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Abstract
A method for the automatic detection of buildings and their roof planes from LIDAR data and multispectral images
is presented. For building detection, a classification technique is applied in a hierarchic way to overcome the
problems encountered in areas of heterogeneous appearance of buildings. The detection of roof planes is based on
a region growing algorithm applied to the LIDAR data, the seed regions detected by a grey-level segmentation of
the multispectral images. We describe the algorithms involved, giving examples for a test site in Fairfield (Sydney).
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1 Introduction

1.1 Motivation and Goals

In addition to photogrammetric techniques relying on
aerial images, the generation of 3D building models
from point clouds provided by airborne laser scanning,
also known as LIDAR (LIght Detection And Ranging),
is gaining importance. This development has been trig-
gered by the progress in sensor technology which has
rendered possible the acquisition of very dense point
clouds using airborne laser scanners [5]. Using high-
resolution LIDAR data, it is not only possible to detect
buildings and their approximate outlines, but also to
extract planar roof faces and, thus, to create models
correctly resembling the roof structure [1], [7], [10]. In
order to do so, buildings first have to be detected in the
input data. After that, the buildings are reconstructed
by polyhedral models, which requires the roof planes
to be found in the regions of interest.

With decreasing resolution, it becomes more difficult
to correctly reconstruct buildings from LIDAR data.
In order to improve the performance of building re-
construction, additional data can be considered. First,
LIDAR systems register two echos of the laser beam,
the first and the last pulse, corresponding to the highest
and the lowest object point hit by the laser beam. First
and last pulse data will especially differ in the presence
of vegetation [5]. Second, along with the run-time of
the signal, the intensity of the returned laser beam is
registered by LIDAR systems. LIDAR systems typ-
ically operate in the infrared part of the electromag-

netic spectrum. Unfortunately, the intensity image is
undersampled and, thus, very noisy [11]. Third, multi-
spectral images can provide valuable information due
to their spectral content and because their resolution is
still better than the resolution of laser scanner data [9].

Building reconstruction is also made complicated by
the fact that buildings may have quite different appear-
ances both with respect to their geometric dimensions
and their reflectance properties. Thus, it is often im-
possible to select appropriate thresholds and filter sizes
for various algorithms. It is a well-known strategy in
image matching to apply algorithms to data having a
lower resolution first to get approximate values, refin-
ing these results in an iterative way, in each iteration
considering data of a better resolution than in the pre-
vious one. In this paper, we first want to describe a
method for building detection from LIDAR data and
multispectral images making use of such a hierarchic
approach. Second, we want to present a new iterative
method for combining colour images and roof planes in
the building regions thus detected. The examples pre-
sented in this paper were computed using the LIDAR
and image data from a test site in Fairfield (Sydney).

1.2 Related Work

There have been several attempts to detect buildings
in LIDAR data in the past. The task has been solved
by classifying the LIDAR points according to whether
they belong to the terrain, to buildings or to other
object classes. Morphological opening filters or rank
filters are used to determine a digital terrain model
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(DTM) which is subtracted from the digital surface
model (DSM). By applying height thresholds to the
normalized DSM thus created, an initial building mask
is obtained [12]. The initial classification has to be
improved in order to remove vegetation areas. In [2],
this is accomplished by a framework for combining
various cues in a Bayesian network. The problems
with their approach are related to the complexity of
estimating the conditional probabilities required for
the Bayesian network.

In [6], a DSM derived by image matching and a colour
image are fused on the basis of the Dempster-Shafer
theory. Fusion is carried out at feature level, the initial
segmentation being performed by a K-means unsuper-
vised classification of the colour images, using shape
cues such as the normalised difference vegetation index
(NDVI) and the average relative height of the feature to
distinguish buildings from other objects.

In [7], we have presented an algorithm for building
detection that relied on DTM generation by hierarchic
robust linear prediction [3], using the DTM and DSM
grids for further classification. The method gives good
results in densely built-up areas [7], but in more hetero-
geneous areas containing houses of different sizes and
also forests, tuning the parameters for DTM generation
is not an easy task. In this paper, we will describe
how that method has been modified to consider the ad-
ditional data sources and to work in a hierarchic way
without relying on hierarchic robust linear prediction.

Roof planes can be detected by segmenting the
LIDAR data. In [10], a method based on the Hough-
transformation is used for that purpose. Schenk and
Csatho [9] proposed feature based fusion of LIDAR
data and digital aerial images for obtaining a better
surface description than it can be achieved by using
only one of these data sources. We have presented an
iterative method for LIDAR segmentation in [7] which
delivered the most salient roof planes from LIDAR
data in a densely built-up urban area. That method
is based on region growing, the seed regions being
detected by an analysis of the second derivatives of
a LIDAR DSM. The method also requires a certain
minimum number of LIDAR points per roof plane,
a condition that is often not fulfilled for smaller
buildings. In this paper, we want to present a similar
method that uses the results of a segmentation of a
digital image of higher resolution than the LIDAR data
to detect seed regions for region growing, whereas
region growing is performed by analysing the planar
fit of the points in the LIDAR DSM.

2 Building Detection

The work flow for our method for building extraction is
depicted in figure 1. The input to our method is given
by three data sets that have to be generated from the

raw data in a preprocessing step. The last pulse DSM
is sampled into a regular grid by linear prediction using
a straight line as the covariance function, so that the
interpolation is carried out almost without filtering [7].
The first pulse DSM is also sampled into a regular grid.
The normalised difference vegetation index (NDVI) is
computed from the near infrared and a red band of the
multispectral images we assume to be available [6].
These image data must be geocoded.

First, a DTM is created from the last pulse DSM
by morphological grey scale opening using a square
structural element. The DTM does not contain objects
smaller than the structural element. If the structural
element is chosen to be greater than the largest building
in the data set, all buildings will be removed; however,
if it is too large, terrain details might be removed, too.
If the structural element is chosen small, the results of
morphological opening will be closer to the DSM and,
thus, to the terrain in areas where the DSM represents
the terrain, but larger buildings will remain in the data
set. This is the reason why we apply morphological
filtering in a hierarchical framework. Initially, we
select the size of the structural element to be the size
of the largest building available in the dataset.

An initial building mask is created mainly by thresh-
olding operations. Morphological opening is used to
eliminate spurious and strangely shaped areas, and con-
nected components of “building” pixels are considered
to be the initial building regions. For these regions, we
evaluate the surface roughness and the average NDVI.
In the early iterations, very tight thresholds are applied
to surface roughness, because we assume the largest
buildings in the scene to consist of large planar sur-
faces. Thus, we obtain an intermediate set of building
regions, only containing the largest buildings (corre-
sponding to the current state of the DTM). After that,
the procedure is repeated with a smaller structural el-
ement for morphological opening, but in the areas al-
ready classified as buildings, the DTM heights of the
previous iteration are substituted for the results of the
morphological filter. Thus, the buildings already de-
tected are eliminated, whereas the smaller size of struc-
tural element for morphological filtering helps to obtain
a finer approximation for the DTM, rendering possible
the separation of smaller buildings. The whole proce-
dure is repeated with a decreasing size of the structural
element until a user-specified minimum size is reached.
The results of the final iteration are identical to the
results of building detection, basically represented by
a list of building regions and a building label image.

Detecting Candidate Regions: Morphological
filtering provides us with an approximation for the
DTM. For buildings aready detected, the DTM
generated by morphological opening in the previous
iteration is substituted for the results of morphological
filtering, so that large buildings that would be preserved
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Figure 1: The work flow for building detection.

by morphological filtering in the current iteration are
eliminated beforehand. An initial building mask
is created by thresholding the height differences
between the last pulse DSM and the DTM (e.g., by
hmin=2.5 m). This initial building mask still contains
spurious regions, areas covered by vegetation, and
terrain structures smaller than the structural element
for morphological filtering.

At this instance, the additional data sources can be used
to improve these results. First, a large NDVI indicates
areas covered by vegetation, so that pixels having an
NDVI above a certain threshold are erased in the build-
ing mask. Second, the heights from first and last pulse
data will differ mainly in areas covered by trees and
if the laser beam accidentally hits the roof edge of a
building. Thus, in most cases, large height differences
between first and last pulse data indicate trees. Pixels
having a height difference larger than a certain thresh-
old are erased in the building mask, too.

A binary morphological opening filter using a struc-
tural element of a size corresponding to the expected
minimum size of a building part (e.g., 3 × 3 m 2) is ap-
plied to the initial building mask to erase oddly shaped
objects such as fences and to separate building regions
just bridged by a thin line of pixels. A connected com-
ponent analysis of the resulting image is applied to ob-
tain the initial building regions. Regions smaller than a
minimum area are discarded.

Classification of Candidate Regions: Some of the
initial building regions correspond to groups of trees
or to terrain structures smaller than the structural el-
ement. These regions can be eliminated by evaluat-
ing a surface roughness criterion derived by an anal-
ysis of the second derivatives of the DSM. In [4], a
method for polymorphic feature extraction is described

which aims at a classification of texture as being ho-
mogeneous, linear, or point-like, by an analysis of the
first derivatives of a digital image. This method is ap-
plied to the first derivatives of the DSM using an in-
tegration kernel of a size corresponding to, e.g., 5 m
in object space. Under these circumstances, “homo-
geneous” pixels correspond to areas of locally paral-
lel surface normal vectors, thus, they are situated in a
locally planar neighbourhood. “Linear” pixels corre-
spond to the intersections of planes, and “point-like”
pixels are in a neighbourhood of great, but anisotropic
variations of the surface normal vectors. For evaluating
surface roughness, the numbers of “homogeneous” and
“point-like” pixels are counted in each initial building
region. Buildings are characterised by a large percent-
age of “homogeneous” and by a small percentage of
“point-like” pixels. By comparing these percentages
to thresholds, non-building regions can be eliminated.
The surface roughness criterion works well for large
buildings and with dense LIDAR data [7]. If the point
distance of the LIDAR data is larger than, e.g., 1 m,
only few LIDAR points will be situated on small build-
ings, so that the percentage of “homogeneous” pixels
is reduced, whereas the percentage of “point-like” pix-
els is increased. Thus, it makes sense to additionally
evaluate the average NDVI for each building region to
eliminate vegetation areas.

Finally, vegetation areas still connected to buildings are
eliminated. By morphological opening, regions just
connected by small bridges are separated. The result-
ing binary image is analyzed by a connected compo-
nent analysis which results in a greater number of re-
gions, and the terrain roughness criterion is evaluated
again. Regions now classified as containing vegetation
are erased in the initial building label image [7].



3 Detection of Roof Segments

In [8], we described a method for the detection of pla-
nar roof segments in high-resolution LIDAR data. The
method was also based on polymorphic feature extrac-
tion [4]. We used connected components of pixels clas-
sified as “homogeneous”, thus being in a local neigh-
bourhood of parallel surface normals, as seed regions
for region growing. In order to overcome classification
errors in polymorphic feature extraction, seed region
selection was applied to the LIDAR data in an iter-
ative way, using different significance levels for the
classification. First, only the “most significantly pla-
nar” pixels of the DSM were used as seed regions, and
region growing was only applied to seed regions hav-
ing a good r.m.s. error of planar fit. After that, the
classification was repeated, using another significance
level for classification and applying our procedure for
seed region selection to connected components of ho-
mogeneous pixels not yet assigned to a planar segment.
In this way, a certain number of iterations was carried
out, in each iteration taking into account less and less
significantly homogeneous areas.

This procedure requires a certain minimum number of
DSM pixels corresponding to a roof plane. For small
buildings and LIDAR point distances larger than 1 m,
the roof planes cannot be separated by the method: In
the early iterations, too small a number of pixels will
be classified as “homogeneous” because in any local
neighbourhood, there will be a certain variation of the
surface normals, whereas in later iterations, intersec-
tion lines of roof planes will be missed and, thus, roof
planes will be merged. It is the idea of the new algo-
rithm presented in this paper to select the seed regions
in digital images having a better resolution than the
LIDAR data. These seed regions are propagated to the
LIDAR DSM, where the parameters of the correspond-
ing planes can be computed, and region growing is ap-
plied in the way described above. Again, the procedure
of seed region selection and region growing has to be
carried out in an iterative way to overcome problems
related to grey level segmentation of the digital images.

Detection of Seed Regions in the Digital Image:
Seed region selection is again based on polymorphic
feature extraction, but this time applied to a digital
image. We only use the brightness of the images for
that purpose. We assume connected components of
pixels classified as “homogeneous”, thus, being in
a local neighbourhood of homogeneous brightness,
as seed regions. Unfortunately, due to the lack of
contrast of neighbouring roof planes, most of these
seed regions will contain more than one relevant roof
plane. We reduce the size of the seed regions by
shrinking operations, and we further split them into
smaller parts by morphologic filtering. Thus, we get
a larger number of seed regions that are also smaller

than the original ones, so that we can assume that at
least some of them will correspond to a single roof
plane in object space.

Region Growing in the LIDAR DSM: The seed
regions are propagaged to the LIDAR DSM. In case the
digital image is an orthophoto, this just means that the
DSM heights have to be interpolated at the positions of
the orthophoto pixels. From these interpolated DSM
points, the plane parameters of the seed regions can be
estimated, and region growing can be applied to the
planes having a good planar fit indicated by a small
r.m.s. error, adding a DSM grid point at the border of a
planar segment to that segment if the point’s distance
from the adjusting plane is below a certain threshold.
Region growing is performed iteratively, each time
checking all DSM pixels neighbouring the segment
and not yet belonging to another segment. After
each iteration, the plane parameters are re-computed.
Iteration stops if no more pixels can be added to any
planar segment.

Hierarchic Roof Segment Detection: Roof plane
detection is carried out in an iterative way. First,
it is iterated over different significance levels of
classification in polymorphic feature extraction,
thus computing the seed regions from less and less
significantly homogeneous pixels. At each stage of
polymorphic feature extraction, there is a further loop
of iterations, this time by using different filter sizes for
reducing the sizes of the initial seed regions: Initially,
the seed regions have to be reduced considerably
in size, so that many planes will be eliminated
completely; otherwise, roof planes would be merged.
However, if region growing succeeds in extracting at
least some of the roof planes, seed region detection
can be repeated, just considering the pixels not yet
belonging to a roof plane already detected. The
seed regions will still be reduced in size, but in each
iteration, this size reduction will be a smaller one,
because in each iteration, less and less pixels will
remain unclassified. In this way, it is possible to obtain
a segmentation better than any that could be obtained
by using just one of the data sources.

4 Experiments

The test data set was captured over Faifield (Sydney)
using an Optech ALTM 3025 laser scanner. Both
first and last pulse were recorded, the average point
distance being about 1.2 m. We derived DSM grids
at a resolution of 1 m from these data (left part of
figure 2). Intensity data were available, too. We used
an area of 2 × 2 km2 for our test. For that area, a
true colour digital orthophoto with a resolution of
15 cm was available. The orthophoto was created
using a DTM, so that the roofs and the tree-tops
were slightly displaced with respect to the LIDAR



data. Unfortunately, the digital orthophoto did not
contain an infrared band. We circumvented this
problem by resampling both the digital orthophoto and
the (infrared) LIDAR intensity data to a resolution
of 0.5 m and by computing a “pseudo-NDVI-image”
from the LIDAR intensities and the green band of
the digital orthophoto (right part of figure 2). Due
to problems with georeferencing and shadow areas,
the “pseudo-NDVI-image” did not provide as much
information as the NDVI image would have.

Figure 2: The test site. Left: DSM (black: low areas,
white: high areas). Total area: 2000 × 2000 m2. Right:
The “pseudo-NDVI-image”.

4.1 Building Detection

We started the procedure by morphological opening of
the DSM using a structural element of 150 × 150 m2.
Using that structural element, all buildings can be elim-
inated, but the terrain shape is not well preserved, so
that the residential buildings in the lower part of the
scene are merged. Using a smaller structural element,
more terrain details are preserved, but the large build-
ings are still contained in the data. However, using our
hierarchic approach, these buildings can be eliminated
beforehand, as described in section 2.

The initial building mask was derived using a height
threshold of 2 m. Texture classification was carried
out using a filter kernel size of 3 × 3 pixels. In the
first iteration, starting from the DTM created by us-
ing a structural element of 150 × 150 m2, we only
accepted regions larger than 2500 m2, containing less
than 0.30% of “point-like” and at least 70% of “homo-
geneous” pixels, thus, large regions consisting of few,
but large roof planes. As the industrial buildings had
a high reflectivity in the infrared part of the spectrum,
the threshold for the “pseudo-NDVI” was kept at 75%.
85 mostly large building structures are detected in the
first iteration.

Altogether three iterations were carried out, using
structural elements of 150 m, 75 m, and 25 m. In the
final iteration, regions larger than 25 m2, containing
less than 85% of “point-like” and at least 1% of
“homogeneous” pixels were accepted. These relatively
loose settings of the threshold were a consequence of
the LIDAR resolution, with only few points and, thus,

Figure 3: Buildings extracted in the third iteration.

few “homogeneous” pixels on the roofs of the smaller
buildings. 1589 buildings were detected (figure 3).
The parameters for classification were chosen in a
way to minimise the number of missed buildings,
accepting a larger rate of false alarms. Less than 1%
of the buildings were not detected. There remain some
trees in the data, and some of the buildings are still
merged, especially if the distance between them is
small. As almost all the buildings are contained in
the data, it might be possible to improve the results of
classification by considering additional cues derived,
for instance, from the colour images.

4.2 Detection of Roof Segments

Figure 4 shows the brightness of the digital orthophoto
and the DSM for one of the buildings detected in the
Fairfield data set. The orthophoto was used at its full
resolution (15 cm), and the DSM was interpolated at
0.5 m. The homogeneous segments derived by poly-
morphic feature extraction using two different signifi-
cance levels for classification of the brightness image
are displayed in figure 5. It is obvious that some rel-
evant planes cannot be correctly separated due to the
lack of contrast between them. By shrinking the homo-
geneous segments in the left part of figure 5, small seed
regions can be generated, and applying region grow-
ing to the seed regions having a r.m.s. error of pla-
nar fit better than 15 cm results in the 5 planes de-
tected in the left part of figure 6. In the first iteration,
the seed regions are shrinked by 11 pixels and then

Figure 4: One of the buildings in the test dataset. Left:
Digital orthophoto (resolution: 15 cm). Right: DSM.



morphologically opened using a structural element of
the same size. This size is reduced by 2 in each it-
eration. Altogether 5 iterations are carried out in this
way for each stage of polymorphic feature extraction,
and four such stages are considered. The final results
are presented in the right part of figure 6. Despite of
the resolution of the LIDAR data and despite of the
fact that the roof planes could not be separated in the
image segmentation, the relevant roof planes could be
detected. There are still some spurious segments, and
the segment outlines are not yet correctly shaped. The
latter can be improved by computing the intersection
lines of neighbouring segments [8].

Figure 5: Homogeneous segments derived for two
different significance levels.

Figure 6: Roof segments. Left: first iteration. Right:
last iteration.

5 Conclusion and Future Work

We have presented a hierarchic method for building
detection from LIDAR data and multispectral images,
and we have shown its applicability in a test site of het-
erogeneous building shapes. In our test, we put more
emphasis on detecting all buildings in the test data set
than on reducing the false alarm rate because in the
future we want this method to be the module for initial
segmentation in a framework using more sophisticated
methods of data fusion similar to those described in [6].
Using the NDVI computed from real infrared images
rather than the “pseudo-NDVI” used in this test might
help to improve the results. We have also presented a
new method for combining digital images and LIDAR
data for the detection of roof planes. The method is
still work in progress. We especially want to reduce
the number of parameters involved in the process. Our
preliminary results show that, using this method, it was
possible to detect more roof planes than from one of
the data sources alone.
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