
A Modal Computational Framework for Default
Reasoning

Alberto Artosi1, Paola Cattabriga1, and Guido Governatori2

1 Dipartimento di Filosofia, Università di Bologna,
via Zamboni 28, 40126 Bologna, Italy, Fax +39(0)51-258326

2 Department of Computing, Imperial College
180 Queen’s Gate, London SW7 2BZ

E-mail: {artosi,paola,governat}@cirfid.unibo.it

Usually a default rule A : B/C is intended to mean that if A holds in a state of
affairs a B is consistent, then C follows by default. However, C is not a necessary
conclusion: different states of affairs are possible (conceivable). According to this
view, Meyer and van der Hoek [MvH92] developed a multimodal logic, called
S5P(n), for treating non-monotonic reasoning in a monotonic setting. In this
paper we shall describe a proof search algorithm for S5P(n) which has been
implemented as a Prolog Interpreter.

S5P(n) arises as a combination of S5 with n distinct K45 “preference” modal-
ities Pi (1 ≤ i ≤ n) characterized by the following axioms:

1.2PiA ≡ PiA 3.¬Pi⊥ → (Pi2A ≡ 2A)
2.¬Pi⊥ → (PiPjA ≡ PjA) 4.2A → PiA(1 ≤ i ≤ n).

The semantics for S5P(n) is given in terms of clusters of preferred worlds.
To “simulate” defeault reasoning in S5P(n) we simply have to translate the

usual default rules in the S5P(n) language. The S5P(n) version of Reiter’s rule
is A∧3B → PiC meaning that if A is true and B is considered possible then C
is preferred. Similarly, normal defaults can be expressed as A ∧3B → PiB and
multiple defaults as A1 ∧3B1 → P1C1, A2 ∧3B2 → P2C2. . . where P1 and P2

are preference operators associated with distinct preferred sets.
To compute inferences in S5P(n) we need the following label formalism. Let

Φi
C = {wi

1, w
i
2, . . .} and Φi

V = {W i
1,W

i
2, . . .} (0 ≤ i ≤ n) be (nonempty) sets

respectively of constants and variable “world” symbols. An element of the set
= of “world” labels (henceforth labels) is either (i) an element of Φi

C , or (ii) an
element of Φi

V , or (iii) a path term (k′, k) where (iiia) k′ ∈ Φi
C ∪ Φi

V and (iiib)
k ∈ Φi

C or k = (m′,m) where (m′,m) is a label. Intuitively we may think of a
label i ∈ Φi

C as denoting a world, and a label i ∈ Φi
V as denoting a set of worlds

(any world) in cluster of preferred i-worlds. A label i = (k′, k) may be viewed
as representing a path from k to a (set of) world(s) k′ accessibile from k. From
now on we shall use i, j, k . . . to denote arbitrary labels. For any label i = (k′, k)
we call k′ the head of i, k the body of i, and denote them by h(i) and b(i)
respectivelly. Notice that these notions are recursive: if b(i) denotes the body
of im then b(b(i)) will denote the body of b(i), b(b(b(i))) will denote the body
of b(b(i)), and so on. We call each of b(i), b(b(i)), etc., a segment of i. Let s(i)
denote any segment of i (obviously, by definition every segment s(i) of a label i is
a label); then (h(s(i))) will denote the head of (s(i)). We call a label i restricted
if h(i) ∈ ΦC , otherwise we call it unrestricted. We shall say that a label k is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i-preferred iff k ∈ =i where =i = {k ∈ = : h(k) is either wi
m or W i

m, 1 ≤ i ≤ n},
and that a label k is i-ground (1 ≤ i ≤ n) iff: 1) ∀s(k) : h(s(k)) /∈ Φi

V , and 2) if
∃sm(k) : h(sm(k)) ∈ Φi

V , then ∃sj(k), j < m : h(sj(k)) ∈ Φi
C .

The formalism just described alows labels to be manipulated in a way closed
related to the semantics of modal operators and “matched” using a specilaized
(logic-dependent) unification algorithm. For two labels i, k and a substitution σ
we shall use (i, k)σ to denote both that i and k are σ-unifiable and the result of
their unification. On this basis we may go on to define the notion of two labels
i, k being σS5P(n)-unifiable in the following way:

σ∗ : Φ0
V −→ =−Φi

V , (1 ≤ i ≤ n)
: Φi

V −→ Φi
C , (1 ≤ i ≤ n)

σS5P(n) : ΦV −→ =−

: Φi
V −→ =i, (1 ≤ i ≤ n).

The corresponding PTP (“PROLOG Theorem Prover” [ACG95,Cat95]) clauses
are:

unifypn(vw(N),vw(N1),vw(N2)):- (N >= N1, N2 = N); N1 =N2.

unifypn(w(N),vw(N1),w(N)).

unifypn(vw(N1),w(N),w(N)).

unifypn(w(N),w(N),w(N)).

unifypn(vw(N1),w(J,N),w(J,N)).

unifypn(w(J,N),vw(N1),w(J,N)).

unifypn(vw(J,N),vw(J,N1),vw(J,N2)):- (N >= N1, N2 = N); N1 =N2.

unifypn(w(J,N),vw(J,N1),w(J,N)).

unifypn(vw(J,N1),w(J,N),w(J,N)).

unifypn(w(J,N),w(J,N),w(J,N)).

unifypn(i(A,B),i(C,D),i(E,G)):- functor(i(A,B),F,N),

functor(i(C,D),F,N), unifyargspn(N,i(A,B),i(C,D),i(E,G)).

unifyargspn(N,X,Y,T):- N>0, unifyargpn(N,X,Y,AT), N1 is N - 1,

functor(T,i,2), arg(N,T,AT), unifyargspn(N1,X,Y,T).

unifyargspn(0,X,Y,T).

unifyargpn(N,X,Y,AT):- arg(N,X,AX), arg(N,Y,AY), unifypn(AX,AY,AT).

We are now able to define the notion of σS5P(n)-unification as follows:

(i, k)σS5P(n) = (h(i), h(k))σ∗ if
i, k are i-ground, 1 ≤ i ≤ n, or
∃s(i), s(k) : h(s(i)), h(s(k)) ∈ Φi, and (h(s(i)), h(s(k))σS5P(n)

PTP clauses:

unifydefault(T1,T2,T3):- iground(T1), iground(T2),

arg(1,T1,H1), arg(1,T2,H2), unifypn(H1,H2,T3), !.

unifydefault(T1,T2,T3):- isegment(T1,i(H1,B1)),

isegment(T2,i(H2,B2)), unifydefault(H1,H2,T3).

isegment(I,S):- (subterm(i(w(J,N),K),I), i(w(J,N),K)=S;

subterm(i(vw(D,M),H),I), i(vw(D,M),H)=S),!.

iground(I):- (compound(I), I =.. [F], not memb(vw(A,B),F); ig(F);

(subterm(i(vw(H,M),K),I), subterm(w(C,D),K))),! .

ig([]):- !.

ig([T|B]):- (T = w(H); T = vw(G); T = w(A,B)), ig(B).

In contrast with the usual branch-expansion rules of the tableau method, all the
rules involved in the following proof search algorithm are linear. Their application
generates a one-branch refutation tree (thus eliminating redundancy from the
search space). Splitting occurs only as a result of applying the “cut rule” in
steps 9, 10 below. The algorithm works with formulas of the form X, i called
labelled formulas (`-formulas). Formulas will be expressed in Smullyan-Fitting’s
“α, β, ν, π” notationwith the following addition: formulas of the forms PiA and
¬PiA will be classified, in analogy with ν and π type formulas, as being of type
piν and piπ respectively. As usual XC will be used to denote the conjugate of
X (i.e. ¬Z if X = Z, and viceversa). The algorithm is displayed in its most
general formulation, with “L” to be replaced by “S5P(n)” or by any other logic
anong those treated in [AG94,Gov95] (to which the reader is also referred for all
details). The procedure is based on canonical trees. A tree is canonical iff it is
generated by applying the inference rules in the following fixed order: first the
1-premise rules (see steps 3,4,5,6,7), then the 2-premise rules (see step 8), and
finally the 0-premise (cut) rule. An essential property of canonical trees is that
they always terminate, thus providing a computable algorithm.

Preliminary definitions. Two `-formulas X, i and XC , k, such that (i, k)σL are
called σL-complementary. An `-formula is said to be E-analysed in a branch τ if
either (i) X is of type α and both α1, i and α2, i occur in τ ; or (ii) X is of type
β and the following condition is satisfied: if βC

1 , k (resp. βC
2 , k)occurs in τ and

(i, k)σL, then also β2, (i, kσL) (resp. β1, (i, k)σL) occurs in τ ; or (iii) X is of type
ν and ν0, (i′, i) occurs in τ for some i′ ∈ ΦV not previously occurring in τ , or (iv)
X is of type π and π0, (i′, i) occurs in τ for some i′ ∈ ΦC not previously occurring
in τ , similarly if X is of type piν or piπ. A branch τ is said to be E-completed
if every `-formula in it is E-analysed and there are no complementary formulas
which are not σL-complementary. We say that a branch τ is completed if it is
E-completed and all the `-formulas of type β in it are either analysed or cannot
be analysed. We call a tree completed if every branch is completed. Finally, a
branch τ is σL-closed if it contains a pair of σL-complementary `-formulas, and
a tree is σL-closed if all its branches are σL-closed.

Let Λ, ∆ denote sets of analysed and unalysed `-formulas respectively, and
L the set of generated labels. To prove a formula X of L start the following
algorithm with XC , i (where i is an arbitray constant label) in ∆, and i is in L.
STEP 1 . If a pair of σL-complementary `-formulas occurs in ∆, then the tree
is σL-closed. A is a theorem of L.
STEP 2. If ∆ is empty, then the tree is completed. Every literal is deleted from
∆, and added to Λ.
STEPS 3, 4. For each `-formula ν, i (π, i) in ∆, (i) generate a new unrestricted
(restricted) label (i′,i) and add it to L; (ii) delete ν,i (π,i) from ∆; (iii) add
ν0,(i′,i) (π0, (i′,i)) to ∆; and (iv) add ν,i (π,i) to Λ.
STEPS 5, 6. For each `-formula piν, k, (¬piν, k) in ∆, (i) generate a new unre-
stricted (restricted) label (mi, k) and add it to L; (ii) delete piν, k (¬piν, k) from
∆; (iii) add piν0, (mi, k) (¬piν0, (mi, k)) to ∆; and (iv) add piν, k (¬piν, k) to Λ.

STEP 7. For each `-formula α, i in ∆, (i) add α1, i, and α2, i to ∆; (ii) delete
α, i from ∆; and (iii) add α, i to Λ.
STEP 8. For each `-formula β, i in ∆, such that either βC

1 ,k or βC
2 ,k is in ∆∪Λ

and (i,k)σL for some label k, (i) add β2(i,k)σL or β1(i,k)σL to ∆; (ii) delete β,i
from ∆; and (iii) add the labels resulting from the σL-unification to L; and (iv)
add β,i to Λ.
STEP 9. For each `-formula β,i in ∆, if ∆ ∪ Λ does not contains formulas βC

1 ,k
such that i, k are not σL-unifiable, then form sets ∆1 = ∆∪ β1,m, Λ1 = Λ∪ βi,
∆2 = ∆ ∪ βC

1 ,m ∪ β, i where (i,m)σL, and m is a given restricted label, and
Λ2 = Λ.
STEP 10. For each `-formula β, i in ∆, if ∆∪Λ does not contains formulas βC

2 ,k
such that i, k are not σL-unifiable, then form sets ∆1 = ∆∪ β2,m, Λ1 = Λ∪ βi,
∆2 = ∆ ∪ βC

2 ,m ∪ β, i where (i,m)σL, and m is a given restricted label, and
Λ2 = Λ.
STEP 11, 12. If Λ contains two complementary formulas which are not σL-
complementary `-formulas, searc in L for restricted labels which σL-unify with
both the labels of the complametary formulas; if we find (do not find) such labels
then the tree is σL-closed (completed). A is (is not) a theorem of L.

In this paper we have presented a proof system for computing default reasoning
in a monotonic setting. The above algorithm can be used to verify whether a
conclusion C is implied by a (multiple) default D (where D denotes the conjunc-
tion of the S5P(n) translation of the default(s)) and, thanks to the distinctive
features of the label formalism it uses, it yields a countermodel similar to the
state of affairs corresponding to the default(s).

References

[ACG95] A.Artosi, P. Cattabriga and G. Governatori. A Prolog implementation of
KEM. In M. Alpuente and M. I. Sessa (eds.), Proceedings of the GULP-
PRODE’95 Joint Conference on Declarative Programming. Marina di Vietri,
11–14 september 1995, Università degli Studi di Salerno, 1995: 395–400.

[AG94] A. Artosi and G. Governatori. Labelled Model Modal Logic. In Proceedings
of the CADE-12 Workshop on Automated Model Building, 1994: 11-17.

[Cat95] cattabriga P. Sistemi algoritmici indicizzati per il ragionamento giuridico.
PhD Thesis, University of Bologna, 1996.

[Gov95] Governatori G.. Labelled Tableaux For Multi-Modal Logics. In P. Baum-
gartner, R. Hähnle, and J. Posegga (eds.), Theorem Proving with Analytic
Tableaux and Related Methods, Lecture Notes in Computer Science, Springer-
Verlag, 1995: 79–84.

[MvH92] J.J.Ch. Mayer and W. van der Hoeck. A Modal Logic for Nonmonotonic
Reasoning. In W. van der Hoeck,J.J.Ch. Mayer, Y. H. Tan and C. Wit-
teveen (ed.),Non-Monotonic Reasoning and Partial Semantics. Ellis Hor-
wood: N.Y.. 1992: 37–77.

