A Modal Computational Framework for Default Reasoning

Alberto Artosi ${ }^{1}$, Paola Cattabriga ${ }^{1}$, and Guido Governatori ${ }^{2}$
${ }^{1}$ Dipartimento di Filosofia, Università di Bologna, via Zamboni 28, 40126 Bologna, Italy, Fax +39(0)51-258326
${ }^{2}$ Department of Computing, Imperial College 180 Queen's Gate, London SW7 2BZ
E-mail: \{artosi,paola,governat\}@cirfid.unibo.it

Usually a default rule $A: B / C$ is intended to mean that if A holds in a state of affairs a B is consistent, then C follows by default. However, C is not a necessary conclusion: different states of affairs are possible (conceivable). According to this view, Meyer and van der Hoek [MvH92] developed a multimodal logic, called $S 5 P_{(n)}$, for treating non-monotonic reasoning in a monotonic setting. In this paper we shall describe a proof search algorithm for $S 5 P_{(n)}$ which has been implemented as a Prolog Interpreter.
$S 5 P_{(n)}$ arises as a combination of $S 5$ with n distinct $K 45$ "preference" modalities $P_{i}(1 \leq i \leq n)$ characterized by the following axioms:

$$
\begin{array}{ll}
\text { 1. } \square P_{i} A \equiv P_{i} A & 3 . \neg P_{i} \perp \rightarrow\left(P_{i} \square A \equiv \square A\right) \\
\text { 2. } \neg P_{i} \perp \rightarrow\left(P_{i} P_{j} A \equiv P_{j} A\right) & 4 . \square A \rightarrow P_{i} A(1 \leq i \leq n) .
\end{array}
$$

The semantics for $S 5 P_{(n)}$ is given in terms of clusters of preferred worlds.
To "simulate" defeault reasoning in $S 5 P_{(n)}$ we simply have to translate the usual default rules in the $S 5 P_{(n)}$ language. The $S 5 P_{(n)}$ version of Reiter's rule is $A \wedge \diamond B \rightarrow P_{i} C$ meaning that if A is true and B is considered possible then C is preferred. Similarly, normal defaults can be expressed as $A \wedge \diamond B \rightarrow P_{i} B$ and multiple defaults as $A_{1} \wedge \diamond B_{1} \rightarrow P_{1} C_{1}, A_{2} \wedge \diamond B_{2} \rightarrow P_{2} C_{2} \ldots$ where P_{1} and P_{2} are preference operators associated with distinct preferred sets.

To compute inferences in $S 5 P_{(n)}$ we need the following label formalism. Let $\Phi_{C}^{i}=\left\{w_{1}^{i}, w_{2}^{i}, \ldots\right\}$ and $\Phi_{V}^{i}=\left\{W_{1}^{i}, W_{2}^{i}, \ldots\right\}(0 \leq i \leq n)$ be (nonempty) sets respectively of constants and variable "world" symbols. An element of the set \Im of "world" labels (henceforth labels) is either (i) an element of Φ_{C}^{i}, or (ii) an element of Φ_{V}^{i}, or (iii) a path term $\left(k^{\prime}, k\right)$ where (iiia) $k^{\prime} \in \Phi_{C}^{i} \cup \Phi_{V}^{i}$ and (iiib) $k \in \Phi_{C}^{i}$ or $k=\left(m^{\prime}, m\right)$ where $\left(m^{\prime}, m\right)$ is a label. Intuitively we may think of a label $i \in \Phi_{C}^{i}$ as denoting a world, and a label $i \in \Phi_{V}^{i}$ as denoting a set of worlds (any world) in cluster of preferred i-worlds. A label $i=\left(k^{\prime}, k\right)$ may be viewed as representing a path from k to a (set of) world(s) k^{\prime} accessibile from k. From now on we shall use $i, j, k \ldots$ to denote arbitrary labels. For any label $i=\left(k^{\prime}, k\right)$ we call k^{\prime} the head of i, k the body of i, and denote them by $h(i)$ and $b(i)$ respectivelly. Notice that these notions are recursive: if $b(i)$ denotes the body of i m then $b(b(i))$ will denote the body of $b(i), b(b(b(i)))$ will denote the body of $b(b(i))$, and so on. We call each of $b(i), b(b(i))$, etc., a segment of i. Let $s(i)$ denote any segment of i (obviously, by definition every segment $s(i)$ of a label i is a label); then $(h(s(i)))$ will denote the head of $(s(i))$. We call a label i restricted if $h(i) \in \Phi_{C}$, otherwise we call it unrestricted. We shall say that a label k is
i-preferred iff $k \in \Im^{i}$ where $\Im^{i}=\left\{k \in \Im: h(k)\right.$ is either w_{m}^{i} or $\left.W_{m}^{i}, 1 \leq i \leq n\right\}$, and that a label k is i-ground $(1 \leq i \leq n)$ iff: 1$) \forall s(k): h(s(k)) \notin \Phi_{V}^{i}$, and 2) if $\exists s^{m}(k): h\left(s^{m}(k)\right) \in \Phi_{V}^{i}$, then $\exists s^{j}(k), j<m: h\left(s^{j}(k)\right) \in \Phi_{C}^{i}$.

The formalism just described alows labels to be manipulated in a way closed related to the semantics of modal operators and "matched" using a specilaized (logic-dependent) unification algorithm. For two labels i, k and a substitution σ we shall use $(i, k) \sigma$ to denote both that i and k are σ-unifiable and the result of their unification. On this basis we may go on to define the notion of two labels i, k being $\sigma^{S 5 P_{(n)}}$-unifiable in the following way:

$$
\begin{array}{rlrl}
\sigma^{*} & : \Phi_{V}^{0} \longrightarrow \Im^{-} \Phi_{V}^{i},(1 \leq i \leq n) & \sigma^{S 5 P_{(n)}} & : \Phi_{V} \longrightarrow \Im^{-} \\
& : \Phi_{V}^{i} \longrightarrow \Phi_{C}^{i},(1 \leq i \leq n) & : \Phi_{V}^{i} \longrightarrow \Im^{i},(1 \leq i \leq n)
\end{array}
$$

The corresponding PTP ("PROLOG Theorem Prover" [ACG95,Cat95]) clauses are:

```
unifypn(vw(N),vw(N1),vw(N2)):- (N >= N1, N2 = N); N1 =N2.
unifypn(w(N),vw(N1),w(N)).
unifypn(vw(N1),w(N),w(N)).
unifypn(w(N),w(N),w(N)).
unifypn(vw(N1),w(J,N),w(J,N)).
unifypn(w(J,N),vw(N1),w(J,N)).
unifypn(vw(J,N),vw(J,N1),vw(J,N2)):- (N >= N1, N2 = N); N1 =N2.
unifypn(w(J,N),vw(J,N1),w(J,N)).
unifypn(vw(J,N1),w(J,N),w(J,N)).
unifypn(w(J,N),w(J,N),w(J,N)).
unifypn(i(A,B),i(C,D),i(E,G)):- functor(i(A,B),F,N),
    functor(i(C,D),F,N), unifyargspn(N,i(A,B),i(C,D),i(E,G)).
unifyargspn(N,X,Y,T):- N>0, unifyargpn(N,X,Y,AT), N1 is N - 1,
    functor(T,i,2), arg(N,T,AT), unifyargspn(N1,X,Y,T).
unifyargspn(0,X,Y,T).
unifyargpn(N,X,Y,AT):- arg(N,X,AX), arg(N,Y,AY), unifypn(AX,AY,AT).
```

We are now able to define the notion of $\sigma_{S 5 P_{(n)}}$-unification as follows:

$$
\begin{aligned}
(i, k) \sigma_{S 5 P_{(n)}}= & (h(i), h(k)) \sigma^{*} \text { if } \\
& i, k \text { are } i \text {-ground, } 1 \leq i \leq n, \text { or } \\
& \exists s(i), s(k): h(s(i)), h(s(k)) \in \Phi^{i}, \text { and }\left(h(s(i)), h(s(k)) \sigma^{S 5 P_{(n)}}\right.
\end{aligned}
$$

PTP clauses:

```
unifydefault(T1,T2,T3):- iground(T1), iground(T2),
    arg(1,T1,H1), arg(1,T2,H2), unifypn(H1,H2,T3), !.
unifydefault(T1,T2,T3):- isegment(T1,i(H1,B1)),
    isegment(T2,i(H2,B2)), unifydefault(H1,H2,T3).
isegment(I,S):- (subterm(i(w(J,N),K),I), i(w(J,N),K)=S;
    subterm(i(vw(D,M),H),I), i(vw(D,M),H)=S),!.
iground(I):- ( compound(I), I =.. [F], not memb(vw(A,B),F); ig(F);
    (subterm(i(vw(H,M),K),I), subterm(w(C,D),K))),! .
ig([]):- !.
ig([T|B]):- (T = w(H); T = vw(G); T = w(A,B)), ig(B).
```

In contrast with the usual branch-expansion rules of the tableau method, all the rules involved in the following proof search algorithm are linear. Their application generates a one-branch refutation tree (thus eliminating redundancy from the search space). Splitting occurs only as a result of applying the "cut rule" in steps 9,10 below. The algorithm works with formulas of the form X, i called labelled formulas (ℓ-formulas). Formulas will be expressed in Smullyan-Fitting's " α, β, ν, π " notationwith the following addition: formulas of the forms $P_{i} A$ and $\neg P_{i} A$ will be classified, in analogy with ν and π type formulas, as being of type $p_{i} \nu$ and $p_{i} \pi$ respectively. As usual X^{C} will be used to denote the conjugate of X (i.e. $\neg Z$ if $X=Z$, and viceversa). The algorithm is displayed in its most general formulation, with " L " to be replaced by " $S 5 P_{(n)}$ " or by any other logic anong those treated in [AG94,Gov95] (to which the reader is also referred for all details). The procedure is based on canonical trees. A tree is canonical iff it is generated by applying the inference rules in the following fixed order: first the 1 -premise rules (see steps $3,4,5,6,7$), then the 2 -premise rules (see step 8), and finally the 0 -premise (cut) rule. An essential property of canonical trees is that they always terminate, thus providing a computable algorithm.

Preliminary definitions. Two ℓ-formulas X, i and X^{C}, k, such that $(i, k) \sigma_{L}$ are called σ_{L}-complementary. An ℓ-formula is said to be E-analysed in a branch τ if either (i) X is of type α and both α_{1}, i and α_{2}, i occur in τ; or (ii) X is of type β and the following condition is satisfied: if β_{1}^{C}, k (resp. β_{2}^{C}, k)occurs in τ and $(i, k) \sigma_{L}$, then also $\beta_{2},\left(i, k \sigma_{L}\right)$ (resp. $\left.\beta_{1},(i, k) \sigma_{L}\right)$ occurs in τ; or (iii) X is of type ν and $\nu_{0},\left(i^{\prime}, i\right)$ occurs in τ for some $i^{\prime} \in \Phi_{V}$ not previously occurring in τ, or (iv) X is of type π and $\pi_{0},\left(i^{\prime}, i\right)$ occurs in τ for some $i^{\prime} \in \Phi_{C}$ not previously occurring in τ, similarly if X is of type $p_{i} \nu$ or $p_{i} \pi$. A branch τ is said to be E-completed if every ℓ-formula in it is E-analysed and there are no complementary formulas which are not σ_{L}-complementary. We say that a branch τ is completed if it is E-completed and all the ℓ-formulas of type β in it are either analysed or cannot be analysed. We call a tree completed if every branch is completed. Finally, a branch τ is σ_{L}-closed if it contains a pair of σ_{L}-complementary ℓ-formulas, and a tree is σ_{L}-closed if all its branches are σ_{L}-closed.

Let Λ, Δ denote sets of analysed and unalysed ℓ-formulas respectively, and \mathcal{L} the set of generated labels. To prove a formula X of L start the following algorithm with X^{C}, i (where i is an arbitray constant label) in Δ, and i is in \mathcal{L}. STEP 1 . If a pair of σ_{L}-complementary ℓ-formulas occurs in Δ, then the tree is σ_{L}-closed. A is a theorem of L.
STEP 2. If Δ is empty, then the tree is completed. Every literal is deleted from Δ, and added to Λ.
STEPS 3, 4. For each ℓ-formula $\nu, i(\pi, i)$ in Δ, (i) generate a new unrestricted (restricted) label $\left(i^{\prime}, i\right)$ and add it to \mathcal{L}; (ii) delete $\nu, i(\pi, i)$ from Δ; (iii) add $\nu_{0},\left(i^{\prime}, i\right)\left(\pi_{0},\left(i^{\prime}, i\right)\right)$ to Δ; and (iv) add $\nu, i(\pi, i)$ to Λ.
STEPS 5, 6. For each ℓ-formula $p_{i} \nu, k,\left(\neg p_{i} \nu, k\right)$ in Δ, (i) generate a new unrestricted (restricted) label ($\left.m^{i}, k\right)$ and add it to \mathcal{L}; (ii) delete $p_{i} \nu, k\left(\neg p_{i} \nu, k\right)$ from Δ; (iii) add $p_{i} \nu_{0},\left(m^{i}, k\right)\left(\neg p_{i} \nu_{0},\left(m^{i}, k\right)\right)$ to Δ; and (iv) add $p_{i} \nu, k\left(\neg p_{i} \nu, k\right)$ to Λ.

STEP 7. For each ℓ-formula α, i in Δ, (i) add α_{1}, i, and α_{2}, i to Δ; (ii) delete α, i from Δ; and (iii) add α, i to Λ.
STEP 8. For each ℓ-formula β, i in Δ, such that either β_{1}^{C}, k or β_{2}^{C}, k is in $\Delta \cup \Lambda$ and $(i, k) \sigma_{L}$ for some label k, (i) add $\beta_{2}(i, k) \sigma_{L}$ or $\beta_{1}(i, k) \sigma_{L}$ to Δ; (ii) delete β, i from Δ; and (iii) add the labels resulting from the σ_{L}-unification to \mathcal{L}; and (iv) $\operatorname{add} \beta, i$ to Λ.
STEP 9. For each ℓ-formula β, i in Δ, if $\Delta \cup \Lambda$ does not contains formulas β_{1}^{C}, k such that i, k are not σ_{L}-unifiable, then form sets $\Delta_{1}=\Delta \cup \beta_{1}, m, \Lambda_{1}=\Lambda \cup \beta_{i}$, $\Delta_{2}=\Delta \cup \beta_{1}^{C}, m \cup \beta, i$ where $(i, m) \sigma_{L}$, and m is a given restricted label, and $\Lambda_{2}=\Lambda$.
STEP 10. For each ℓ-formula β, i in Δ, if $\Delta \cup \Lambda$ does not contains formulas β_{2}^{C}, k such that i, k are not σ_{L}-unifiable, then form sets $\Delta_{1}=\Delta \cup \beta_{2}, m, \Lambda_{1}=\Lambda \cup \beta_{i}$, $\Delta_{2}=\Delta \cup \beta_{2}^{C}, m \cup \beta, i$ where $(i, m) \sigma_{L}$, and m is a given restricted label, and $\Lambda_{2}=\Lambda$.
STEP 11, 12. If Λ contains two complementary formulas which are not $\sigma_{L^{-}}$ complementary ℓ-formulas, searc in \mathcal{L} for restricted labels which σ_{L}-unify with both the labels of the complametary formulas; if we find (do not find) such labels then the tree is σ_{L}-closed (completed). A is (is not) a theorem of L.

In this paper we have presented a proof system for computing default reasoning in a monotonic setting. The above algorithm can be used to verify whether a conclusion C is implied by a (multiple) default D (where D denotes the conjunction of the $S 5 P_{(n)}$ translation of the default(s)) and, thanks to the distinctive features of the label formalism it uses, it yields a countermodel similar to the state of affairs corresponding to the default(s).

References

[ACG95] A.Artosi, P. Cattabriga and G. Governatori. A Prolog implementation of KEM. In M. Alpuente and M. I. Sessa (eds.), Proceedings of the GULPPRODE'95 Joint Conference on Declarative Programming. Marina di Vietri, 11-14 september 1995, Università degli Studi di Salerno, 1995: 395-400.
[AG94] A. Artosi and G. Governatori. Labelled Model Modal Logic. In Proceedings of the CADE-12 Workshop on Automated Model Building, 1994: 11-17.
[Cat95] cattabriga P. Sistemi algoritmici indicizzati per il ragionamento giuridico. PhD Thesis, University of Bologna, 1996.
[Gov95] Governatori G.. Labelled Tableaux For Multi-Modal Logics. In P. Baumgartner, R. Hähnle, and J. Posegga (eds.), Theorem Proving with Analytic Tableaux and Related Methods, Lecture Notes in Computer Science, SpringerVerlag, 1995: 79-84.
[MvH92] J.J.Ch. Mayer and W. van der Hoeck. A Modal Logic for Nonmonotonic Reasoning. In W. van der Hoeck,J.J.Ch. Mayer, Y. H. Tan and C. Witteveen (ed.),Non-Monotonic Reasoning and Partial Semantics. Ellis Horwood: N.Y.. 1992: 37-77.

