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Introduction

In the direct simulation Monte Carlo (DSMC) technique for modelling rarefied gas flows [1], collision

cross-sections are typically determined using phenomenological molecular models. The most common

DSMC molecular model is the variable hard sphere (VHS) model, described by Bird [1], where the

total collision cross-section σ is given by σ ∝ g−2υ, where g is the relative speed in collisions and υ is

a constant characteristic of the gas. The VHS model has the same variation of viscosity cross-section

σµ with relative speed as the inverse power repulsive intermolecular potential, but with hard sphere

scattering. Consequently, the VHS model gives a power law viscosity relation µ ∝ T υ+ 1
2 which is

inaccurate for most gases over extended temperature ranges with T . 1000 K.

The generalised hard sphere (GHS) model, introduced by Hassan and Hash [2], is an extension of

the VHS model to include terms that allow modelling of molecules with both repulsive and attractive

potentials. For the GHS model, σ may be written as

σ =
N∑

i

σi (gr/g)2υi ,

where gr = (4RTr)
1
2 and Tr is an arbitrary reference temperature. Although any number of terms N

may be used, the present analysis is limited to N = 2. Using σr = σ1 + σ2 and σ1 = φσr, the GHS

cross-section is described by

σ̂ = φĝ−2υ1 + (1− φ)ĝ−2υ2 ,

where σ̂ = σ/σr and ĝ = g/gr are the normalised cross-section and relative speed respectively. Values

of the constants σr, φ, υ1 and υ2 are determined using viscosity data.

The GHS model can represent the viscosity behaviour of gases more accurately than the VHS

model over temperature ranges with T . 1000 K, where attractive intermolecular forces have a

significant influence. Despite this advantage, only one DSMC study using the GHS model appears

in the refereed literature (Hash, Moss and Hassan [3]). The DSMC model proposed by Kuščer [4]

produces a Sutherland viscosity relation, and may be considered as a special case of the GHS model.

Boyd [5] noted that σ for this Sutherland model approached infinity as g → 0, but did not make any

specific comments regarding computational efficiency. It appears that the GHS model is not used

because of its poor computational efficiency. Here we examine the reasons for this poor computa-

tional efficiency, and introduce a modification to the model that offers significant improvements in

computational efficiency with minimal effects on the viscosity behaviour.
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Viscosity and collision frequency for the GHS model

The Chapman-Enskog viscosity for a given viscosity cross-section σµ is

µ =
5m

8
(πRT )

1
2

Ω(T̂ )

where

Ω(T̂ ) =
∫ ∞

0

γ7σµ exp
(−γ2

)
dγ.

Here, γ = g/(4RT )
1
2 is a non-dimensional collision speed. For hard sphere scattering, σµ = 2σ/3. It

can be shown that Ω(T̂ ) for the GHS model is

Ω(T̂ ) = (σr/3)
[
φT̂−υ1Γ(4− υ1) + (1− φ)T̂−υ2Γ(4− υ2)

]
,

where T̂ = T/Tr is the normalised temperature. The reference cross-section σr for Ar can be obtained

by using the viscosity µr = 2.283 × 10−5 Pa.s at the reference temperature Tr = 300 K [6], and

σr = 6.425 × 10−19 m2. The remaining three model parameters (φ, υ1, υ2) = (0.61, 2
13 , 14

13 ) give a

reasonable fit to the best available viscosity data for Ar recommended by Kestin et al. [6], as shown

in Fig. 1. The viscosity has been presented in the reduced form µ̂/T̂
1
2 ∝ 1/Ω(T̂ ), to accentuate small

differences between the curves. Note that the GHS viscosity is unrealistically low for T . 100 K.

This low viscosity arises from a large cross-section (and consequent high collision rate), which is one

of the reasons for its poor computational efficiency.

The probability of collision between two particles with total collision cross-section σ and relative

speed g is proportional to σg = V . For the Ar model parameters, a plot of V̂ = V/Vr versus ĝ for

the GHS model is given in Fig. 2. It is apparent that V̂ →∞ as ĝ → 0. The minimum point on the

curve may be denoted (ĝmin, V̂min).

In DSMC simulations, Npairs possible collision pairs are tested, with Npairs being proportional

to the maximum value of V found in the simulation, denoted Vmax. The probability of a collision

occurring between a possible collision pair is given by the ratio V/Vmax. Since Vmax becomes extremely

large when tested collision pairs having ĝ ¿ ĝmin are found, Npairs becomes extremely large, while

each possible collision pair has a small probability of actually participating in a collision. This has

an adverse effect on computational efficiency, particularly when the temperature is low.

The molecular collision frequency ν is given by ν(T, n) = n〈σg〉, where 〈σg〉 represents the mean

value of σg over all possible collision pairs. In an equilibrium gas, the distribution of γ = g/(4RT )
1
2

is

fγ =
(
4/π

1
2

)
γ2 exp

(−γ2
)
,
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from which the collision frequency for the GHS model

νGHS = 2nVr

(
T̂ /π

) 1
2

[
φT̂−υ1Γ (2− υ1) + (1− φ)T̂−υ2Γ (2− υ2)

]

may be obtained, where Vr = σrgr. If either υ1 or υ2 > 1
2 , as in the present case, νGHS → ∞ as

T̂ → 0. Fig. 3 shows the collision frequency for the GHS model, normalised with respect to the

nominal collision frequency

νCom = 1/τCom = (4/π) (ρRT/µGHS) ,

where τCom is the nominal time between collisions. The collision frequency for the VHS model, where

the viscosity is matched to the GHS viscosity, is given by

νVHS =
15

2(2− υ)(3− υ)
ρRT

µGHS
.

For Ar at high temperatures, υ = 0.22, so νVHS/νCom = 1.1904, as shown in Fig. 3.

The modified GHS model

If the GHS model is modified such that V̂ is limited at low ĝ, the computational efficiency of the

model will be improved. In this analysis, the curve of V̂ versus ĝ for the GHS model will be modified

below a transition point (V̂ ∗, ĝ∗) on the curve with ĝ∗ ≤ ĝmin. The modification will be linear, such

that a finite value of V̂ is obtained when ĝ = 0. The gradient α = dV̂ /dĝ of the linear portion may

be set equal to the tangent to the curve at the transition point, given by

α = φ(1− 2υ1)ĝ−2υ1 + (1− φ)(1− 2υ2)ĝ−2υ2 , (1)

so that the dV̂ /dĝ is continuous. Alternatively, for simplicity, α = 0 could be used.

The equation of the modified portion of the GHS model is described by the line

V̂ = α (ĝ − ĝ∗) + V̂ ∗, which gives σ̂ = α + (1/ĝ)
(
V̂ ∗ − αĝ∗

)
.

The modified GHS (MGHS) cross-section is then given by

σ̂ =





α + (1/ĝ)
(
V̂ ∗ − αĝ∗

)
when ĝ ≤ ĝ∗,

φĝ−2υ1 + (1− φ)ĝ−2υ2 when ĝ > ĝ∗.
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Two possibilities for the MGHS model are illustrated in Fig. 2; ĝ∗ = ĝmin with α = 0, and ĝ∗ = ĝmin/2

with α set to the gradient as given in Eq. 1. Only the first possibility is examined here.

For the MGHS model it may shown, after considerable calculus and algebraic manipulation, that

Ω(T̂ ) = (2σr/3)
[
A(T̂ ) + B(T̂ )

]
,

where

A(T̂ ) = α [I7(0)− I7(a)] + T̂−
1
2

(
V̂ ∗ − αĝ∗

)
[I6(0)− I6(a)] , (2)

2B(T̂ ) = φT̂−υ1Γ
(
4− υ1, a

2
)

+ (1− φ)T̂−υ2Γ
(
4− υ2, a

2
)
,

In(a) =
∫ ∞

a

γn exp
(
γ2

)
dγ, where n is an integer and

Γ(j, β) =
∫ ∞

β

xj−1 exp(−x)dx.

Γ(j, β) is the incomplete gamma function, and a = ĝ∗/T̂
1
2 . Algebraic expressions for the In terms that

appear in Eq. 2 are given in the Appendix. The MGHS viscosity is plotted in Fig. 1. At T ≈ 100 K,

µMGHS/µGHS ≈ 1.025. This ratio decreases rapidly at higher T . At very low T , it is apparent that

the MGHS model gives a viscosity closer to the recommendations of Kestin et al. [6] than the GHS

model. This suggests that the assumption of a finite collision probability at g = 0 is more realistic

than the infinite value given by the GHS model.

The collision frequency of the MGHS model νMGHS = n〈σg〉 may be evaluated, again with con-

siderable calculus and algebraic manipulation, and is given by

νMGHS = 4nVr

(
T̂ /π

) 1
2

[
C(T̂ ) + D(T̂ )

]
,

where C and D are similar in form to A and B respectively, and are given by

C(T̂ ) = α [I3(0)− I3(a)] + T̂−
1
2

(
V̂ ∗ − αĝ∗

)
[I2(a)− I2(a)] and (3)

2D(T̂ ) = φT̂−υ1Γ
(
2− υ1, a

2
)

+ (1− φ)T̂−υ2Γ
(
2− υ2, a

2
)
.

The ratio νMGHS/νCom versus T̂ is shown in Fig. 3. It is apparent that νMGHS is considerably lower

than νGHS for T̂ . 1.
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Computational efficiency

A zero-dimensional MATLAB code was used to examine the computational efficiency of the GHS

and MGHS models under conditions of thermal equilibrium. DSMC simulations were performed

for a set of 1000 monatomic simulator molecules for a time of 100τCom. The simulation time step

∆t = 0.4τCom. Temperatures of 100 K, 300 K and 3000 K were simulated. At each time step,

the number of collision pairs tested, and the actual number of collisions performed were recorded.

Simulations were also performed using the VHS model, with υ = 0.22. The number of collisions

per simulator particle per time τCom is independent of temperature for the VHS model. A single

simulation was therefore sufficient to establish the computational efficiency of the VHS model.

The mean results from the second half of each simulation are summarised in Table 1. The results

are subject to statistical scatter, but clearly demonstrate the poor computational efficiency of the

GHS model, even at high temperatures. This poor computational efficiency is due to both the higher

collision frequency, and the very high number of collision pairs that are tested at each time step, due

to very large values of Vmax. The MGHS model requires no more than 15% extra computation time

than the VHS model.

In DSMC simulations, as more collision pairs are tested, the probability of finding a larger value

of Vmax increases. Consider a fraction of possible collision pairs δ. The expected maximum value of

collision speed g after 1/δ collision tests is given by the mean value of g greater than g′, where a

fraction δ of all possible collision pairs have g > g′. For an equilibrium distribution of g, the expected

maximum value of g, denoted 〈gmax〉, is given by

〈gmax〉
(4RT )

1
2

= 〈γmax〉 =
1
δ

∫ ∞

γ′
γfγdγ =

2
π

1
2 δ

exp
(−γ′2

) (
1 + γ′2

)
,

where γ′ = g′/(4RT )
1
2 satisfies the expression

δ =
∫ ∞

γ′
fγdγ = 1− erf γ′ +

(
2/π

1
2

)
γ′ exp

(−γ′2
)
.

Similarly, the expected minimum value of g after a total of 1/δ collision tests, denoted 〈gmin〉, is given

by
〈gmin〉

(4RT )
1
2

= 〈γmin〉 =
1

1− δ

∫ γ′

0

γfγdγ =
2

π
1
2 (1− δ)

[
1− exp

(−γ′2
) (

1 + γ′2
)]

.

For the GHS model, 〈gmin〉 will provide the expected value of Vmax, denoted 〈Vmax〉, whereas for the

MGHS and VHS models, 〈gmax〉 will give 〈Vmax〉. For T = 300 K, 〈Vmax〉 versus 1/δ is shown for each

model in Fig. 4. For the GHS model, it is clear that 〈Vmax〉 will increase more rapidly than for either

the MGHS or VHS models. The increase in 〈Vmax〉 for the MGHS model is slightly lower than for
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the VHS model. It is interesting to note that 〈Vmax〉 will increase indefinitely during a simulation for

all models, giving a decrease in computational efficiency over time if nothing is done to limit 〈Vmax〉.

Conclusions

The generalised hard sphere model can be modified to limit the collision probability at low collision

speeds. Compared to the original model, the modification gives significant improvements in compu-

tational efficiency, both because the theoretical collision rate is lower, and because the number of

possible collision partners that must be tested is dramatically reduced. The modified model requires

no more than 15% extra computational time than the variable hard sphere model. For a temperature

of about 100 K, the difference in viscosity between the modified version of the model and the original

model is less than 2.5%, and this difference decreases rapidly as temperature increases. The modi-

fied model gives a viscosity in better agreement with recommended viscosity values than the original

model for argon. This modified generalised hard sphere model can therefore be used in DSMC simu-

lations where, in order to obtain realistic viscosity behaviour, it is necessary to model the attractive

portion of the intermolecular potential.
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Appendix

The In terms that appear in Eqs. 2 and 3 have been evaluated from the general equations given by

Bird [1], and are

I2(a) =
π

1
2

4
erfc a +

a exp
(−a2

)

2
,

I3(a) =
exp

(−a2
)

2
(
1 + a2

)
,

I6(a) =
15π

1
2

16
erfc a + a exp

(−a2
) (

15
8

+
5
4
a2 +

1
2
a4

)
and

I7(a) =
exp

(−a2
)

2
(
6 + 6a2 + 3a4 + a6

)
.
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Model T Tests Collisions Acceptance Theoretical CPU time
performed performed rate collisions relative to
per τCom per τCom per τCom VHS CPU

(K) per simulator per simulator per simulator time
GHS 100 1022 2.009 0.197% 1.997 83.5
GHS 300 247.4 1.547 0.625% 1.547 24.3
GHS 3000 17.76 1.200 6.76% 1.182 2.29
MGHS 100 1.804 1.551 86.0% 1.556 1.14
MGHS 300 2.232 1.430 64.0% 1.435 1.15
MGHS 3000 2.487 1.160 46.7% 1.180 1.02
VHS – 2.390 1.201 50.3% 1.190 1

Table 1: Summary of collision rates and computational efficiency.
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