foreach position in the totally ordered superiority relation

set weaker ←the existing rules that are weaker than the current position
set stronger ←the existing rules that are stronger than the current position
set priority queue, q ← ∅
using q enqueue ∅ with priority 0
while q 6= ∅

set current premise p = q.dequeue()
compute preferred conclusion, c, of p,

gain, g, of p, and
maxgain, mg, of p

if g > bg
set bg ← g
set bp← p
set bc← c

if mg > bg
foreach refinement p′ of p

q.enqueue(p′)
if bg > 0

return (bg ⇒ c) and current position
else

return nil

Figure 3: Rule Search Routine

in the dataset to which stronger rules apply are dis-
carded (because if we added a rule at this position in
the superiority relation it would have no effect on the
conclusions of records for which one of the stronger
rules is applicable). This initial processing allows the
gainT,r,T ′ and maxgainT,r,T ′ to be efficiently com-
puted in a single pass over the dataset. Furthermore,
additional performance gains are possible by associ-
ating with each set of premises, the records in the
dataset that are applicable (and maintaining this set
during each set-based computation). Restricting the
algorithm to only totally ordered superiority relations
does not appear to result in poorer theories, and in
fact, produces a theory that is easier for a human ex-
pert to comprehend since such a theory represents an
ordered list of rules, as opposed to a digraph of rules
that is more difficult to interpret.

Pseudocode for an implementation of the greedy
rule search appears in Figure 3. A best-first search ap-
pears, but this can be trivially modified to a breadth-
first search by replacing the priority queue with a
standard queue. Because it is possible to compute
the accuracy gain of a rule r = (Q⇒ p and it’s nega-
tion r′ = (Q ⇒ ¬p) in a single pass, we compute
both simultaneously for a given premise set Q, and
return the conclusion, gain and maxgain of the rule
with greater accuracy gain.

5 Comparison with Other Approaches

The HeRO algorithm has been implemented in C#.
The importance of set-based operations in the al-
gorithm suggests that an efficient implementation
must makes careful use of hash-based data struc-
tures that support rapid testing of set membership
conditions. Another significant optimisation that of-
fers performance improvement is associating records
in the dataset with any set that is a subset of the
premises of the record, thus allowing rapid identifi-
cation of the records of a rule but without requiring
excessive maintenance at each constructive set opera-
tion. In this section, we compare our implementation

of HeRO with other algorithms that attempt to ac-
complish similar ends.

This research was motivated by work by Governa-
tori and Stranieri (2001) that explored the semantic
overlap between association rules and rules within de-
feasible logic, but we have attempted to incorporate
elements of inductive logic programming and of asso-
ciation rule mining so as to produce accurate theories.
The original intent of the work has been followed by
John Avery, in the development of a system that gen-
erates defeasible logic rules by analyzing the output
of the Apriori (Agrawal & Srikant 1998) association
rule mining algorithm. The rationale of such an ap-
proach is that it is possible to benefit from the well-
understood and highly efficient algorithms (such as
(Agrawal & Srikant 1998, Han, Pei & Yin 2000)) for
association rule mining, and then post-process the as-
sociation rules to identify a suitable defeasible logic
theory.

John Avery, in private communication, reports
some preliminary results from his research imple-
menting an association rule based algorithm. Their
algorithm, DefGen, that faithfully follows the origi-
nal intent of the work by Governatori and Stranieri
(2001) has been tested against a Japanese credit ap-
plication dataset 3 dataset for benchmarking machine
learning algorithms that contains 125 records and is
supplied with a Lisp domain theory. Apriori cannot
be applied to datasets containing cardinal features, so
these were binned according to categories used within
the domain theory. A similar limitation also applies
to our algorithm, so the same binning has been used
so that the values can be mapped to a set of proposi-
tional variables. Avery reports that by changing the
minimum support and confidence used by the Apri-
ori algorithm, is possible to obtain theories that offer
higher accuracy or that result in fewer rules. He se-
lects two combinations of support and confidence that
give a practical balance between theory size and ac-
curacy. In contrast, our algorithm, HeRO, seeks to

3Freely Available at the UCI Machine Learning repository,
http://www.ics.uci.edu/ mlearn/MLRepository.html

Algorithm DefGen DefGen HeRO HeRO
Minimum support 5 10
Minimum confidence 100 75
Target theory size 8 no limit
Accuracy 87% 84% 90% 97%
Rules generated 46 55 8 16
Runtime 0.4s 0.5s 2s 20s

Table 1: Comparison of Results for Credit Application Dataset

find only a minimal theory – the only parameterisa-
tion possible is the trade of runtime for accuracy by
halting the algorithm after a predefined number of
iterations. Table 1 compares the two approaches.

Clearly, HeRO offers vast improvements over Def-
Gen in both accuracy and the number of rules gener-
ated (fewer rules suggests a greater degree of gen-
eralization). Even though these results pertain to
initial implementations of the corresponding theoret-
ical works, the dramatic differences between these
two approaches appear to be rooted in two problems.
First, while defeasible logic can indeed be used to
represent associations between premises and conclu-
sions, defeasible logic, by virtue of the superiority re-
lation, can represent “disassociations” (or exceptions
to associations) that are difficult to represent or even
detect with association rule mining algorithms that
work with minimum supports. And second, identi-
fying and collecting association rules into defeasible
logic rules is a combinatorial optimisation problem
for which finding an optimal theory is also likely to
be intractable, and so this approach must also resort
to the use of heuristics – only three patterns in de-
feasible logic were identified and used in the DefGen
algorithm.

DefGen offers better runtime performance, and is
arguably more likely to be scalable, given highly ef-
ficient association rule mining algorithms that exist.
This certainly does not rule out HeRO for practical
problems – the Bench-Capon dataset discussed below
has more records and features, and yet has compa-
rable runtimes. In practice, it appears that the pri-
mary limiting factor of HeRO is not the size of the
dataset, but the complexity of the underlying theory
(in such theories the branch-and-bound techniques
are less effective). This particular limitation is not of
serious concern, for if a particular dataset has a very
complex underlying theory then the output of HeRO
may be too complex for a human to reasonably ver-
ify and in such situations, while comparable to other
approaches, this particular methodology suggests no
distinct argument for its use.

Bench-Capon (1993) highlights the opportunities
for data mining within the legal domain and trains
a neural network on a dataset for a fictitious wel-
fare benefit. In a later work (Bench-Capon, Co-
enen & Leng 2000), he also compares these results
with the unprocessed output of an association rule-
mining algorithm that has been executed with the
same dataset. The synthetic dataset used by Bench-
Capon is similar to the Japanese Credit Application
Dataset, and gives equally promising theories when
HeRO is executed.

The dataset used in the experiments describes a
fictional welfare benefit paid to pensioners that suffer
expenses visiting a spouse in hospital. Each record
has a binary conclusion, whether they receive the
benefit or not, and Bench-Capon explains that this
payment is contingent upon the satisfaction of the
following conditions:

1. The person should be of pensionable age (60 for
a woman, 65 for a man);

2. The person should have paid contributions in
four out of the last five relevant contribution
years;

3. The person should be a spouse of the patient;

4. The person should not be absent from the UK;

5. The person should not have capital resources
amounting to £30,000;

6. If the relative is an in-patient the hospital should
be within a certain distance: if an out-patient,
beyond that distance.

These six conditions immediately translate into 12
features (age, gender, 5 contributions, spouse, ab-
sence, capital resources, in-patient, distance), which
form the dataset along with which 52 additional
“noise” features that have no influence on the con-
clusion.

Neural networks trained on 2400 such records ob-
tained the following success rates:

One hidden layer: 99.25%
Two hidden layers: 98.90%
Three hidden layers: 98.75%

Even though these are very promising success
rates, the opacity of neural network techniques to ver-
ification and analysis makes it difficult to rationalize
the use such technologies in legal practice.

To apply the HeRO algorithm to the same dataset,
the input features must first be binned to a set of
prepositional variables. We do so in the same man-
ner as Bench-Capon when preprocessing for Apriori,
using some domain knowledge to intelligently parti-
tion the domain of each feature. The following de-
feasible logic theory is generated by HeRO, with an
accuracy of 99.8% (in order of superiority, from weak-
est to strongest):

⇒ grant
distance short , inpatient ⇒ ¬grant

¬spouse ⇒ ¬grant
absent ⇒ ¬grant

age lt 60 ⇒ ¬grant
capital gt 3000 ⇒ ¬grant

It is trivial to alter the algorithm to prefer scepti-
cism when two rules have equal accuracy gain; doing
so results in an even simpler theory with the same
accuracy (in order of superiority, from weakest to
strongest):

⇒ ¬grant
spouse, ¬absent ,¬age lt 60 ,

¬capital gt 3000 ⇒ grant
distance short , inpatient ⇒ ¬grant

These defeasible theories correspond very closely
to the conditions in the actual domain theory. That
HeRO has not found every condition appears to be
symptomatic of the fact that the dataset is synthetic

and that the domain theory contains an n-out-of-m
constraint that is difficult to express in defeasible
logic. Given that at an accuracy of 99.8%, only 4
records remain misclassified – it appears that the re-
maining conditions for the welfare benefit are simply
not exercised within the dataset. Though, needless
to say, 99.8% accuracy is an impressive result even if
the other benefits of using defeasible logic over more
opaque knowledge representations such as neural net-
works are disregarded.

Bench-Capon manually analyses association rules
generated from the dataset, identifying both noise
variables and some conditions of the domain theory,
but does not offer any immediate suggestions for au-
tomation. It is not possible to directly compare such
work, but that similar trends are identified by HeRO
without the manual effort is significant. Furthermore,
the techniques he used lend themselves to strategies
for coping with scalability. For example, Apriori (or a
suitable entropy measure) could be used to preprocess
datasets for HeRO in order to identify and remove
noise attributes from the search space.

6 Future Work

The algorithm presented in this paper bears similarity
to algorithms used for inducing theories in the mono-
tonic horn-clause logic used by the Inductive Logic
Programming (ILP) community. Though the non-
monotonic nature of defeasible logic renders estab-
lished ILP algorithms inapplicable without significant
post-processing, it is worthwhile further exploring a
mechanism for translation between horn-clause logic
and defeasible logic.

Several decision tree induction algorithms (such
as C4.5(Quinlan 1993)) can operate in a rule gener-
ation mode that produces theories resembling defea-
sible logic. Such algorithms do not specifically seek
to optimise their output as a defeasible theory but it
will be worthwhile to compare the relative sizes of the
theories generated by of each of these techniques.

7 Conclusions

The challenge of representing and encoding knowl-
edge within legal decision support systems can be
solved by the use of defeasible logic. Defeasible logic
provides a faithful representation of legal regulation
within a formal framework, and now has a mecha-
nism by which the legal knowledge can be automati-
cally encoded from a set of precedents. Though find-
ing a minimal theory to describe a given dataset is
intractable, the combination of heuristics in HeRO
results in a practical algorithm that generates mean-
ingful theories without excessive runtimes.

References

Agrawal, R. & Srikant, R. (1998), Fast algorithms for
mining association rules, in M. Stonebraker &
J. Hellerstein, eds, ‘Readings in Database Sys-
tems’, 3rd edn, Morgan Kaufmann Publishers,
chapter 7, pp. 580–592.

Antoniou, G., Billington, D., Governatori, G. & Ma-
her, M. (1999), On the modelling and analysis
of regulations, in ‘Proceedings of the 10th Aus-
tralasian Conference on Information Systems’,
pp. 20–29.

Antoniou, G., Billington, D., Governatori, G. & Ma-
her, M. (2000), A flexible framework for defeasi-
ble logics, in ‘AAAI/IAAI’, pp. 405–410.

Antoniou, G., Billington, D., Governatori, G. & Ma-
her, M. (2001), ‘Representation results for de-
feasible logic’, ACM Transactions on Computa-
tional Logic 2(2), 255–287.

Antoniou, G., Billington, D., Governatori, G., Ma-
her, M. & Rock, A. (2000), A family of defeasible
reasoning logics and its implementation, in ‘Pro-
ceedings of the 14th European Conference on Ar-
tificial Intelligence’, IOS Press, Amsterdam.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V.,
Marchetti-Spaccamela, A. & Protasi, M. (1999),
Complexity and Approximation: Combinatorial
Optimization Problems and their Approxima-
bility Properties, Springer-Verlag, chapter Ap-
pendix B, p. 426. See also http://www.nada.
kth.se/~viggo/problemlist/.

Bench-Capon, T. (1993), Neural networks and open
texture, in ‘Proceedings of the Fourth Interna-
tional Conference on Artificial Intelligence and
Law’, ACM Press.

Bench-Capon, T., Coenen, F. & Leng, P. (2000), An
experiment in discovering association rules in the
legal domain, in ‘Proceedings of the Eleventh In-
ternational Workshop on Database and Expert
Systems Applications’, IEEE Computer Society,
Los Alamitos, California, pp. 1056–1060.

Billington, D. (1993), ‘Defeasible logic is stable’,
Journal of Logic and Computation 3, 370–400.

Brüninghaus, S. & Ashley, K. (1999), Toward adding
knowledge to learning algorithms for indexing le-
gal cases, in ‘The Seventh International Confer-
ence on Artificial Intelligence and Law’, pp. 9–17.

Garey, M. & Johnson, D. (1979), Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company,
chapter Appendix A, p. 222.

Ginsberg, M. (1993), AI and nonmonotonic reason-
ing, in D. Gabbay, C. Hogger & J. Robinson,
eds, ‘Handbook of Logic in Artificial Intelligence
and Logic Programming’, Vol. 3, Oxford Univer-
sity Press.

Governatori, G. & Stranieri, A. (2001), Towards the
application of association rules for defeasible rule
discovery, in B. Verheij, A. Lodder, R. Loui &
A. Muntjewerff, eds, ‘Frontiers in Artificial In-
telligence and Applications’, Vol. 70, IOS Press.
Proceedings of JURIX 2001.

Han, J., Pei, J. & Yin, Y. (2000), Mining fre-
quent patterns without candidate generation, in
W. Chen, J. Naughton & P. Bernstein, eds,
‘2000 ACM-SIGMOD International Conference
on Management of Data’, ACM Press, Dallas,
Texas, pp. 1–12.

Maher, M. (2001), ‘Propositional defeasible logic has
linear complexity’, Theory and Practice of Logic
Programming 1(6), 691–711.

Nute, D. (1993), Defeasible logic, in D. Gabbay,
C. Hogger & J. Robinson, eds, ‘Handbook of
Logic in Artificial Intelligence and Logic Pro-
gramming’, Vol. 3, Oxford University Press.

Prakken, H. (1997), Logical Tools for Modelling Legal
Argument, Kluwer Academic Publishers.

Quinlan, J. (1993), C4.5: programs for machine
learning, Morgan Kaufmann, San Mateo, Cali-
fornia.

http://www.nada.kth.se/~viggo/problemlist/
http://www.nada.kth.se/~viggo/problemlist/

Zeleznikow, J. & Hunter, D. (1994), Building Intelli-
gent Legal Information Systems, Computer/Law
Series, Kluwer Law and Taxation Publishers.

Zeleznikow, J. & Stranieri, A. (1997), Knowledge dis-
covery in the split up project, in ‘The Sixth In-
ternational Conference on Artificial Intelligence
and Law’.

	Introduction
	Defeasible Logic
	Complexity of the Induction Problem
	A New Algorithm
	Comparison with Other Approaches
	Future Work
	Conclusions

