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Abstract

In this paper the application of defeasible logic for automated negoti-
ation is investigated. Defeasible logic is flexible enough to be adapted to
several possible negotiation strategies, has efficient implementations, and
provides a formal basis for analysis (e.g. to explain why a negotiation was
not successful). Two case studies, one small and one more comprehensive,
will be described and the feasibility of approaches based on defeasible logic
will be discussed.

1 Introduction

It is well known that descriptions of real life scenarios are, very often, partial,
and somewhat unreliable. However, we want to reason and draw conclusions
about them. Classical logic, alas, is not very well suited to deal with such cases,
because it needs complete, consistent, and reliable information; otherwise it
could produce wrong and counterintuitive results.

To obviate the problem alluded to above, a plethora of non-monotonic sys-
tems, with different intuitions, have been put forward. Unfortunately, most of
the proposed non-monotonic logics are computationally intractable (cf. [9]), and
have been used only for a few standard examples, while real life applications
require low complexity and more complicated cases (cf. [23]).

In this paper we discuss how to apply a particular non monotonic system
(Defeasible Logic) to two case studies. First of all Defeasible Logic has been
developed by Nute [24, 25] over several years with a particular concern about
computational efficiency (indeed, its efficiency is linear cf. [20]) and ease of
implementation (nowadays several implementations exist [10, 21] and some of
them can deal with theories consisting of over 100,000 propositional rules [21]).

It is worth noting that Defeasible Logic has been successfully applied to
the design and implementation of various kinds of controllers (cf. [10]); some
scholars have argued in favor of its applicability in the context of normative

∗This work was supported by an ARC SPIRT Grant “Self-describing transactions operating
in a large, open, heterogeneous and distributed environment” between QUT and GBST Pty
Ltd.

47

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Queensland eSpace

https://core.ac.uk/display/14982392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


reasoning [26, 27, 1]. The case studies at hand in this paper are taken from a
different field: negotiation and e-commerce.

In an e-commerce setting support for negotiation needs to be efficient, trans-
parent, and expressive. It should be possible to specify negotiation strategies,
tactics, and rules fairly straightforwardly. In the last few years the relevance of
argumentation theory to capture negotiation and its protocols has been argued
(cf., for example [29, 19]). However, in [14, 15], a close connection between
argumentation theory and Defeasible Logic was established, and in [2, 3] it was
shown that Defeasible Logic is flexible enough to be adapted to several possible
argumentation strategies.

In Section 2 we shortly rehearse the basic of Defeasible Logic, and in Section
3 we discuss two case studies from e-commerce. In the first case study (Section
3.1) we examine how to use Defeasible Logic to describe brokered trades, and in
the second case study (Section 3.2) we investigate bargaining. Finally in Section
4 we discuss shortly relted and future work.

2 Basics of Defeasible Logic

We begin by presenting the basic ingredients of defeasible logic (cf. [6]). A
defeasible theory contains six different kinds of knowledge: facts, strict rules,
defeasible rules, defeaters, a superiority relation, and a specification of comple-
mentary literals. We only consider rules that are essentially propositional. Rules
containing free variables are interpreted as the set of their ground instances.

Facts are indisputable statements, for example, “Tweety is an emu”. Written
formally, this would be expressed as emu(tweety).

Strict rules are rules in the classical sense: whenever the premises are in-
disputable (e.g. facts) then so is the conclusion. An example of a strict rule is
“Emus are birds”. Written formally:

emu(X) → bird(X)

Defeasible rules are rules that can be defeated by contrary evidence. An
example of such a rule is “Birds typically fly”; written formally:

bird(X) ⇒ flies(X)

The idea is that if we know that something is a bird, then we may conclude that
it flies, unless there is other evidence suggesting that it may not fly.

Defeaters are rules that cannot be used to draw any conclusions. Their only
use is to prevent some conclusions. In other words, they are used to defeat some
defeasible rules by producing evidence to the contrary. An example is “If an
animal is heavy then it might not be able to fly”. Formally:

heavy(X) ; ¬flies(X)

The main point is that the information that an animal is heavy is not sufficient
evidence to conclude that it doesn’t fly. It is only evidence against the conclusion
that a heavy animal flies. In other words, we don’t wish to conclude ¬flies if
heavy, we simply want to prevent a conclusion flies.
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The superiority relation among rules is used to define priorities among rules,
that is, where one rule may override the conclusion of another rule. For example,
given the facts

→ bird
→ brokenWing

and the defeasible rules

r : bird ⇒ flies
r′ : brokenWing ⇒ ¬flies

which contradict one another, no conclusive decision can be made about whether
a bird with a broken wing can fly. But if we introduce a superiority relation
� with r′ � r, then we can indeed conclude that the bird cannot fly. The
superiority relation is required to be acyclic.

For each literal p we define the set of p-Complementary literals (C(p)), that
is, the set of literals that cannot hold when p does. Let us consider an example;
let us suppose we have the predicates married and bachelor . Here, we define, for
any constant a, C(married(a)) = {¬married(a), bachelor(a)}. We know that,
under the usual interpretation of the predicates they cannot be true at the same
time for one and the same individual. We stipulate that the negation of a literal
is always complementary to the literal.

Now we present formally defeasible logics. A rule r consists of its antecedents
(or body) A(r) which is a finite set of literals, an arrow, and its consequent (or
head) C(r) which is a literal. There are three kinds of arrows, →, ⇒ and ;

which correspond, respectively, to strict rules, defeasible rules and defeaters.
Where the body of a rule is empty or consists of one formula only, set notation
may be omitted in examples.

Given a set R of rules, we denote the set of all strict rules in R by Rs, the
set of strict and defeasible rules in R by Rsd, the set of defeasible rules in R by
Rd, and the set of defeaters in R by Rdft. R[q] denotes the set of rules in R
with consequent q, and R[C(q)] denotes the set of rules in R whose consequent
is in C(q).

A defeasible theory D is a structure

D = (F,R,�, C)

where F is a finite set of facts, R is a finite set of rules, � is a binary relation
over R, and C is a function mapping a literal to a set of literals.

A conclusion of D is a tagged literal, where a tag is either ∂ or ∆, that may
have positive or negative polarity.

+∆q which is intended to mean that q is definitely provable in D (i.e., using
only strict rules).

−∆q which is intended to mean that we have proved that q is not definitely
provable in D.

+∂q which is intended to mean that q is defeasibly provable in D.

−∂q which is intended to mean that we have proved that q is not defeasibly
provable in D.
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Provability is based on the concept of a derivation (or proof) in D = R. A
derivation is a finite sequence P = (P (1), . . . P (n)) of tagged literals satisfying
four conditions (which correspond to inference rules for each of the four kinds
of conclusion). In the following P (1..i) denotes the initial part of the sequence
P of length i.

+∆:
If P (i + 1) = +∆q then

∃r ∈ Rs[q]
∀a ∈ A(r) : +∆a ∈ P (1..i)

−∆:
If P (i + 1) = −∆q then

∀r ∈ Rs[q]
∃a ∈ A(r) : −∆a ∈ P (1..i)

The definition of ∆ describes just forward chaining of strict rules. For a literal
q to be definitely provable we need to find a strict rule with head q, of which
all antecedents have been definitely proved previously. And to establish that q
cannot be proven definitely we must establish that for every strict rule with head
q there is at least one antecedent which has been shown to be non-provable.

Now we turn to the more complex case of defeasible provability.

+∂: If P (i + 1) = +∂q then either
(1) +∆q ∈ P (1..i) or
(2) (2.1) ∃r ∈ Rsd[q]∀a ∈ A(r) : +∂a ∈ P (1..i) and

(2.2) ∀p ∈ C(q)−∆p ∈ P (1..i) and
(2.3) ∀s ∈ R[C(q)] either

(2.3.1) ∃a ∈ A(s) : −∂a ∈ P (1..i) or
(2.3.2) ∃t ∈ Rsd[q] such that

∀a ∈ A(t) : +∂a ∈ P (1..i) and t > s

−∂: If P (i + 1) = −∂q then
(1) −∆q ∈ P (1..i) and
(2) (2.1) ∀r ∈ Rsd[q] ∃a ∈ A(r) : −∂a ∈ P (1..i) or

(2.2) ∃p ∈ C(q) such that +∆p ∈ P (1..i) or
(2.3) ∃s ∈ R[C(q)] such that

(2.3.1) ∀a ∈ A(s) : +∂a ∈ P (1..i) and
(2.3.2) ∀t ∈ Rsd[q] either

∃a ∈ A(t) : −∂a ∈ P (1..i) or t 6> s

Let us work through the condition for +∂, an analogous explanation holds
for −∂. To show that q is provable defeasibly we have two choices: (1) We
show that q is already definitely provable; or (2) we need to argue using the
defeasible part of D as well. In particular, we require that there must be a
strict or defeasible rule with head q which can be applied (2.1). But now we
need to consider possible “attacks”, that is, reasoning chains in support of a
complementary of q. To be more specific: to prove q defeasibly we must show
that every complementary literal is not definitely provable (2.2). Also (2.3) we
must consider the set of all rules which are not known to be inapplicable and
which have head in C(q) (note that here we consider defeaters, too, whereas they
could not be used to support the conclusion q; this is in line with the motivation
of defeaters given in subsection 2.1). Essentially each such rule s attacks the
conclusion q. For q to be provable, each such rule s must be counterattacked by
a rule t with head q with the following properties: (i) t must be applicable at this
point, and (ii) t must be stronger than s. Thus each attack on the conclusion q
must be counterattacked by a stronger rule.
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3 Negotiation and Defeasible Logic: Two Case
Studies

In this section we present in details two examples of the application of Defeasible
Logic to automated negotiation scenarios. In the first example (Section 3.1) we
consider a case of brokered trade, and we show how to use Defeasible Logic
(1) to select goods against a set of constraints, and (2) to choose the most
appropriate good. Then (Section 3.2) we consider a simple case of negotiation:
single issue bargaining. Here Defeasible Logic is used both in the protocol and
in the dispute phases.

3.1 Case Study 1: Brokered Trade

Brokered trades take place via an independent third party (broker). The broker
matches both buyers’ and sellers’ requirements, and will propose a transaction
when all parties can be satisfied by the trade.

Suppose we have the following scenario: Andrew contacts a broker, he wants
to buy a yacht under 5 years old, at least 60 ft for around $130,000. He is flexible
and will pay more (with a limit of $150,000) for a younger or bigger yacht. He
thinks that each extra foot is worth $1000 and each year of age less than 5 years
adds $3000 to the value of the yacht.

He rates the importance of achieving the price level of $130,000 more than
the importance of either the age or size of the yacht. However, he prefers a
younger boat over a longer one.

The broker has five yachts to sell: the first is 60 ft and 2 years old, the price
is $140,000. The second is 70 ft and 1 year old, the price is $150,000. The third
yacht is 100 ft and 5 years old with a price of $170,000. The fourth is 3 years
old and 50 ft with a price of $125,000. Finally the fifth is 80 ft and 3 years old
with a price of $150,000.

The above data can be summarized in Table 1. The scenario presented

Yacht Length Age Price (000)
1st 60 2 140
2nd 70 1 150
3rd 100 5 170
4th 50 3 125
5th 80 3 150

Table 1: Yacht details

above can be represented as a two stage process. In the first phase we filter
the yachts according to their characteristics and against Andrew’s desiderata.
At this point the most appropriate boat can be chosen. This process can be
represented formally in terms of two correlated defeasible theories: the first for
filtering and the second for choosing.

The language of the first defeasible theory (Df = (Ff , Rf ,�f , Cf )) includes
the following terms and predicates:

• length(x) the length of the yacht;
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• age(x) how old the yacht is;

• offer(x, y) meaning how much (y) Andrew is ready to pay for the yacht x;

• price(x, y) meaning the price (y) of the yacht x;

• buyable(x) meaning whether the yacht x meets Andrew’s conditions;

The set of facts (Ff ) is just the set of predicates that can be deduced from
Table 1, while the rules (Rf ) can be expressed as follows:

1. f1 : length(x) < 60ft ⇒ ¬buyable(x)

2. f2 : age(x) > 5yrs ⇒ ¬buyable(x)

3. f3 : price(x, y), y > $150 ⇒ ¬buyable(x)

4. f4 : ⇒ offer(x, $130)

5. f5 : length(x) > 60ft ⇒ offer(x, ($130 + g(length(x))))

6. f6 : age(x) < 5yrs ⇒ offer(x, ($130 + h(age(x))))

7. f7 : age(x) < 5yrs, length(x) > 60ft ⇒ offer(x, ($130 + g(length(x)) +
h(age(x))))

8. f8 : offer(x, y) ⇒ buyable(x)

9. f9 : offer(x, y), price(x, z), y < z ⇒ ¬buyable(x)

where the superiority relation �f is thus defined: f1 � f8, f2 � f8, f3 � f8,
f9 � f8 as far as the rules for buyable are concerned, and f5 � f4, f6 � f4,
f7 � f4, f7 � f5, and f7 � f6 for offer .

Finally C maps each literal to its negation. Moreover for each x, y we have
that offer(x, z), such that z 6= y is in C(offer(x, y)).

The first three rules state the minimal requirements; the fourth rule sets the
basic offer for a generic boat, while f5, f6 and f7 represent Andrew’s “flexibility”
refining the offer for a specific bigger or younger yacht. Rule f8 says two things
1) that the yacht x meets Andrew’s requirements, and that Andrew has set
an offer of y for that yacht. However, rule f9 is used to see whether the offer
matches the price of the yacht.

The condition on C states that there is at most one unique offer for a given
yacht.

The second theory (Dc), for choosing, requires the following additional pred-
icates:

• min price(x) meaning that the yacht x is the cheapest of the selected ones;

• min age(x) saying that the yacht x is the youngest of the selected ones;

• max length(x) which is true for the longest yacht;

• buy(x) saying that x is the most suitable candidate.

The rules for selecting the most appropriate boat are:

• c1 : min price(x) ⇒ buy(x)
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• c2 : min age(x) ⇒ buy(x)

• c3 : max length(x) ⇒ buy(x)

where the superiority relation is c1 � c2, c1 � c3, and c2 � c3. Since only one
boat has to be selected the complementary literals area as follows: C(buy)(x) =
{¬buy(x)} ∪ {buy(y)|y 6= x}.

We are now ready to present the filtering and choosing processes in detail.
Let us consider the first yacht. The first three rules are not applicable for it,
thus to see whether it is a suitable boat we have to calculate its value. Rules f5

and f7 are not applicable. On the other hand, both f4 and f6 are applicable,
but f6 is the strongest of the two, and no applicable rule defeats it, therefore we
can conclude +∂offer(1, $139). At this point f9 becomes applicable, it defeats
f8, but it is not defeated by it, thus we can derive −∂buyable(1). So, we have
that the first yacht is too expensive and it is not a suitable candidate for the
deal.

It is immediate to see that we can derive −∂buyable(3), and −∂buyable(4).
The former because rule f1 is applicable, that is the boat is too short, and the
latter because rule f3 is applicable, that is, its price is out of the price range.

The first three rules are not applicable for 2 and 5. Thus, similarly to what we
have done in the previous case, we have to determine their values, and we have,
using r7, +∂offer(2, $152) and +∂offer(5, $156), which makes r9 applicable for
both yachts. Then +∂buyable(2) and +∂buyable(5). Thus the second and the
fifth yachts are ones that will be used in the second phase.

The actual defeasible theory we obtain in this case consists of the following
instances of rules

• r1 : min price(2) ⇒ buy(2)

• r2 : min price(5) ⇒ buy(5)

• r3 : min age(2) ⇒ buy(2)

• r4 : min age(5) ⇒ buy(5)

• r5 : max length(2) ⇒ buy(2)

• r6 : max length(5) ⇒ buy(5)

where r1,2 � r3,4,5,6, r3,4 � r5,6.
The complementary literals are thus defined: C(buy(2)) = {¬buy(2), buy(5)},

and C(buy(5)) = {¬buy(5), buy(2)}, meaning that only one yacht will be bought.
The first two rules are not applicable since there is not a boat with the lowest

price; rules r4 and r5 are not applicable since 5 is not the youngest yacht and 2
is not the longest. Then the only applicable rules are r3 and r6, but we know
that r3 is stronger than r6. So we derive +∂buy(2). This means that the second
yacht is the most appropriate one according to Andrew’s conditions.

3.2 Case Study 2: Simple Negotiation (Bargaining)

A negotiation is a discussion between parties for the purpose of reaching an
agreement. This suggests representing a negotiation as a dialogue between par-
ties, this dialogue is articulated in progressive stages, where the parties make
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offers, reject or accept offers, or propose counter-offers. In this view it can be
thought of as a special kind of argumentation where we have two different as-
pects: the protocol and the content of the negotiation (cf. [29]). The protocol
describes the rules of the dispute, for example how the parties exchange their
offers, and how and when the negotiation can go on or terminate.

Here, for the sake of simplicity, we consider only one-to-one negotiations,
that is, negotiations where only two parties are involved —let us call them the
Proponent and the Opponent. In this perspective we can formally represent a
negotiation as three sequences of defeasible theories. The first sequence records
the evolution of the protocol, while the second and the third theories are used
to store the knowledge bases or defeasible theories (DT) of the two parties.

Graphically a negotiation can be depicted as follows

Stage 1 Protocol1 Proponent DT1 Opponent DT1

Stage 2 Protocol2 Proponent DT2 Opponent DT2

...
...

...
...

Stage n Protocoln Proponent DTn Opponent DTn

...
...

...
...

AGREEMENT / END OF NEGOTIATION

Another element we have to take into account is the negotiation strategy, that
is the mechanism for passing from one stage to the next. Several negotiation
strategies can be devised, for example:

• single fixed theory: a party uses a single defeasible theory through the
whole negotiation, which is evaluated using new data that becomes avail-
able during the negotiation.

• fixed sequence of theories; here a party fixes a sequence of theories for the
whole negotiation.

• parameterized theories: a party defines a set of rules that can be triggered
or modified according to the stage of the negotiation.

• revision of theories: a party modifies the actual theory from stage to stage
according to the result of the previous stage.

Finally we have to specify how the offers are exchanged between the parties.
First of all the parties do not have to disclose every piece of information they
have, thus we partition the defeasible theory of a party into two parts: the public
part, whose conclusions have to be disclosed to the other party, and a private
part. The Proponent computes its theory obtaining a set of conclusions and the
public conclusions are passed to the Opponent that uses them to supplement
its facts; at this point the Opponent theory is computed. According to the
result of this last computation we can have three possible results: the Opponent
accepts the Proponents offer and the negotiation is terminated successfully; the
Opponent rejects the Proponents offer, makes a counter offer and the negotiation
is continued (i.e., we pass to the next stage); or the Opponent rejects the offer,
but the two parties cannot converge on an agreement so there is no point in
negotiating, and the negotiation is terminated with a failure.

We illustrate with a simple bargaining example.
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Mary is interested in buying a computer system advertised for $1300. She
wants to negotiate to buy the advertised system at a lower price. The seller
has a cash-flow crisis and is keen to make sales immediately. They estimate
the loss of a sale to a customer in the shop costs them $50 in bank interest and
advertising costs. The total cost of the system components is $1000. We assume
for simplicity that the features of the system are fixed, and the negotiation is
conducted over a single issue; the price of the system.

Tactics are the practical expression of strategies and we represent them as
functions that generate new offers. These functions can be simple or complex
depending on the strategy and the amount of information they incorporate.
Complex tactics can include the negotiation rules and the history of previous
offers. We represent tactics with the f(x, y) predicate. Possible tactic functions
available to the seller in this scenario include:

• reducing the previous offer by a fixed amount or fixed percentage

• reducing the previous offer by the same amount or percentage evidenced
by the buyers offers

• reducing the margin over cost

• increasing the discount

• changing the configuration

• changing the terms of sale

Many of these tactics can also be used by the buyer.

The predicates for this simple negotiation are:

• cost(x, y) the cost y of the system x.

• sellerPrice(x, y) the price y of the system x.

• buyerOffer(x, y) how much y the buyer is willing to pay for the system x.

• minimumPrice(x, y) the sellers minimum price.

• maximumPrice(x, y) the buyers maximum price.

• immediate whether or not payment is made immediately or delayed.

• f(x, y) a tactic function used to generate the next offer price y for the
system x.

Protocol Rules

• p1 : ⇒ negotiate

• p2 : negotiate, step(n) ⇒ step(n + 1)

• p3 : buyerOffer t(x, y), sellerPricet(x, z), |y − z| > $500 ⇒ ¬negotiate

• p4 : acceptable ⇒ ¬negotiate
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Rule s6 and rule b5 show that offers are ordered over time and the next prices
for buyers and sellers are based on their previous price and the selected tactic
function. In general, we would expect the sellers tactic function to reduce, and
the buyers tactic function to increase the price offered in each round. In order to
stop fruitless negotiation p3 allows for negotiations to cease if the offers diverge
by an arbitrary amount, $500 in this case. Rule p4 ends the negotiations when
an offer is accepted.

Rules p1 and p2 guide the negotiation process, if the negotiation is not ter-
minated due to failure or completion, then proceed to the next step.

The tactic functions themselves may also change during the negotiation pro-
cess. Changes may be in response to what is learned about the opponents
preferences and tactics, the time remaining to negotiate, or new information
received during the negotiation.

Seller Rules

• s1 : cost(x, y) ⇒ sellerPricet=0(x, y + $300)

• s2 : cost(x, y) ⇒ minimumPrice(x, y + $20)

• s3 : cost(x, y), immediate ⇒ minimumPrice(x, y − $50)

• s4 : buyerOffer t−1(x, y), sellerPricet(x, z), y ≥ z ⇒ acceptable

• s5 : buyerOffer t−1(x, y),minimumPrice(x, z), y < z ⇒ ¬acceptable

• s6 : sellerPricet−1(x, y) ⇒ sellerPricet(x, f(x, y))

Rule s1 provides the basis for the sellers initial price and rules s2 and s3

define the sellers minimum price, in terms of the cost of the system. Rule s3

also provides an additional discount for an immediate payment.
The two rules s4 and s5 describe the sellers strategy for continuing or ter-

minating the negotiation. Rule s4 describes an ideal situation where the buyer
offers to pay more than the next price the seller is willing to offer, the buyers
offer can be accepted and the negotiation concluded successfully. If the buyers
offer is less than the sellers next offer and rule p5 does not apply, the negotiation
will continue with the seller offering sellerPricet(x, z).
Rule s5 defines an unacceptable offer as one that is below the minimum price. In
this case the seller can either make their next (higher) counter-offer or terminate
the negotiation according to rule p3.

The superiority relation � is defined for the seller as: s3 � s2. This relation
shows the seller will accept an offer below their cost, if the buyer is willing to
pay immediately, however s5 � s4 ensures the seller will not sell at less than the
minimum price.

Buyer Rules

• b1 : sellerPricet=0(x, y) ⇒ maximumPrice(x, y − $200)

• b2 : sellerPricet=0(x, y) ⇒ buyerOffer t=0(x, y − $400)

• b3 : sellerPricet(x, y), buyerOffer t(x, z), y ≤ z ⇒ acceptable

• b4 : sellerPrice(x, y),maximumPrice(x, z), y > z ⇒ ¬acceptable
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• b6 : buyerOffer t−1(x, y) ⇒ buyerOffer t(x, f(x, y))

The buyers maximum price is based on the sellers advertised price and is de-
scribed by rule b1. The arbitrary reduction of $200 provides a basis for the
negotiation. Similarly the buyers initial offer (b2) includes an opening ambit
claim of $400 as a counter-offer to the sellers opening price. Rules b3 and b4

describe continuation rules similar to the sellers rules s4 and s5.
The superiority relation � is defined for the Buyer as: b4 � b3. The relation

shows the Buyer will not accept an offer over its maximum price.

The negotiation process is guided by rules p1 and p2, and is started by the
buyer making their offer buyerOffer t=0. The seller evaluates p1, p2, and then
evaluates the offer according to rules s4 and s5. The seller can either accept the
offer or make the counter offer sellerPricet(x, f(x, y)). The buyer proceeds in
the same fashion evaluating p1 and p2, and offers against rules b3 and b4. The
exchange of offers continues until either: s4 or b3 are true, and the negotiation
is successfully concluded. Or p3, s5 or b4 cause the negotiation to terminate
without a result.

The negotiation starts at stage 0 (t = 0), and each stage consists of two steps:
the Proponent (Seller) move and the Opponent (Buyer) move. Here the Seller
discloses the initial price (sellerPricet=0), calculated from s1 using the cost of
the system (a private piece of information of the Seller); at the same time the
private literals minimumPrice is derived. At this point the protocol becomes
active to determine whether the negotiation can continue. The only applicable
rule is pxx, from which +∂negotiate can be derived; thus the Opponent move
is triggered. The Buyer adds the public data of the Seller to its own facts and
computes the resulting theory, where the public data buyerOffer t=0 as well as
the private conclusion maximumPrice are derived.

The protocol is fed with the new Buyer public data to decide whether the
negotiation should continue. The Seller price and the Buyer offer are com-
pared, and if they are not too distant, according to a predefined parameter, the
negotiation moves to the next stage (rules p3 and p2).

Again the first step of the new stage is up to the Proponent, which adds pub-
lic conclusion of the Opponent to its theory. If the Buyer offer (buyerOffer t=0),
a new fact, is better than the current proposal (sellerPricet=1 calculated from s6

according to the tactic function f and the previous offer sellerPricet=0), then
it accepts the offer and the protocol terminates the negotiation successfully.
Otherwise a new proposal is made (rule s6), unless the limit is reached (rule
s5).

A similar procedure is actuated by the Buyer, in case of a new offer from
the Seller.

This simple scenario shows how defeasible logic can be used to describe both
protocols and strategies. More complex two party multi-issue negotiations can
be described by additional rules. These rules could provide values for each
issue, the relative importance of issues to one another and the preferred trade-
offs between issues.
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4 Related and Future Work

There are several other logical approaches to two party negotiation [33, 22, 28].
The work by Tohme [33] suggests defeasible reasoning can be used to evaluate
and generate offers, however this paper concentrates on defining the negotiation
process rather than the use of defeasible reasoning for evaluation. Matos and
Sierra [22] suggest Case-Based or Fuzzy reasoning approaches. The use of Fuzzy
rules is a similar approach to ours, but does not allow rules to be overridden
in exceptional cases as does defeasible reasoning. Parsons et al. [28] use logical
arguments (argumentation) to support or “undercut” offers rather than for the
evaluation or generation of offers.

Grosof et al. [16] use Courteous Logic Programs (CLP) to define and pri-
oritize business rules. This work is extended in Reeves et al. [31] with CLP’s
used to express knowledge about user preferences, constraints, and negotiation
structures (auctions in this case). Antoniou et al. [4] have shown that defeasible
theories are at least as expressive as CLP’s.

Faratin, Jennings and Sierra et al [32, 11, 12, 17] use Value functions, a
version of Multi-Attribute Utility Theory (MAUT) [30] to generate and eval-
uate offers in multi-attribute negotiations. While value functions are effective
for analyzing the acceptability of offers, we know people have problems with
identifying and defining utility functions [18, 8]. In this respect defeasible rea-
soning provides a more natural way of expressing preferences and goals, and the
possible trade-offs between them.

Barbuceanu [5] extends the MAUT approach with acceptability constraints
and constraint optimization. Acceptability constraints are used to define accept-
able combinations of attributes and attribute values. We believe this approach
using both MAUT principles and defeasible reasoning provides an excellent way
for us to extend our work to encompass multi-attribute negotiation.

However, as it has been pointed out in [1], Defeasible Logic alone is not able
to deal with real-life cases, but it has to be supplemented with other formalisms
and tools, such as: arithmetical capabilities, temporal logic, etc. One solution
to the problem we have just alluded to is to use labels [13, 34] to encode such
additional features. We can have two levels of labels: labelling the rules, for
example with event-label; or we can use labels inside the language, that is
the literals occurring in a defeasible theory are just propositional wrappers for
complex entities. The first type of labels will enable a better and more general
treatment of the evolution of a negotiation and the steps it involves.

The use of labels and more negotiation strategies, for example using revi-
sion procedures for the defeasible theories using the methodology of [7], have
to be devised. These and other topics connecting automated negotiation and
Defeasible Logic will be the subject of future works.
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