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ABSTRACT

In this paper, we examine the problem of fitting a circle to a set of
noisy measurements of points from the circle’s circumference, as-
suming independent, identically distributed GAUSSIAN measure-
ment errors. We propose an algorithm based on Branch and Bound
to obtain the Maximum Likelihood Estimate and show that this al-
gorithm obtains the optimal estimate. We examine the rate of con-
vergence and determine the computational complexity of the pro-
posed algorithm. We also provide timings and compare to existing
techniques for circle fitting proposed in the literature. Finally, we
demonstrate that our algorithm is statistically efficient by compar-
ing our results to the CRAMÉR-RAO lower bound.

1. INTRODUCTION

The accurate fitting of a circle to noisy measurements of points on
its circumference is a much-studied problem in the scientific liter-
ature. In his paper, CHAN [1] proposes a ‘circular functional rela-
tionship’ which assumes that the measurement errors are instances
of independent and identically distributed (i.i.d.) random variables
and that the points lie at fixed but unknown angles around the cir-
cumference. This model requires the estimation of the unknown
angles of each circumferential point, in addition to the center and
radius of the circle. CHAN proposes an approximate method to
find the MLE when the errors have a GAUSSIAN distribution. This
method is identical to the least-squares method of [2]. He also
examines the consistency of the estimator.

A disadvantage of the MLE for circles is that it can be dif-
ficult to obtain numerically. As a result, existing algorithms for
computing the MLE only produce locally optimal estimates. It is
well known that for high noise there are often several local min-
ima [3–6]. BERMAN & CULPIN [3] have carried out a detailed
statistical analysis of both the MLE and the DELOGNE-K ÅSA es-
timator (DKE) which uses a least-squares approach. Specifically,
they investigated the asymptotic consistency and variance of the
estimates.

Due to the numerical difficulties of the MLE, there are several
techniques for fitting which are widely used by practitioners. The
NEWTON-RAPHSON method can often fail in the case of fitting
circles [3,4], diverging to infinity or entering a limit cycle depend-
ing on the arrangement of the points and the initialisation. When it
converges there is no guarantee that the local optimum which has
been found is the global optimum. There are other iterative esti-
mators which guarantee a reduction in the objective function with
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each iteration [4–6]. This is an improvement on the NEWTON-
RAPHSONmethod, however, this does not guarantee convergence
in the estimates.

The principle of Branch and Bound was first proposed in a dis-
crete setting by LAND & D OIG in [7] and the Branch and Bound
search method is described in a discrete setting by WINSTON [8].
Branch and Bound has previously been proposed for locating ap-
proximately circular contours [9] and more general contours in im-
ages [10]. In [11], ZHANG & K ORF present an analysis of the av-
erage computational complexity of Branch and Bound in a typical
search application.

In this paper, we propose a new algorithm which uses the prin-
ciple of Branch and Bound to estimate circle parameters from a
set of noisy measurements of points on a circle’s circumference.
This algorithm repeatedly partitions a circle parameter space into
subspaces. After each such refinement of the partitioning, lower
and upper bounds on the objective function of the MLE are com-
puted for each subspace. Many subspaces may then be discarded
from consideration, leading to an efficient search algorithm which
bounds the MLE within an arbitrarily small region in the circle
parameter space. We show theoretically and empirically that this
algorithm obtains the estimate of globally maximum likelihood.

2. THEORY

2.1. CHAN ’s Circular Functional Model

CHAN ’s circular functional model [1] for Cartesian coordinatespi,
i = 1, . . . , N can be expressed aspi = c + ru(θi) + ξi, where
c = (c1, c2)

T is the center of the circle,r is its radius, theu(θi) =
(cos θi, sin θi)

T are unit vectors and theξi are instances of random
vectors representing the measurement error. They are assumed to
be zero-mean and i.i.d. In addition, we will specify that they are
GAUSSIAN with covarianceσ2I.

2.2. Maximum-Likelihood Estimation

If we let Ω = (c, r, {θi})
T , the conditional likelihood forΩ is

L(Ω | pi) =
1

(2πσ2)N

N
∏

i=1

exp

(

−
‖pi − (c + ru(θi))‖

2

2σ2

)

.

(1)
By taking the logarithm of (1) and ignoring the constant offset and
scaling, both of which depend onN andσ only, it is possible to
simplify the objective function so that

FML (c) =

N
∑

i=1

‖pi − c‖2 −
1

N

{

N
∑

i=1

‖pi − c‖

}2

(2)

= N VAR[‖pi − c‖],
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whereVAR[‖pi−c‖] is the empirical variance of‖pi−c‖. Thus,
if we definedi(x) = ‖pi − x‖ wherex ∈ R

2 is the set of candi-
date circle centres, then the MLE of the circle parameters is

(ĉML , r̂ML ) = arg min
(x,ρ)

N
∑

i=1

[di(x) − ρ]2, (3)

ĉML = N arg min
x

VAR[di(x)], (4)

whereρ ∈ R
+ is a candidate circle radius.

2.3. Sets and Partitions

In this paper we consider functions applied to points, sets, and
set partitions. It is assumed that we are searching a finite-volume
subsetΓ of a real spaceRN of finite dimension. We consider only
compact sets, which are closed and bounded in the spaces that we
consider.

Definition 1. A set partitionP of a compact setΓ is a finite collec-
tion of compact subsetsP = {γi} with unionΓ and pairwise in-
tersection ofLEBESGUEmeasure zero,i.e. ∀i 6= j, L(γi ∩ γj) =
0, and

⋃

P = Γ.

For clarity, functions whose argument is a single point will
be denotedf(·), functions whose input is a set will be denoted
f [·], and functions whose input is a set partition will be denoted
f 〈·〉. For example, the functionmin[·] maps a set to its minimal
element. Set functionsf [·] may be applied to set partitions (which
are simply sets of sets) to give set-valued output. When round
brackets are used with set argument, we interpret the result as set-
valued,i.e., f(S) = {f(x) | x ∈ S}.

Definition 2. The diameterD[·] of a compact setγ is the low-
est upper bound on the distance between two elements ofγ, i.e.
D[γ] = sup

p1,p2∈γ ‖p1 − p2‖.

The diameterD[γ] is finite for a compact setγ ⊆ R
M . Ob-

serve that ifγ1 ⊆ γ2, D[γ1] ≤ D[γ2].
The diameterD 〈·〉 of a set partitionP is defined as the maxi-

mum diameter over all subsetsγ ∈ P , i.e., D 〈P 〉 = maxγ∈P D[γ].

Definition 3. Given two set partitionsP1 and P2 of the setΓ,
we define a partial orderingP1 ≤ P2 ⇐⇒ ∀γ ∈ P2, ∃γ′ ∈
P1 s.t.γ ⊆ γ′.

This means thatP2 more finely partitionsΓ thanP1. Observe
that, for two partitionsP2 ≥ P1 of Γ, D 〈P2〉 ≤ D 〈P1〉.

For the remainder of this paper, we only provide lemma and
theorem statements. All proofs may be found in [12].

2.4. Branch and Bound

Consider a scalar functionF : Γ → R over the domainΓ whose
globally extremal point(s) we wish to locate. In this section we as-
sume that the point of minimal value is desired, with the generali-
sation to finding maximal points implicit throughout. It is assumed
thatF is a continuous function and thatΓ is a compact set.

In maximum-likelihood estimation,Γ corresponds to the pa-
rameter space of a model whileF computes the negative log-
likelihood of a given parameter vector. The search method known
as Branch and Bound may be applied to search for a minimum of
the functionF in the parameter spaceΓ by repeatedly partitioning

Γ into compact subsets and bounding the range of values within
each set. Sets which may contain the minimum are then considered
in greater detail by partitioning into smaller subsets, while sets
which cannot contain the minimum may be discarded from con-
sideration. In this paper we apply Branch and Bound to solve con-
tinuous problems which are of the form̂c = arg minx∈Γ F (x).

2.4.1. Bounding a function over a region

Consider a region in the parameter spaceγ ⊆ Γ. Then a pair of set
functionsFmin[γ], Fmax[γ] boundF over the regionγ if and only
if Fmin[γ] ≤ min[F (γ)] andmax[F (γ)] ≤ Fmax[γ]. Such bounds
need not be tight. Indeed the bounding functionsFmin[γ], Fmax[γ]
may be chosen for simple computation so as to avoid evaluatingF
at all points inγ.

Lemma 1. Given two compact setsγ1 ⊆ γ2 ⊆ Γ we have that
min[F (γ1)] ≥ min[F (γ2)] andmax[F (γ1)] ≤ max[F (γ2)].

So, as we remove points from a setγ2 to produce the subsetγ1,
the lower bound is monotonically non-decreasing while the upper
bound is monotonically non-increasing.

The analogous property for bounding functions now follows.

Definition 4. Fmin, Fmax aremonotonicif and only if, for compact
setsγ1 ⊆ γ2 ⊆ Γ, Fmin[γ1] ≥ Fmin[γ2] andFmax[γ1] ≤ Fmax[γ2].

Lemma 2. Consider a sequence of non-empty compact setsγ1 ⊃
γ2 ⊃ . . . ⊃ γ∞ with monotonically decreasing diameterδi =
D[γi] converging to0. Then defineγ∞ is a set of zero radius,i.e. a
point. Then, for a continuous functionF , limi→∞ min[F (γi)] =
F (γ∞) = limi→∞ max[F (γi)].

Definition 5. The bounding functionsFmin, Fmax areconvergentif
and only iflimi→∞ Fmin[γi] = limi→∞ Fmax[γi] = F (γ∞).

2.4.2. Bounding a set partition

We may obtain bounds for the global minimum ofF on Γ from
the bounding functionsFmin, Fmax applied to a set partitionP of Γ

min[Fmin[P ]] ≤ min[F (Γ)] ≤ min[Fmax[P ]]. (5)

Consider a sequence of increasingly fine partitionsP1 ≤ P2 ≤
. . . of Γ with diameter converging to zero. Then for convergent
bounding functionsFmin andFmax, the bounds on the global min-
imum computed from (5) converge to the global minimum,i.e.
limi→∞ min[Fmin[Pi]] = min[F (Γ)] = limi→∞ min[Fmax[Pi]].

Lemma 3. Setsγ′ ∈ P with lower boundFmin[γ
′] greater than

the minimal upper boundmin[Fmax[P ]] cannot contain a global
minimum,i.e., Fmin[γ

′] > min[Fmax[P ]] → ĉ /∈ γ′. In the
search for global minima such sets may be discarded.

2.4.3. Branch and Bound Algorithm

Here we describe an application of the Branch and Bound princi-
ple to locate the global minimum of a functionF . Figure 1 depicts
a Branch and Bound search tree alongside the corresponding parti-
tioning of the search spaceΓ. We begin by considering a set in the
parameter spaceΓ which contains the global minimum. This set is
recursively partitioned into smaller subsets of equal size. We may
then evaluate the boundsFmin and Fmax on the minimum value
of F within each set. The bounds on the minimum value ofF
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Fig. 1. Branch and bound applied to function optimisation.

guide the branching process, restricting the regions ofΓ which
need to be considered in more detail. In particular, the application
of Lemma 3 allows us to remove from consideration a number
of sets which cannot contain the global minimum. This process
prunesthe search tree, reducing the number of regions which must
be searched. Finally, the algorithm halts when the position of the
global minimum is known within a prescribed distanceδ.

Algorithm 1: (Branch & Bound)
Locate the position of the minimum̂c = arg minx∈Γ F (x) within
a distanceδ:

• SetP = {Γ}

• Until all setsγ ∈ P may be contained within a diameter
D[

⋃

P ] < δ

Branch: RefineP by partitioning each set inP

Bound: For allγ ∈ P , compute boundsFmin[γ] andFmax[γ]

Prune: Discard all setsγ ∈ P with Fmin[γ] > min[Fmax[P ]]

Theorem 1. For a uniformly continuous functionF with a sin-
gle pointĉ of globally minimal value and for convergent bounding
functionsFmin andFmax, Algorithm 1 terminates after a finite num-
ber of operations.

Theorem 2. For a functionF with a single point̂c of globally
minimal value, at termination Algorithm 1 locates this point within
a distanceδ.

The rate of convergence of the algorithm depends upon the re-
finement scheme for the set partitionP as well as the properties
of the bounding functionsFmin andFmax. Note that the algorithm
described in this paper will not terminate when, due to a patho-
logical configuration of the noisy circle points, there are multiple
global minima of exactly equal value. As the set of such point
configurations has measure zero it is not considered in this paper.

3. ALGORITHM

3.1. Log-Likelihood Bounds

In this section we consider the objective function in (2) This func-
tion is defined over the parameter space of possible circle centers,
Γ = R

2. In this section we consider set partitionings ofΓ into
rectanglesγ with extent[c1

min, c1
max] × [c2

min, c2
max].

Given a rectangleγ ⊆ Γ we wish to define bounding functions
Fmin and Fmax which are monotonic, convergent and efficiently
computable. We do so by bounding each term of the summations
in (2), which in turn requires bounding the distancesdi(x).

3.1.1. Boundingdi

The likelihood function in (2) depends ondi(x), which are uni-
formly continuous convex functions. We treatdi(x) as a scalar
field and bound it by 1st order polynomials,i.e., we may define
tight bounds ondi(x) over the rectangleγ of the formdi

min(x) ≤
di(x) ≤ di

max(x), where

di
min(x) = ∇di(cγ) · (x − pi), (6)

di
max(x) = ∇di(cγ) · (x − pi) + Bi

max,

∇di(cγ) is the unit vector∇di(cγ) = (pi − cγ)/‖pi − cγ‖,
Bi

max is the intercept of the upper bound andcγ is the center of the
rectangleγ. Note that∇di(cγ) is not defined at the circle point
pi. As a result, the bounding functionsdi

min(x) anddi
max(x) in

the rectangle containing the circle pointpi are treated separately
at the end of this section. Now, it can be shown thatBi

max must
be the value off(x) at one of the corners of the rectangleγ, i.e.
Bi

max = maxx∈corners(γ){d
i(x)−∇di(cγ) · (x−pi)}. These first

order bounds are tight and hence both monotonic and convergent.
They are also very simple to compute.

Rectanglesγ which contain a circle pointpi present difficul-
ties in the computation of the boundsdi

min(x) anddi
max(x) above,

as the distance functiondi(x) is non-differentiable atpi. Con-
sequently, these rectangles are bound by the constant functions
di

min(x) = minx′∈γ{d
i(x′)} anddi

max(x) = maxx′∈γ{d
i(x′)}.

These bounds are also tight and hence are both monotonic and
convergent. However as they are zero order functions they con-
verge more slowly than the first order bounds described above. As
a result we use the first order bounds for rectangles which do not
contain any circle points, defaulting to the zero order bounds only
when necessary.

3.1.2. BoundingF

Combining these we may derive boundsFmin andFmax on the uni-
formly continuous log-likelihood functionF :

Fmin(x) =
N

∑

i=1

dmin
i(x)2 −

1

N

{

N
∑

i=1

dmax
i(x)

}2

, (7)

Fmax(x) =
N

∑

i=1

dmax
i(x)2 −

1

N

{

N
∑

i=1

dmin
i(x)

}2

.

It is worth noting that the boundsdi
min(x) anddi

max(x) in the previ-
ous section were chosen to be uniformly non-negative, leading to
simple expressions forFmin(x) andFmax(x). Note that here we are
taking differences of 2nd order polynomials, and therefore obtain
quadratic bounds on the likelihood functionF (x) overx ∈ γ.

Finally, we may minimise the quadraticsFmin andFmax over
the associated rectangleγ to determine the bounds on the mini-
mum ofF within this rectangle,i.e. Fmin[γ] = min[Fmin[γ]], and
Fmax[γ] = min[Fmax[γ]].

3.2. Complexity Analysis

A simple partition refinement scheme for Algorithm 1 is as fol-
lows. SetΓ to be a sufficiently large rectangle encapsulating the
the center of the circle. At each refinement step, split each rect-
angle in the partition into four smaller rectangles of equal size,
thereby ensuring that the rectangle diameter halves with each iter-
ation. Hence, the number of refinement steps is proportional to the
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Fig. 2. Simulation results.

negative logarithm of the desired precisionδ in the location of the
global minimum.

In general Branch and Bound methods may have poor worst-
case complexity. However as ZHANG & K ORF [11] note they of-
ten have low average complexity. Here we briefly mention the ma-
jor results of the arithmetic complexity of the proposed algorithm.

Theorem 3. The diameter of a partition has orderO(D2).

Corollary 1. Each iteration of Algorithm 1 takes a constant amount
of time.

Corollary 2. As each iteration of Algorithm 1 improves the preci-
sion of the circle centre estimatêc by one bit in each coordinate,
the running time of the algorithm is proportional to the logarithm
of the desired precision of the circle centre estimate.

4. SIMULATIONS

For the experiments in this paper an initial rectangle was selected
which was centered on the points and had an area100 times that
of the bounding rectangle of the points.

The brand and bound (B&B) algorithm was simulated using
a Monte-Carlo analysis. Twenty points with no noise (N = 20)
were generated with a uniform distribution around the circumfer-
ence of a unit circle. For each value ofσ, the algorithm was eval-
uated over10, 000 trials. In each trial, noise was added to the
true points to obtain estimates for the center of the circleĉ and
radiusr̂ according to CHAN ’s circular functional model. This was
used to generate mean square error (MSE) values. The amount
of noise,σ was varied from10−2 to 1 in equal geometric incre-
ments. The same was done for the DKE (DKE) [13], the centroid
method (CEN) by taking the mean of thex andy coordinates, the
SPÄTH algorithm (SPA) [5] and the CHERNOV & L ESORTalgo-
rithm (CL) [4]. Also, for the algorithm proposed in this paper, the
number of likelihood function evaluations was recorded in order
to demonstrate its independence toσ. See Figure 2(a).

The MSE values in centre,̂c, and radius,̂r, are plotted against
their corresponding CRAMÉR-RAO lower bound (CRLB, see [12])
for the same level of noiseσ in Figure 2(b) and 2(c) on a logarith-
mic scale. As the noise level,σ, approaches zero, all methods
except CEN approach statistical efficiency. The centroid method
levels off due to bias. The CHERNOV & L ESORTmethod diverged
for the highest4 values of noise and the results cannot be plotted.
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