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Abstract The classical morphological method to separate fused objects in binary
images is to use the watershed transform on the complement of the
distance transform of the binary image. This method assumes roughly
disk-like objects and cannot separate objects when they are fused to-
gether beyond a certain point.
In this paper we revisit the issue by assuming that fused objects

are unions of ellipses rather than mere disks. The problem is recast in
terms of finding the constituent primary grains given a boolean model
of ellipses.
To this end, we modify the well-known pseudo-Euclidean distance

transform algorithm to generate arbitrary elliptical distance transforms
to reduce the dimension of the problem and we present a goodness-of-fit
measure that allows us to select ellipses.
The results of the methods are given on both synthetic sample boolean

models and real data.
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1. Introduction
In this paper we revisit the classic problem of separating fused binary objects.
This problem occurs in a variety of real-world situations and is typically difficult
to solve except in the simplest situations.

Figure 1 shows a couple of examples of such images. The classic morpholog-
ical approach to solving such problems is to compute the watershed line on the
complement of the distance transform [8]. In fact this method is so well-known
that it is often incorrectly referred to as the watershed method [13].

The assumption behind this method is that objects are circular and do not
overlap too much. The fact that real-world objects are rarely perfectly circular
implies some sensitivity to noise on the boundary of the objects. To correct for
these a filtering of the distance transform is often required [3]. Other methods
have also been proposed [16]. The degree of overlap that this method can cope
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(a) (b)

Figure 1. Two examples of fused objects: (a) glass fibres and (b) eucariot cell
nuclei.

(a) (b) (c)

Figure 2. The bisector function can separate disks fused to an arbitrary degree.
(a) input image; (b) bisector function – the darker pixels indicate the centres of
constituent disks ; (c) derived segmentation.

with is well known: if the fused objects are disks and their centres lie on the
same side of the disecting line between the two disks, then this method cannot
separate them [3].

Many methods have been proposed to solve the overlap problem. A natural
idea is to exploit the concavities, for example using the convex hull to find
them and somehow link them together. This works well in the case of the
union of a small number of simple shapes but breaks down quickly otherwise.
The conditional bisector [12] and later the bisector function [17] were proposed
to essentially solve the overlap problem. The latter method in particular can
separate any number of disks fused to any degree, up to the digital resolution,
as shown on Fig. 2. The bisector function is difficult to use when objects are
not perfect disks. Its use often comes as a second pass after the standard
watershed-based method, which is less than ideal [15].

A natural way to extend the method to more general shapes might be to
use unions of ellipses instead. Unfortunately the dimensionality of the problem
grows significantly: whereas disks only have three degrees of freedom (X and Y
position plus radius), ellipses have 5 (X and Y position, orientation, major and
minor axis lengths). For this reason, Hough-like methods [2] do not perform
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very well, although the literature on this topic is abundant (see for example [6,
7, 9]).

In this paper we propose a method that takes as a model a union of el-
lipses, and uses a series of distance transforms to decrease the dimensionality
of the problem. In the next section we introduce the general elliptical distance
transform.

2. Elliptical distance transform
Many algorithms have been proposed to compute the Euclidean distance trans-
form (EDT), see for example [11]. Here our goal is to compute an elliptical
version of this transform, i.e: a Euclidean distance map that is stretched by a
constant amount in a given direction. In contrast to the EDT which is essen-
tially parameter-less (apart from a constant overall factor), the LDT has two
parameters: an angle α and a stretch factor σ. The latter corresponds to the
ratio of the major axis over the minor axis.

A continuous way of computing the elliptical distance transform (LDT)
would be to contract the binary set in the direction α by the factor 1/σ, to
apply the ordinary EDT on the contracted set and then to stretch the resulting
transform by σ in the same direction α. An obvious similar scheme can be
imagined with a first stretch of the binary set in the direction π/2 + α and a
contraction of the result in the same direction. However these methods do not
translate well to the discrete case because of interpolation problems.

Here we propose a simple but efficient approximate scheme with the same
error conditions as the Euclidean Danielsson case [5] that performs a direct
computation of the LDT.

2.1 Priority queue-based EDT and LDT algorithm

The idea behind both the Danielsson method and the queue-based EDT algo-
rithm is to propagate a vector, not a value. In two dimensions this translates
to propagating two values which are the X and Y coordinates of the vector to
the nearest point on the boundary.

The pseudo-code shown in Fig. 3 is valid for both the EDT and the LDT
computation. For the EDT, the priority function P is P(C) =

√
X(C)2 + Y(C)2.

The priority function values are written to the output image (see line 15), so
the actual values of P are important, not just their ordering.

In the EDT case, this algorithm has performance equivalent to the Daniels-
son algorithm as each pixel within the binary set is considered to be queued on
average 3 times. It can be shown that the error configurations are the same as
in Danielsson’s algorithm (they are artifacts of the 8-connected propagation).
For our present purpose the errors are small and are not worth correcting.

One interesting property of the Fig. 3 algorithm is that P can be set to a
wide variety of interesting functions. If set to the following function:

P(C) = ρ
√
(b cos(θ − α))2 + (a sin(θ − α))2, (1)
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1 - Input binary image

2 Fill X image with 0

3 Fill Y image with 0

4 Fill output image O with 1

5 Empty priority queue

~

6 - Scan the binary image in raster order, enqueue the points belonging to the sets

7 which are 8-connected to the background with priority 1.

8 For each enqueued location, set the X and Y image to the respective

9 components of the direction to the nearest pixel in the background.

~

10 - While the priority queue is not empty; do

11 - Dequeue lowest priority pixel C

12 - if O(C) (the output image value at this pixel) is 1, then

13 - Compute P(C), the priority of this pixel, from X(C) and Y(C),

14 i.e P(C) = P(X(C), Y(C))

15 - Set O(C) (the output image value at this position) to P(C).

16 - For each point dC in the 8-neighborhood of this pixel; do

17 - If O(C+dC) is 1 ; then

18 - if X(C+dC) or Y(C+dC) is not 0, compute P1 = P(X(C+dC),Y(C+dC))

19 else set P1 to +infinity

20 - compute P2 = P(C+dC) where ‘+’ denotes the 2-D vector addition.

21 - If P2 < P1 then

22 - enqueue dC with priority P2

23 - set X(C+dC) to X(C) + x(dC), where x(A) is the X-component of A

24 - set Y(C+dC) to Y(C) + y(dC), where y(A) is the Y-component of A

25 - set O(C+dC) to 1

26 + end if

27 + end if

28 + end for

29 + end if

30 + end while

Figure 3. Pseudo-code for both the EDT and the LDT. See text for the formulation
of the priority function P.

(a) (b)

Figure 4. (a) Input image ; (b) elliptical distance transform obtained with the
algorithm from Fig. 3 with Eq. 1 as the priority function. Parameters are α = −40◦
and a/b = 1.5 (also those of the middle ellipse).

where ρ =
√

(X(C)2 + Y(C)2), ρ sin(θ) = Y(C) and ρ cos(θ) = X(C) simul-
taneously, then P defines an elliptical distance transform (LDT) of angle α
and stretch factor σ = a/b. Equation 1 is a standard 2-D harmonic oscillator
equation.
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3. Searching for ellipses
Let us assume that a binary image I is composed of a union of ellipses (i.e: a
boolean model where the primary grains are ellipses). What we are looking for
is a kind of minimal set of maximal ellipses, that in some sense best represent
the given image with a minimal number of “best covering” ellipses. If we were
to probe the image with an a-priori set of ellipses as structuring elements, we
would have to do a search on all five of the parameters of an ellipse, which
would be a near-impossible task.

Fortunately, using the LDT of section 2 simplifies the search: by definition,
computing the skeleton based on a given elliptical distance map (LDM) finds
all the centres of maximal ellipses for the binary set that have the orientation
and eccentricity of the underlying LDT [10]. To find all the possible maximal
ellipses of I, it is therefore sufficient to vary the orientation and aspect ratio of
the LDT.

However we still need a way to select the “best fitting” ellipses among all of
those generated by the family of LDTs.

3.1 Normalization of the LDMs

In Eq. 1 different parameters yield elliptical distance maps (LDMs) which are
not normalized. A simple solution is to weight the P function (whose values
create the LDM) so that in the resulting LDM, a given value corresponds to the
square root of the area of the ellipse with the same σ = a/b and α parameters
centered at that point and touching the border of the object. The resulting
priority function is:

P(C) = ρ

√
π(cos2(θ − α) + σ2 sin2(θ − α))

σ
(2)

which is no more difficult to compute than Eq. 1.

3.2 Area maximization

Given this normalization, a simple goodness-of-fit measure could be to apply
the LDT with different parameters and compute the point-wise maximum be-
tween them. The resulting transform, the maximum LDT (MLDT) indicates,
at each point, which is the largest centered ellipse (in terms of area) that can
fit in the binary image I.

MLDT(I) =
∨
α,e

LDTα,e(I)

By looking for regional maxima on the MLDT, one should be able to detect
maximal ellipses that cover a large proportion of individual objects in the binary
set. Indeed, for sets which consist of ellipses that do not overlap too much, this
procedure works quite well, as shown on Fig 5(a) and (b).

Unfortunately this method falls short of our goal because for any reasonable
degree of overlap, one can always fit a large ellipse in the “neck” between ob-
jects. When this happens the MLDT becomes unusable, as shown on Fig. 5(c)
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(a) (b)

(c) (d)

Figure 5. Examples of MLDTs in the case of ellipses that do not overlap too much
((a) and (b)), and when they do overlap significantly ((c) and (d)).

and (d). For this situation, which is the more interesting one, a better goodness-
of-fit measure must be found.

3.3 Tangent ellipses

In the continuous case a maximal ellipse will be tangent to the boundary of
the binary set on at least two points. If the binary set is a boolean model
of ellipses, then each constituent ellipse must be tangent to the set on a non-
negligible subset of the border. A good measure-of-fit for candidate ellipses
might then be to test for this property. In particular poor-fit maximal ellipses
will be tangent to the set only on a small number of points.

In the discrete case, one can reproduce this idea by simply counting the
number of pixels on the border of a candidate ellipse that intersect the border
of I. A goodness-of-fit score might then be the ratio of intersecting pixels vs.
the total number of pixels in the border of the candidate ellipse. Unfortunately
this number is unreliable due to discretization effects, in particular for small
candidate ellipses.

A better measure in the discrete case might be to measure the distance of
the border of a candidate ellipse to the border of the binary image I. To do
this, the Euclidean distance map of I can be pre-computed. For each candidate
ellipse, the distance of each of its border pixels to the border of I is recorded.
The average distance is a reasonable score for single ellipses, but a more robust
one is the k-percentile distance (e.g., if k=50%, the median distance), given
that overlapping ellipses are to be expected and that even for good-fit ellipses
a portion of their contour might be far from the border of I. Figure 6 illustrates
the concept.
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Figure 6. There is a good fit for the candidate ellipse if some proportion of the
ellipse boundary is close to the object boundary.

3.4 Algorithm

Combining all these ideas, the proposed approach is the following:

1 The EDM from the contour of the binary image is computed into image
C.

2 A number of LDMs of the binary image are computed, with different
values of α and σ.

3 For each LDM, special points are considered as candidate centres of el-
lipses. These need not include all the points of the LDM skeleton. In
our application we only considered regional maxima of the LDM, but
ridge points on the distance map [1] or end points on the skeleton [4] are
reasonable candidates.

4 For each special point, a candidate ellipse is generated with the corre-
sponding parameters (position, axis lengths and orientation). Each pixel
of the circumference of the generated ellipse is associated with its distance
from the boundary of the binary image. This is provided by a simple in-
terpolated lookup in image C. The pixel distances are sorted and a given
percentile is taken as the measure m of goodness-of-fit (for example 50%
yields the median distance).

For display purposes it is convenient to compute a measure which is high
for a good fit. The measure that we use is s = 100/m. We make sure that s is
never 0 even for a perfect fit. We call s the score of a ellipse fit. The following
section shows some results obtained with this algorithm.

4. Results

4.1 Artificial data

In Fig. 7 we present the result of the algorithm on a sample boolean process
instance of ellipses. Figure 7(a) is the input image, Fig. 7(b) shows the raw
scores, with higher values being darker. This image clearly shows high scores
near the centres of each ellipse component. Figure 7(c) is constructed by over-
laying all the ellipses detected in Fig. 7(b), starting with the lower scores and
finishing with the higher scores. This way high score ellipses overwrite lower
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Table 1. Comparison of counting methods for image in Fig. 8(a)

Count method Manual Ellipse Ellipse Unfilt. Filt.
high acc. Low acc. wshed wshed

Number of cells 104 98 98 93 86
Total errors 0 7 10 15 18
Over-segmentation errors 0 1 2 2 0
Under-segmentation errors 0 6 8 13 18

scores. The result shows an image which is a near-perfect segmentation of
Fig. 7(a). Figure 7(d) is obtained by removing the flat zones with small area
from Fig. 7(c), labelling each different ellipse with a different colour and over-
laying the scores greater than 100 in a different colour again. These scores were
dilated once for clarity. The dilation also allows nearby high score pixels to
join.

This image shows that one can obtain a perfect segmentation of the input
image in this case either by selecting high score pixels or by using the overlap-
ping ellipse method.

For comparison, Fig. 7(e) shows the Euclidean distance transform of the
input image, and Fig. 7(f) shows the result of the watershed segmentation
on this function. Note the under and over segmentation. Generally in the
watershed method the distance transform is filtered to avoid excessive over-
segmentation as in this case.

4.2 Real data

Figure 8(a) shows a subset of a thresholded image of human cell nuclei. Fig 8(b)
is its segmentation by the overlapping ellipses method presented above. In
spite of the low resolution, the results look reasonable. However to evaluate
the results more fully we need numerical data.

We have performed a careful manual count of the cells together with 4 auto-
mated counts. The first automated count was done using the proposed method
(using overlapping ellipses), with a high accuracy grid search (361 grid points1),
the second count used the same method but with a low accuracy grid search (16
points2). The third counting was done using the unfiltered watershed method,
and the fourth count with a watershed on a filtered distance transform (with
the removal of the last plateaus, which is often the recommended method [14]).
The results are presented in Table 1.

In this table it is apparent that the ellipse methods have a significantly
smaller total error rate and provides a better estimate than either watershed-
based method, even with the lower accuracy grid search.

In the complete image (not shown here because it is too large), the error
rates are not available but the counts are shown in Table 2. Because of the

1δα was 5◦ and δσ was 0.2. σ varied from 1.0 to 3.0.
2δα was 30◦, δσ was 0.5 and σ varied from 1.0 to 2.0
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Result of the algorithm on synthetic data: (a) binary input image ; (b)
raw scores, the higher the score the darker; (c) raw ellipses drawn from the scores,
with the higher score ellipses drawn last ; (d) final result – each ellipse is drawn with
a distinctive colour. Score pixels higher than 25% of the maximum are overlayed and
dilated once. For comparison, (e) is the Euclidean distance transform of (a) and (f)
is the watershed segmentation based on this distance transform.
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(a) (b)

Figure 8. Result of the algorithm on real data. (a) original image ; (b) segmentation
using the overlapping ellipses method.

Table 2. Comparison of counting methods for complete cell image.

Count method Manual Manual Ellipse Ellipse Filtered
low high high accur. low accur. Watershed

Number of cells 798 838 816 847 722

difficulty in counting such a large number of cells manually, both a lower and
a higher bound are given. The manual counts were done by a third party.

The estimate provided by the high-accuracy ellipse method is very good, the
low-accuracy ellipse method provides a slight overestimate of the cell numbers,
whereas the filtered watershed method under-represents the number of cells
significantly.

5. Discussion
The ellipse-based model has more degrees of freedom than the usual disk-based
ones for separating fused objects. As a consequence it is more flexible and can
provide better visual and numerical results as shown in the previous section.

Our method shows that the ellipse based segmentation model is tractable,
however it can be quite slow. Each point of the grid search requires the com-
putation of a distance transform. Each is quite reasonable and efficient, but a
fine parameter search can require the computation of several hundreds of them.
In contrast the watershed method (for example) requires the computation of
only one distance transform.

The proposed method can therefore be 1 to 3 orders of magnitude slower
than the benchmark method. for example the computation of the high accuracy
result in Fig. 8(b) which is a 400×300 pixels image required 4 minutes on a
common Pentium III/500MHz (the lower accuracy result only took 12 seconds).
The computation on the complete image which is 1280×1024 pixels required
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40 minutes. The lower accuracy result still took 2 minutes to complete on the
whole image. Because of this fact the proposed method may be impractical for
some purposes in its present state.

In future work, we plan to research ways to improve the computing time of
this method and find out what degree of accuracy in the grid search is necessary
to guarantee good results.

6. Conclusion
We have presented a novel way to solve the fused binary object problem us-
ing a union of ellipses model. The proposed method uses elliptical distance
transforms to reduce the dimensionality of the problem, which reduces to a
search for eccentricity and orientation. A goodness of fit measure for candidate
ellipses was proposed.

The method is able to deliver good results on real data, showing signifi-
cant improvement on the benchmark watershed-based method, but presents a
dilemma in terms of accuracy vs. speed. A high accuracy result can require an
impractically long computing time.

References
[1] C. Arcelli and G. S. di Baja. Ridge points in Euclidean distance maps. Pattern

Recognition Letters, 13(4):237–243, April 1992.

[2] D. Ballard and C. Brown. Computer Vision. Prentice-Hall, New Jersey, 1982.

[3] S. Beucher and L. Vincent. Introduction aux outils morphologiques de segmen-
tation. In Traitement d’image en microscopie à balayage et en microanalyse
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