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ABSTRACT each iteration [4—6]. This is an improvement on thevikiron-
RapPHsONmethod, however, this does not guarantee convergence

In this paper, we examine the problem of fitting a circle to a set of in the estimates.
noisy measurements of points from the circle’s circumference, as-  The principle of Branch and Bound was first proposed in a dis-
suming independent, identically distributech@SIAN measure- crete setting by BND & D 01G in [7] and the Branch and Bound
ment errors. We propose an algorithm based on Branch and Boundsearch method is described in a discrete setting lySmon [8].
to obtain the Maximum Likelihood Estimate and show that this al- Branch and Bound has previous|y been proposed for |0Cating ap-
gorithm obtains the optimal estimate. We examine the rate of con- proximately circular contours [9] and more general contours in im-
vergence and determine the computational complexity of the pro- ages [10]. In [11], ZANG & K ORF present an analysis of the av-
posed algorithm. We also provide timings and compare to existing erage computational complexity of Branch and Bound in a typical
techniques for circle fitting proposed in the literature. Finally, we search application.
demonstrate that our algorithm is statistically efficient by compar- In this paper, we propose a new algorithm which uses the prin-
ing our results to the RAMER-RAO lower bound. ciple of Branch and Bound to estimate circle parameters from a
set of noisy measurements of points on a circle’s circumference.
This algorithm repeatedly partitions a circle parameter space into
subspaces. After each such refinement of the partitioning, lower
» . i ) and upper bounds on the objective function of the MLE are com-
The accurate fitting of a circle to noisy measurements of points on puted for each subspace. Many subspaces may then be discarded

its circumf_erence is a much-studied probl_em in the sc_:ientific liter- from consideration, leading to an efficient search algorithm which
ature. In his paper, BN [1] proposes a ‘circular functional rela- 4 nds the MLE within an arbitrarily small region in the circle

tionship” which assumes that the measurement errors are instancegarameter space. We show theoretically and empirically that this
of independent and identically distributed (i.i.d.) random variables algorithm obtains the estimate of globally maximum likelihood.

1. INTRODUCTION

and that the points lie at fixed but unknown angles around the cir-
cumference. This model requires the estimation of the unknown
angles of each circumferential point, in addition to the center and
radius of the circle. @AN proposes an approximate method to
find the MLE when the errors have axGssIAN distribution. This
method is identical to the least-squares method of [2]. He also CHAN's circular functional model [1] for Cartesian coordinates
examines the consistency of the estimator. i=1,...,N can be expressed @8 = c + ru(f;) + &, where

A disadvantage of the MLE for circles is that it can be dif- ¢ = (c1,¢2)7 is the center of the circle, is its radius, thei(6;) =
ficult to obtain numerically. As a result, existing algorithms for (cos 6;,sin 6;)” are unit vectors and tig are instances of random
computing the MLE only produce locally optimal estimates. Itis vectors representing the measurement error. They are assumed to
well known that for high noise there are often several local min- be zero-mean and i.i.d. In addition, we will specify that they are
ima [3-6]. BERMAN & CULPIN [3] have carried out a detailed ~ GAUSSIAN with covariancer1.
statistical analysis of both the MLE and theDbGNE-KASA es-
timator (DKE) which uses a least-squares approach. Specifically,2 2. Maximum-Likelihood Estimation
they investigated the asymptotic consistency and variance of the
estimates. If we let Q = (c,r, {6:})7, the conditional likelihood fof2 is

Due to the numerical difficulties of the MLE, there are several 1 N Ipi — (c + ru(@:)|?
techniques for fitting which are widely used by practitioners. The L(Q2 | pi) = -——5 H exp (— Pi > 2 ) .
NEWTON-RAPHSON method can often fail in the case of fitting (2ma?)N 25 20
circles [3, 4], diverging to infinity or entering a limit cycle depend- (1)
ing on the arrangement of the points and the initialisation. When it By taking the logarithm of (1) and ignoring the constant offset and
converges there is no guarantee that the local optimum which hasscaling, both of which depend o ando only, it is possible to
been found is the global optimum. There are other iterative esti- Simplify the objective function so that
mators which guarantee a reduction in the objective function with N (& 2

FuL(c) = i —clP - — i —C 2
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2. THEORY

2.1. CHAN'’s Circular Functional Model
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whereVAR(||p: —cl|] is the empirical variance dfp; —c||. Thus,
if we defined’ (x) = ||p; — x|| wherex € R? is the set of candi-
date circle centres, then the MLE of the circle parameters is

N

(€mL,mL) = arg (min [d'(x) — p]?, 3)

éw. = N argmin VAR[d' (x)], (4)

wherep € R is a candidate circle radius.

2.3. Sets and Partitions

T" into compact subsets and bounding the range of values within
each set. Sets which may contain the minimum are then considered
in greater detail by partitioning into smaller subsets, while sets
which cannot contain the minimum may be discarded from con-
sideration. In this paper we apply Branch and Bound to solve con-
tinuous problems which are of the forén= arg minxer F'(x).

2.4.1. Bounding a function over a region

Consider a region in the parameter space I'. Then a pair of set
functions Fmin[y], Fmaxy] bound F* over the regiony if and only
if Fmin[y] < min[F(v)] andmax[F(v)] < Fmax7v]. Such bounds
need not be tight. Indeed the bounding functidfig[y], Fmax[7]

In this paper we consider functions applied to points, sets, andmay be chosen for simple computation so as to avoid evaluating
set partitions. It is assumed that we are searching a finite-volumeat all points in.

subsef of a real spac®&” of finite dimension. We consider only

compact sets, which are closed and bounded in the spaces that w

consider.

Definition 1. Aset partitionP of a compact sdf is a finite collec-
tion of compact subset® = {v;} with unionT" and pairwise in-
tersection ofLEBESGUEmMeasure zerd,e. Vi # j, L(v: N ;)
0,and P =T.

For clarity, functions whose argument is a single point will
be denotedf(-), functions whose input is a set will be denoted
f[-], and functions whose input is a set partition will be denoted
f (). For example, the functiomin[-] maps a set to its minimal
element. Set functiong[-] may be applied to set partitions (which

are simply sets of sets) to give set-valued output. When round yoint. Then, for a continuous functidf, lim; . o min[F(y:)]
brackets are used with set argument, we interpret the result as setF(

valued,i.e, f(S) ={f(z) | z € S}.

Definition 2. ThediameterD[-] of a compact set is the low-
est upper bound on the distance between two elemenisid.

Dh/] = SUPp, prey ||p1 - p2”

The diameterD[+] is finite for a compact sef € R™. Ob-
serve that ifys C 72, D[m1] < D[v2].

The diameteD (-) of a set partitionP is defined as the maxi-
mum diameter over all subsetsc P, i.e, D (P) = max,cp D[7].

Definition 3. Given two set partitiong?; and P, of the setT",
we define a partial ordering”s < P, <= Vy € P, 3y €
PistyCr.

This means thaP, more finely partitiond™ than P,. Observe
that, for two partitionsP, > P, of I, D (P2) < D (Py).

For the remainder of this paper, we only provide lemma and
theorem statements. All proofs may be found in [12].

2.4. Branch and Bound

Consider a scalar functioR' : I' — R over the domail® whose
globally extremal point(s) we wish to locate. In this section we as-
sume that the point of minimal value is desired, with the generali-
sation to finding maximal points implicit throughout. It is assumed
that F' is a continuous function and thBtis a compact set.

In maximum-likelihood estimatiorl;' corresponds to the pa-
rameter space of a model whilé computes the negative log-

Eemma 1. Given two compact setg C 2 C T' we have that
min[F (v1)] > min[F(v2)] andmax[F (y1)] < max[F(y2)].

So, as we remove points from a setto produce the subset,
the lower bound is monotonically non-decreasing while the upper
bound is monotonically non-increasing.

The analogous property for bounding functions now follows.

Definition 4. Fmin, Fmax are monotonicif and only if, for compact
setsy - Y2 CrT, Fmin['Yl} > Fmin[’VQ] andFmaxh’l} < Fmax[’YQ]-

Lemma 2. Consider a sequence of non-empty compactgets
2 D ... D 7Y With monotonically decreasing diametéy =
D[] converging td). Then defing is a set of zero radius.e. a

Definition 5. The bounding functionBmin, Fmax are convergentf
and only iflim; oo Fmin[v:] = limi—oe Fmaxvi] = F (Vo).

2.4.2. Bounding a set partition

We may obtain bounds for the global minimum Bfon T" from
the bounding function$min, Fmax applied to a set partitio® of I

()

Consider a sequence of increasingly fine partitibhs< P, <

... of T" with diameter converging to zero. Then for convergent
bounding functiongmin and Fimax, the bounds on the global min-
imum computed from (5) converge to the global minimure,
lim; . oo min[Frin[F;]] = min[F(T")] = limi—cc min[Fmax|Pi]].

min[Fin[P]] < min[F(T")] < min[FmaxP]].

Lemma 3. Setsy’ € P with lower boundFmin[y'] greater than
the minimal upper bounehin[FmaqP]] cannot contain a global
minimum,i.e., Frnin[Y'] > min[Fna{P]] — ¢ ¢ 7. Inthe
search for global minima such sets may be discarded.

2.4.3. Branch and Bound Algorithm

Here we describe an application of the Branch and Bound princi-
ple to locate the global minimum of a functidn Figure 1 depicts

a Branch and Bound search tree alongside the corresponding parti-
tioning of the search spade We begin by considering a set in the
parameter spade which contains the global minimum. This set is

likelihood of a given parameter vector. The search method known recursively partitioned into smaller subsets of equal size. We may
as Branch and Bound may be applied to search for a minimum ofthen evaluate the bound&nin and Fmax on the minimum value
the functionF' in the parameter spadeby repeatedly partitioning  of F within each set. The bounds on the minimum valuerof



r 3.1.1. Boundingl’

B The likelihood function in (2) depends afi(x), which are uni-
formly continuous convex functions. We tredft(x) as a scalar
+ field and bound it by 1st order polynomialsg., we may define

tight bounds oni‘(x) over the rectangle of the formdi,,(x) <
d'(x) < dhax(x), where

dmin(x) = Vd' () - (x = Py, (6)
d?ﬂax(x) = Vdi(C’Y) : (X - pi) + B:i\axv

Vd'(c,) is the unit vectorVd'(c,) = (p: — ¢4)/|Ipi — ¢l
Biaxis the intercept of the upper bound amglis the center of the
rectangley. Note thatVd‘(c,) is not defined at the circle point
p:. As a result, the bounding functiom&,,(x) and dia(x) in
the rectangle containing the circle popi are treated separately
at the end of this section. Now, it can be shown tBat, must
be the value off(x) at one of the corners of the rectanglgi.e.
Brax = MaXxecomergy) {d' (x) — Vd'(c,) - (x — pi) }. These first
order bounds are tight and hence both monotonic and convergent.
They are also very simple to compute.
Rectanglesy which contain a circle poinp; present difficul-
ties in the computation of the bound$;,(x) andd}.(x) above,
as the distance functiod (x) is non-differentiable ap;. Con-
e SetP = {T'} sequently, these rectangles are bound by the constant functions
. ) o . diin(x) = miny e, {d"(x')} anddha(x) = max, e~ {d"(x')}.
e Until all setsy € P may be contained within a diameter These bounds are also tight and hence are both monotonic and
DUP] <9 convergent. However as they are zero order functions they con-
verge more slowly than the first order bounds described above. As
a result we use the first order bounds for rectangles which do not

+0

o]

<0

(a) Search tree. (b) Space partitioning.

Fig. 1. Branch and bound applied to function optimisation.

guide the branching process, restricting the region§ efhich
need to be considered in more detail. In particular, the application
of Lemma 3 allows us to remove from consideration a number
of sets which cannot contain the global minimum. This process
prunesthe search tree, reducing the number of regions which must
be searched. Finally, the algorithm halts when the position of the
global minimum is known within a prescribed distarice

Algorithm 1: (Branch & Bound)
Locate the position of the minimum= arg minxer F'(x) within
a distance:

Branch: RefineP by partitioning each set i®

Bound: For ally € P, compute bound$min[y] and Finax(v] contain any circle points, defaulting to the zero order bounds only
Prune: Discard all setg € P with Finin[y] > min[Fmax|P]] when necessary.
Theorem 1. For a uniformly continuous functio” with a sin- 3.1.2. Bounding”

gle pointe of globally minimal value and for convergent bounding
functionsFmin and Fmax, Algorithm 1 terminates after a finite num-
ber of operations.

Combining these we may derive bounBign and Fimax 0n the uni-
formly continuous log-likelihood functiot':

N N 2
Theorem 2. For a function F' with a single point¢c of globally _ _ RTEYIEE S i
minimal value, at termination Algorithm 1 locates this point within Finin(x) = ; drin' ()" = 5 ; dmax (%) ¢ (1)
a distance’. N - )

N 1 N

7 2 %
The rate of convergence of the algorithm depends upon the re- Frnax(x) = Y dimax' (x)” — N {Z dimin (X)} :
=1 i=1

finement scheme for the set partitiéhas well as the properties

of the_ bour_1ding functionﬂF[mn andFma{(. Note that the algorithm Itis worth noting that the boundﬁmn(x) anddrinax(x) in the previ-
described in this paper will not terminate when, due to a patho- o5 section were chosen to be uniformly non-negative, leading to
logical cc_)n_flguratlon of the noisy circle points, there are muIt|p_Ie simple expressions fdfyin(x) and Fa(x). Note that here we are
global minima of exactly equal value. As the set of such point aking differences of 2nd order polynomials, and therefore obtain
configurations has measure zero it is not considered in this paper. quadratic bounds on the likelihood functidi(x) overx € ~.

Finally, we may minimise the quadrati@&nin and Finax over

3. ALGORITHM the associated rectangieto determine the bounds on the mini-
mum of " within this rectanglei.e. Fiin[y] = min[Fmin[7]], and
3.1. Log-Likelihood Bounds Fina[y] = min[Fiad7]].

I_n th_is seqtion we consider the objective function_in (2)_ This func- 3.2. Complexity Analysis
tion is defined over the parameter space of possible circle centers,
I' = R?. In this section we consider set partitioningsIbinto A simple partition refinement scheme for Algorithm 1 is as fol-
rectanglesy with extent[cmin, Chad X [Cain, Coax- lows. SetT" to be a sufficiently large rectangle encapsulating the
Given arectangle C I" we wish to define bounding functions  the center of the circle. At each refinement step, split each rect-
Fmin and Fmax Which are monotonic, convergent and efficiently angle in the partition into four smaller rectangles of equal size,
computable. We do so by bounding each term of the summationsthereby ensuring that the rectangle diameter halves with each iter-
in (2), which in turn requires bounding the distandégx). ation. Hence, the number of refinement steps is proportional to the
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Fig. 2. Simulation results.

negative logarithm of the desired precisidm the location of the
global minimum.

In general Branch and Bound methods may have poor worst-

case complexity. However asHANG & K ORF[11] note they of-

ten have low average complexity. Here we briefly mention the ma-
jor results of the arithmetic complexity of the proposed algorithm.

Theorem 3. The diameter of a partition has ord€}(D?).

Corollary 1. Each iteration of Algorithm 1 takes a constant amount

of time.

Corollary 2. As each iteration of Algorithm 1 improves the preci-

sion of the circle centre estimaéeby one bit in each coordinate,

the running time of the algorithm is proportional to the logarithm

of the desired precision of the circle centre estimate.

4. SIMULATIONS

For the experiments in this paper an initial rectangle was selected

which was centered on the points and had an af8atimes that
of the bounding rectangle of the points.

The brand and bound (B&B) algorithm was simulated using

a Monte-Carlo analysis. Twenty points with no noi$é & 20)

were generated with a uniform distribution around the circumfer-

ence of a unit circle. For each value®fthe algorithm was eval-

uated overl10, 000 trials. In each trial, noise was added to the

true points to obtain estimates for the center of the ciécknd
radius? according to GAN’s circular functional model. This was

used to generate mean square error (MSE) values. The amoun

of noise,s was varied fromL0~2 to 1 in equal geometric incre-

ments. The same was done for the DKE (DKE) [13], the centroid

method (CEN) by taking the mean of theandy coordinates, the
SPATH algorithm (SPA) [5] and the BERNOV & L ESORTalgo-

rithm (CL) [4]. Also, for the algorithm proposed in this paper, the
number of likelihood function evaluations was recorded in order

to demonstrate its independencestdSee Figure 2(a).
The MSE values in centré, and radiusy, are plotted against
their corresponding RAMER-RAO lower bound (CRLB, see [12])

for the same level of noise in Figure 2(b) and 2(c) on a logarith-
mic scale. As the noise leve;, approaches zero, all methods
except CEN approach statistical efficiency. The centroid method

levels off due to bias. The@®=RNoOV & L ESORTMethod diverged

for the highestt values of noise and the results cannot be plotted.
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