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ABSTRACT

This paper examines the well-known problem of line detection, but
where the lines are wider than one pixel. The motivation behind
the paper is the extraction of road information from high resolution
photogrammetry and Light Detection and Ranging (LIDAR) data.
Wide lines cause varying problems during detection. The HOUGH
or RADON transform approaches do not find the road centrelines ac-
curately; diagonals of the thick lines are found instead whilst other
methods also tend to be error prone. Our approach convolves a raw,
pixelated, binary road classification with a complex-valued disk.
The technique provides three separate pieces of information about
the road or thick line: the centreline, the direction and the width of
the road at any point along the centreline. The road centreline can
be detected from the position of the peak of the magnitude image
resulting from the complex convolution. Road width can also be
estimated from the magnitude peak whilst the direction of the road
may be obtained from the phase image.

1. INTRODUCTION

The problem of extracting road parameter information is a well-
studied one; see [1] for a brief summary. There are many difficulties
associated with detecting roads from an aerial image. The detection
of the road centreline, width and direction are all important and in-
formation that is required for parameterization of the detected road.

Common line detection methods such as the HOUGH or
RADON transform detect the longest one pixel thin line within the
thick line as opposed to the centre line. Morphological skeletoni-
sation of the road tends to yield a noisy centreline with unwanted
‘dendrite’ artifacts. Other methods that involve varying scale space
and using snake algorithms have other limitations. The use of lower
resolution images degrades the accuracy of any detection methods
used and thus generally requires another higher resolution image
to be used simultaneously during the extraction process [2]. Other
algorithms such as snakes, watershed and genetic algorithms have
been used with varying success [2] [3].

The detection of the road parameters, width and direction, is
extra information that can be extracted from a road image. Previ-
ous methods do not extract some or all of this information directly
[2]. The accurate detection of the centreline, thickness and direc-
tion parameters will allow future determination of the roads design
components in terms of straights, curves and spirals.

The ideas proposed in [4] combined with road extraction by
operator fusion [5] have inspired the development of a phase coded
disk (PCD). This is a complex kernel which uses phase to code for
the angle of the line. By convolving the original image with a PCD
not only is the centreline accurately detected but the direction and
width can be obtained at any point along the detected centreline.
Furthermore, our technique has several advantages over the HOUGH
transform, for example, it is not iterative, it can accurately detect
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both thin (1 pixel) and thick lines as well as detecting curvilinear
lines as opposed to just straight lines.

This paper presents results on the extraction of road data from
Light Detection and Ranging (LIDAR) image data. Section 2 de-
scribes the background of road extraction including previous road
detection methods and various other related feature detection meth-
ods using convolution. Section 3 describes our new method for con-
structing the PCD and the convolution with the pre-classified binary
image. Results from a sample data set are discussed in Section 4
whilst conclusions and future work are examined in Section 5.
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Figure 1: An example binary road image.

2. BACKGROUND

2.1 The Test Data

LIDAR data from Fairfield in Sydney, Australia, was initially col-
lected with an approximate point density of 1 point per 1.3 m?2.
The last pulse LIDAR data was initially sampled into a regular grid
with minimal filtering to produce a last pulse digital surface model
(DSM).

A digital terrain model (DTM) was created from the last pulse
DSM by morphological grey scale opening using a square struc-
tural element. By progressively changing the size of the structural
element and removing non-terrain type objects an accurate DTM
was obtained [6]. LIDAR points were selected if their last pulse
intensity values were between the acceptable range for the type of
road being detected (in this case bitumen) and met a minimum can-
didate point density criterion. Points within a specified tolerance of
the DTM were accepted as road candidate points [7] and sampled
into a binary image of 1 metre pixel size. A morphological closing
with a small structural element of 3 pixels was performed to remove
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any small gaps produced from creating a 1 metre resolution image
from laser points with a point density of approximately 1 point per
1.3 m?. The resultant image is a binary classification of road pixels
generated from the raw LIDAR data is seen in Figure 1.
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(a) RADON Transform of Fig. 1

(b) Best line fit of peak in Fig. 2(a)

Figure 2: RADON transform

(a) Skeletonisation of Fig. 1

(b) Largest line fit from Fig. 3(a)

Figure 3: Skeletonisation

2.2 HOUGH and RADON Transforms

A common method for detecting lines in images is the HOUGH or
RADON transform. Figure 2(a) shows the RADON transform [8]
of Figure 1. The white peak at (116,75) is quite broad, so that the
exact line of best fit is hard to distinguish. Even if this peak is
sufficiently accurate, the other straight line segments in the image
are not distinct in the transform.

Selecting the peak and overlaying the resulting line on Figure 1
is shown in Figure 2(b). This line does not run along the road’s
centreline, but across the “diagonal” (allowing for noise effects).
This effect is present as the diagonal line is actually longer than
the centreline thus the diagonal line yields a higher score in the
accumulator space. The use of the HOUGH or RADON transform
for road detection is usually used in conjunction with a change in
scale space to improve results as in [2].

2.3 Skeletonisation

In an attempt to reduce this ‘diagonal’ effect morphological skele-
tonision was used on the image. Skeletonisation should force the
detected line to be one pixel wide. Figure 3 shows the result of
skeletonising Figure 1. Clearly there are unwanted ‘dendrite’ arti-
facts.

If the process of RADON transform followed by peak selection
is performed on Figure 3(a) as in section 2.2, the detected line is still
not the centreline. Figure 3(b) displays the resultant line overlaid on
the original image (Figure 1).

2.4 Other line extraction Methods

HEIPKE et. al. [2] use two similar but different approaches to
road detection. Both methods are based upon the extraction of lines
in an image of reduced resolution using the approach of [9]. The

first method combines extraction of edges in high resolution im-
ages to form hypothesis of road sides and consequently construct
quadrilaterals. The second approach combines “ribbon-snakes” to
verify roads by means of width. Automatic detection of roads using
these methods in highly textured areas could not be achieved, thus
restricting the extraction to open areas.

In [5] road extraction is performed using operator fusion based
on road edge presence and centreline continuity. HUBER [5] as-
sumes a road is characterised by a central homogenous region adja-
cent to two homogenous regions on both sides of the road. A Hough
transform or Active Contour Model (ACM) is then used to identify
real road points.

2.5 Detection of other features using Convolution

ATHERTON AND KERBYSON [4] detect size invariant circles from
digital images. By introducing a complex phase coding along
“spokes” in an annulus operator the size of the circle being detected
is represented by the phase coding itself. Convolution using a kernel
similar to that described will result in a peak position at the centre of
the circle and the phase at the peak representing the detected circle
size.

3. A PHASE CODED DISK APPROACH

The pre-classified binary image is assumed to be ideal is defined as
follows

1 if (x,y) is road,
0 otherwise.

s ={ m
For the purpose of discussion in this section, this image is assumed
to be continuous valued in intensity and in spatial coordinates.

A convolution approach is used to calculate a HOUGH-like
transform similar to that proposed by ATHERTON AND KER-
BYSON [4] for circle parameter estimation and extended and ana-
lyzed by ZELNIKER AND CLARKSON [10]. This will take the form

of
O(x,y) = f(x,) ® Opcp(x,y), ()

where Q is the resultant, ® is convolution and Op¢p is the phase-
coded disk.

“pl

Figure 4: Phase coding of the kernel.

3.1 Defining the Disk
The PCD that we propose is

Opcp(x,y) = /), 3)

where
y(x,y) =2tan"" (y,x) )

and tan~!(-,-) is the four-quadrant arctangent function. Figure 4
illustrates this phase coding which sets a constant amplitude across
the disk. The radius of the disk, r, should be at least as long as the
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maximum road width to be detected. Figure 5 shows an example of
a disk of radius r overlaid on a road of width w. The road is tilted at
an angle @ to the horizontal.

DISK

CL BARREL

Figure 5: Disk and road segment sizes.

3.2 The Convolution of the Fairfield data with the PCD

To allow extraction for any road orientation, the convolution must
satisfy

mm S/t =y?)
0] X,Y)dxd
r maxfff\/f) pcp(X,Y) dx dy
mm r2 yz)
/ _ )OPCD(X ,y) dx dy|, ®)
=

where

X =xcos@—ysinQ,
Y =xsin@+ycos @,

for all values of @. This constraint says that the integral defined in
(5) has to be invariant with respect to the orientation of the disk (or,
equivalently, the road segment).

The result of the convolution defined in (2) yields two images,
a magnitude image and a phase image. The magnitude image, M, is
defined by

M= |f(x,y) ® Opcp(x,¥)], (6)

whilst the phase image is defined by

9= are(/(x.9) © Opcp(x,y)). ™

3.3 Line Information

From the construction of the disk (3), it is straight forward to show
that the magnitude will be at a maximum on the road centreline.
Points off centre will have a magnitude value less than that at the
centreline.

In order to show that the phase at the peak is twice the line
orientation we split the complex integral

/ / ke’?® dkd® ®)
barrel

into two components on either side of the centreline. Each com-
ponent will be at an orientation of ¢ — 6 and @+ 6. Substituting

into (8) and simplifying using the trigonometric identity — sin(6) =
sin(—0) yields

/20 // 2kcos20dkd6 ©)
barrel

The argument (phase) of equation (9) does not depend on the result
of the integral (except if it is zero), so the phase of Q(x,y) at any
position represents twice the angle of the underlying line.

What we have discussed in this section is the convolution of an
ideal complex kernel and an ideal image. However, the kernel and
images used in Section 4 are discretised as they are digital in nature.
This discretisation will produce coarser estimates.

4. RESULTS

The magnitude of the convolution of Figure 1 with the phase coded
disk (Figure 4) is shown in Figure 6(a). A close inspection of the
image reveals that the peak of the magnitude corresponds to the
centreline of the road. The magnitude peak has been extracted and
displayed in Figure 6(b). Figure 7 shows the centreline of the road
overlaid on the original image.

(a) The magnitude image. (b) The centreline of the road.

Figure 6: Magnitude Results

Figure 7: The centreline is overlaid on the original image.

Figure 8 shows the magnitude image overlaid with arrows in-
dicating the direction of half the phase. It can be clearly seen that
at the centreline the half phase value is along the line, whilst at the
road edges the half phase is 90° out from the value at the line.

To demonstrate the flexibility of convolving images with our
PCD, a second image portion is displayed in Figure 9(a). The im-
age shows a windy suburban road from the Fairfield data set. Fig-
ure 9(b) displays the magnitude image for the convolution based
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Figure 8: Quiver plot of directions overlaid on magnitude.

=

(a) A curvilinear road section. (b) Magnitude image of Fig. 9(a)

Figure 9: Curvilinear line extraction example

on the binary image displayed in Figure 9(a). A continuous thick
peak is seen throughout the windy road segment demonstrating the
accurate detection on the centreline in such scenarios.

5. CONCLUSION AND FUTURE WORK
5.1 Conclusion

We have presented a new method for detecting thick curvilinear
lines from within images with specific application to road detec-
tion. We have shown its applicability with actual data from a test
site. In our test, we put more emphasis on detecting thick lines from
pre-classified road pixels than the pre-classification process itself.

The method is still work in progress. Preliminary results show
that, using this method, it was possible to detect the centreline of
continuous thick curvilinear lines accurately along with the direc-
tion of the curvilinear line at any point. At present, the width of the
curvilinear line can be calculated from a look-up table or similar,
generated from (10).

5.2 Future Work

The width of the line can be calculated from the relationship be-
tween the Magnitude (M), the width of the road (w) and the radius
of the PCD. The relationship is defined by (6) and is simplified to

2
M=w?cos™! (%)—NV#-%. (10)

We especially want to improve the calculation method of the width
of the line. Ideally a direct closed solution is sought. At present
a look up table derived from (10), (Figure 10), must be used to

700

600+ : : ]

500F : : 1

400~ 1

300r 1

Magnitude (M)

2001 1

100+ ~ ~ 1

00 10 20 30 40 50 60

Width (w)

Figure 10: Look up table for a disk of radius 30.

calculate the width of the road. Though, clearly, some method of
ambiguity resolution is required (e.g. a magnitude of 600 could
imply a width of 17 or 32).

Improvements on the detection method to enhance the detection
of road intersections and junctions is a high priority. The use of
phase change information to approximate road straight, curve and
spiral design primitives will also be investigated.
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