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Abstract

In most chemistry methods developed for the direct simulation Monte Carlo (DSMC)
technique, chemical reactions are computed as an integral part of the collision simulation
routine. In the macroscopic chemistry method developed here, the simulation of collisions
and reactions are decoupled in that reactions are computed independently, after the collision
routine. The number of reaction events to perform in each cell is calculated using the
macroscopic reaction rates k* and equilibrium constant K*, with local macroscopic flow
conditions. The macroscopic method is developed for the symmetrical diatomic dissociating
gas. For each dissociation event, a single diatomic simulator particle is selected with a
probability based on its internal energy, and is replaced by two atomic particles. For each
recombination event, two atomic particles are selected at random, and are replaced by a single
diatomic particle. The dissociation energy is accounted for by adjusting the translational
thermal energies of all particles in the cell. The macroscopic method gives density profiles
in agreement with experimental data for the chemical relaxation region downstream of a
strong shock in nitrogen. In the non-equilibrium regions within the shock, and along the
stagnation streamline of a blunt cylinder in rarefied flow, the macroscopic method gives
results in excellent agreement with those obtained using the most common conventional
DSMC chemistry method in which reactions are calculated during the collision routine. The
number of particles per computational cell has a minimal effect on the results provided by the
macroscopic method. Unlike most DSMC chemistry methods, the macroscopic method is not
limited to simple forms of k* and K*. Any forms may be used, and these may be any function
of the macroscopic conditions. This is demonstrated by using a two-temperature rate model,
and a form of K* with a number density dependence. With the two-temperature model, the
macroscopic method gives densities in the post-shock chemical relaxation region that also
agree with the experimental data. For a form of K* with a number density dependence,
the macroscopic method can accurately reproduce chemical recombination behavior. In a
primarily dissociative flow, the number density dependence of K* has very little effect on the
flow. The macroscopic method requires slightly less computing time than the most common
DSMC chemistry method.



I. INTRODUCTION

The direct simulation Monte Carlo (DSMC) method, described in detail by Bird,! is
the most common computational technique for modeling rarefied gas flows of engineer-
ing interest. The DSMC method simulates macroscopic gas behavior by considering
the motions and collisions of a set of simulator particles, representative of the real
gas molecules, within a spatial array of computational cells. The fundamental DSMC
simplification is that the simulation of molecular motions and intermolecular collisions
are decoupled, in that they are performed independently after a decoupling interval
that is small compared to the mean collision time.

In high enthalpy flows, intermolecular collisions can be sufficiently energetic to
cause chemical reactions. In general, the probability of a chemical reaction occurring
between colliding reactant molecules is a function of the relative translational energy,
internal states and relative orientation of the colliding molecules. In most DSMC
simulations of reacting flow, the reaction probability P is calculated at each collision
between reactants where the total collision energy exceeds some threshold criterion.
When Py exceeds a random fraction Ry, which is uniformly distributed in the range
[0,1], the reactant species are changed to product species. The energy modes of the
product particles are sampled from appropriate energy distributions. The modeling
of chemical reactions is therefore an integral part of the collision routine. Here, such
procedures will be termed conventional DSMC chemistry methods.

The formulation of an accurate function for Pr depends on a detailed knowledge
of the real state-dependent reaction cross-sections. For the diatomic species typi-
cally of interest in hypersonic aerodynamics, knowledge of these cross-sections is very
limited.?? Consequently, conventional DSMC chemistry methods usually rely on an
expression for Py that reproduces a suitable macroscopic rate equation in the equilib-
rium limit. The form of Py is selected to plausibly approximate the real gas behavior,
within the limitations of mathematical tractability and numerical stability. Several
conventional DSMC chemistry methods have been devised, and a recent summary is
given by Boyd.* As shown by Boyd et al.,> Py calculated using some conventional
DSMC chemistry methods can differ significantly from Py calculated using more ac-
curate quasi-classical trajectory calculations.

Boyd et al.® used a chemistry method that excluded trace species from the DSMC
simulations, and modeled each trace species concentration by solving a macroscopic
diffusion equation with a chemical source term. These separate calculations used local
flow conditions, obtained from the DSMC simulation of the dominant chemical species.
This method of simulating the chemistry of trace species is an example of a decoupled
chemistry method, where chemical reactions are performed as a separate step in the
DSMC simulation, independent of the collision routine.

Bartel et al.” and Bartel® considered a more general decoupled chemistry scheme
for simulating the reactions of all species in a DSMC computation. The method was
applied to simulate reactions in a five species chlorine plasma system, where trace
species dominate the system behavior of interest. First, the number of reaction events
that should take place in a cell during a time step was calculated, based on the lo-
cal macroscopic flow conditions and macroscopic reaction rates. A chemistry routine
was then invoked after the collision routine to perform the required number of reac-



tions. For each reaction event, participating reactant particles were selected from those
within the cell. In Ref. 8, participating particles were selected with either equal proba-
bilities, or according to a method analogous to the no time-counter (NTC) technique®
for selecting collision partners. In this decoupled method, reactions were performed
between reactant particles only when the total energy of the selected reactant particles
exceeded a reaction energy threshold. It appears that this decoupled method attempts
to correctly model the reacting gas behavior at a microscopic level.

In this paper, a simplified decoupled chemistry method is developed for the sym-
metrical diatomic dissociating gas, and applied to nitrogen. The number of reaction
events required in a cell is calculated as for the decoupled method of Refs. 7 and
8. However, in contrast to the method of Ref. 8, no attempt is made to select colli-
sion partners when simulating reaction events. For each dissociation event, a single
diatomic particle is selected from the cell, and is replaced by two atomic particles;
the single diatomic particle is selected with a probability based on its internal energy
€int = €rot + €vib- FOr each recombination event, two atomic particles are selected at
random from the cell, and combined into a single diatomic particle. The dissociation
energy is accounted for by adjusting the thermal velocities of all particles in the cell.
The method considers net reactions only, so no chemistry is performed where chemical
equilibrium exists. Clearly, this approach is phenomenological in nature; it does not
attempt to model the detailed physics of the reaction processes. Here, this method is
called the macroscopic method. The flexibility of the macroscopic method is demon-
strated by using different forms of the reaction rate equations, and a number density
dependent form of the equilibrium constant which cannot be modeled using current
conventional DSMC chemistry methods.

II. THE VARIABLE HARD SPHERE MODEL

This study uses the variable hard sphere (VHS) molecular model, which has a
variable total collision cross-section with hard sphere scattering. This combination
was first used in the DSMC method by Borgnakke and Larsen,!® and later by Erofeev
and Perepukhov!! and Bird.!? The total collision cross-section for a collision between
VHS molecules of species A and B is

o =0 (9:/9)"", (1)

where g is the relative speed and o,, g, and v are VHS constants characteristic of the
A + B collision. Here, the reference speed g, is defined by

g = (2KT, /)7, 2)

where m = mamg/(ma + mg) is the reduced mass of collision partners A and B and
T, is a reference temperature.

From the Chapman-Enskog viscosity theory,'® Hirschfelder et al. [Eq. (8.2-20), p.
529]'* define a quantity
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where Q&B)(T) is a mean collision cross-section for collisions between molecules of

species A and B. The quantity puag may be regarded as the viscosity of a hypothetical
gas in which all molecules have mass 2/m and interact according to an intermolecular
potential curve characteristic of A + B collisions.'* For VHS molecules, it can be

shown that v
QG (T) = or—r(‘lﬁ_ ?) (%) ,
where ) )
o 15§ Mg(,ﬁ v) “
is the VHS reference cross-section and u, = uap(7;) is the reference viscosity at the

1
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reference temperature 7,. From Eqgs. (2) to (4), puas = u(T/T,)2"". The reference
temperature 7T,, reference viscosity u, and v for each collision pair are obtained from
viscosity data puap = pu(T'), and should be selected to match the real viscosity of the
gas being simulated over the temperature range of interest.

III. THE MACROSCOPIC CHEMISTRY METHOD
The macroscopic chemistry method is developed here for the symmetrical diatomic

dissociating gas, in which the two reactions

Reaction 1: As+A = A+A+A and (5)
Reaction 2: Ay +Ay, = A+A+A,

occur. These reactions have forward rate constants k;” and k; and reverse rate con-
stants k; and k5 respectively. The equilibrium constant K™ is

K* =k Jki = k3 ks .
The dissociation fraction « is the mass fraction of the atomic species, given by
o= :cA/(:cA + 2.Z‘A2),

where z; denotes the mole fraction of species i.

In the macroscopic chemistry method, the number of reaction events required in a
cell during a simulation time step At is calculated from the macroscopic reaction rate.
For the symmetrical diatomic gas, the rate of change of « is given by'?

. l-o P 2p
= [k ks —(l—a-— 2. 6
«@ (1‘”2 2 >MA( T MK (©)
Here, M, is the molar mass of the atomic species in kg/kmol. In a cell containing

Np and Ny, particles of A and A, respectively, the change in N, during time At,
denoted AN,,, can be estimated using

ANa, = (Na/2 + Na,)(a = ). (7)

Here, a and o' are the dissociation fractions at times ¢ and t + At respectively. The
macroscopic method simulates the net number of reaction events only; for net disso-
ciation ANy, < 0, for net recombination AN,, > 0 and where chemical equilibrium
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exists, no reaction events will be computed. Where the time scale of reactions 1/¢ is
much greater than the typical collision interval and hence the decoupling step At, a
simple Euler method can be used to estimate o/, giving

ANA2 ~ —(NA/2+NA2)C¥At (8)

In the case of net dissociation, for each dissociation event, a single diatomic particle
is selected from those within the cell, with a probability based on the internal energy.
Diatomic particles are selected randomly, and are accepted for dissociation if

€int/ (€int) max > Bf>

where (€ing) ., 1S the maximum instantaneous internal energy in the cell. This selection
method is adopted to approximate the physics of the dissociation process, because
diatomic particles with high internal energies are more likely to dissociate.

It is assumed that all internal energy in the dissociating diatomic particle is man-
ifested as relative translational energy e, of the two atomic particles after the disso-
ciation event. The center-of-mass velocity v,, of the new atomic particles equals that
of the original diatomic particle, and the direction of g is random. The change in
chemical potential energy AE,, is

AFE¢, = —ANy,¢,, 9)

where ¢, is the dissociation energy per event. To enforce energy conservation, this
change in chemical potential energy is obtained from the translational component of
the thermal energy of all particles in the cell, as discussed below.

For net recombination, two atomic particles are selected from the cell for each
recombination event. The selection of recombining atoms is random and independent
of energy. It is assumed that the relative translational energy e, of the two atomic
particles is manifested as the internal energy ¢;,; of the new diatomic particle. The
vibrational energy level is set to that closest to €p/2 such that ey, < €ng, and the
rotational energy is € = €, — €yin. The velocity of the new diatomic particle equals
v, of the original atomic particles. The change in chemical potential energy AE,;, is
again given by Eq. (9).

To account for the change in chemical potential energy AE,, caused by net dis-
sociation or net recombination, the thermal velocities of all the N, particles within
the cell are multiplied by a factor ¥, such that the adjusted i velocity component of
particle p is
= \I/(’Ui’p — Tji) =+ v;. (10)

Yip

Here, v; is the instantaneous mean ¢ velocity of all particles in the cell. The factor ¥

is given by
1
AE, \°
U= (1 - N7P> . (11)
Zp:pl Etr,p

For net dissociation ¥ < 1, and for net recombination ¥ > 1. Here, €, is the
translational thermal energy of particle p before the reaction events, given by

Etrp = €xp T €yp T €2 p.
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The translational thermal energy of velocity component ¢ for particle p is

€ip = My [(Vp)i — ﬁi]Q /2.

More elaborate energy redistribution schemes may be envisaged, where internal ener-
gies could be adjusted in addition to the translational thermal energies. However, there
appears to be minimal benefit in adopting such schemes given the apparent accuracy
of the current approximate method.

In a very small number of dissociation cases, the amount of translational thermal
energy available in a cell may be smaller than AE.,. In such cases, the thermal
velocities of all particles in the cell are set to zero using ¥ = 0, and the excess
translational thermal energy in the cell is stored. This excess energy is then removed
from the thermal velocities of the particles in the cell at the next time step, by adjusting
the velocities according to Egs. (10) and (11).

The macroscopic chemistry method considers net changes in composition only. At
equilibrium, there is no net change in composition, so for the macroscopic chemistry
method, detailed balance is not an issue. In this respect, the macroscopic method is
similar to continuum flow solvers.

A. Calculating the number of reaction events required

From Egs. (6) and (7), the number of reaction events required in each cell at
each time step depends on local values of p, a, o, Na, Na,, the forward reaction
rates k*, and the equilibrium constant K*. Usually, k™ and K* are functions of the
equilibrium temperature 7. Under non-equilibrium conditions, 7" may be replaced by
an appropriate kinetic temperature 7}, which could be, for example, the overall kinetic
temperature Ti;, as given in the Appendix.

The quantities p, «, o, Na, Na, and T} are calculated using flowfield samples.
Here, time-weighted rather than instantaneous averages have been used, because the
required mean number of reaction events, given by

A]VA2 = ANA? (<,0>, <C¥>, <a/l>’ <NA>’ <NA2>’ <Tk>)

differs from the mean instantaneous value of
<ANA2 (107 «, ala NA’ NAQ’ Tk)>

Also, using time-weighted rather than instantaneous samples is more computationally
efficient, because flowfield conditions must be calculated less often. The time-weighted
averages are obtained from several flowfield samples, where the sampling interval is
set to a time greater than that required for the flow to traverse a typical cell width.
In each computational cell, a cumulative total of AN,, is maintained, denoted
> ANy,. At every time step, this cumulative total is updated according to ANa,
calculated from Eq. (7), using stored time-weighted average values of «, o/, Ny and
Na,. When |AN,,| > 0.5, sufficient reaction events are performed to bring > ANy,
back into the range [—0.5,0.5]. In cases where there are insufficient particles in the
cell to perform the required number of reaction events, all of the available particles
are consumed, and Y ANy, is adjusted according to the number of events actually

6



performed. The limits of +0.5 were selected so that the mean Y AN,, in each cell
during the simulation would be close to zero.

This macroscopic chemistry method is executed after the collision routine. Conse-
quently, there is no need adjust the particle cross-reference arrays during the collision
routine to add new atomic particles created by dissociation events and remove atomic
particles for recombination events.

B. Extension to complex gas mixtures

In principle, the macroscopic chemistry method may be extended to a complex
gas mixture with many species and many reactions. For example, the commonly used
net reactions in high temperature air, if ionization and charge exchange reactions are
ignored, are the dissociation reactions

0O,=0+0, No=N+N and NO=N+O0O,
and the exchange reactions
N+O;,=NO+0O and N;+0O =NO+N.

The change in concentration of each species due to each net reaction may be deter-
mined by solving an appropriate set of ordinary differential equations. In a manner
similar to the symmetrical diatomic dissociating gas considered above, the number of
reaction events can then be calculated for each net reaction. Methods used to select
reacting particles and distribute energy after reactions may differ for each net reaction.

The decoupled approach to DSMC chemistry modeling was applied to a complex
reacting chlorine plasma system by Bartel et al.” and Bartel.® The required number
of reaction events for each net reaction was calculated from the macroscopic reaction
rate using a simple Euler method.

C. Strong shock in dissociating nitrogen

This section presents results obtained using the macroscopic chemistry method to
model the structure of a strong shock in nitrogen. The highest enthalpy flow conditions
of Kewley and Hornung,'6 as reported by Bird,'” were simulated. These flow conditions
are shown in Table 1. The unbounded simple harmonic oscillator (SHO) vibration
model with characteristic vibrational temperature O, = 3390 K was used.'® Note
that the downstream equilibrium conditions in Table 1 differ slightly from those of
Ref. 17. The forward rate constants k™ were of the Arrhenius form

K+ = CH(kT/e)"" expl—ea/(KT)), (12)
and the equilibrium constant K* was of the common form
K* = C*(kT/ea)" exp[—eq/(KT)]. (13)
For reactions 1 and 2 in nitrogen, Kewley and Hornung'® give
Ef = 1.97 x 10" (T/0,) *° exp (—O4/T) m®/(kmol-s) (14)
and ki = 4.71 x 10* (T/0,) *°exp (—04/T) m?*/(kmol-s) (15)
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respectively, where the characteristic dissociation temperature ©4 = €,/k = 113200
K. Ref. 15 gives
K* =1.8 x 10*exp (=0,4/T) kmol/m?.

The overall kinetic temperature Ty, as given by Eq. (A4) in the Appendix, was used
to calculate k™ and K*. It is important to emphasize that the macroscopic chemistry
method is not restricted to these forms of k* and K*. Any equations could be used,
which could be any function of the macroscopic flow conditions. Different forms are
investigated in §V and §VI.

To determine high temperature VHS parameters for Ny + Ny, N + N and Ny +
N collisions, the empirical expressions for Q%;) given by Gupta et al.'® were used to
obtain pap(7’) using Eq. (3). Using 7, = 1000 K and p, = pag(7;), values of v were
selected such that the power law viscosity p = u,(T/T,)"/?>T gave good agreement
with pap(7T). For 1000 K < T < 20000 K, the difference between this power law
viscosity and pap was less than 5%. The resulting VHS parameters are shown in
Table 2.

The DSMC shock calculations were performed using a code that can simulate nor-
mal shocks in gas mixtures with various DSMC chemistry models. Rotational and
vibrational energy exchange was performed using the Borgnakke-Larsen method.!”
Following Haas et al.,'® multiple relaxation events were prohibited. The methodology
for selecting relaxing particles was that of Gimelshein et al.?° For simplicity, constant
relaxation probabilities of 0.30 and 0.01 for rotation and vibration respectively were
used. The code employed the downstream piston boundary condition,! and particles
entering the simulation domain across the upstream boundary were generated accord-
ing to the method of Ref. 21. The simulations contained 4000 equally sized cells,
each with six subcells. The ratio of cell size to the VHS mean free path Ayus! in the
equilibrium upstream and downstream flows was 0.095 and 0.654 respectively. Final
sample sizes were ~10° particles per cell. The code used At = 0.67, where 75 was the
downstream mean free time for VHS molecules.! A simple Euler method was used to
calculate o, so ANy, was given by Eq. (8). The sampling interval was 7At. Ten flow
samples were used to calculate the required time averaged flow conditions in each cell.
Therefore & and ANy, were recalculated only once in every 70 time steps, which is a
minimal computational overhead.

The resulting normalized profiles of p, a and the various kinetic temperatures
within the shock are shown in Fig. 1. The methods used to calculate the kinetic
temperatures Ti,, Trot, Tyvin and Ty, are given in the Appendix. Fig. 1 also includes
profiles obtained using a conventional DSMC chemistry method, as discussed in §IV.
The normalized density p is given by

p=(p—p1)/ (" —p1),

and likewise for Ttr, Trot, Tvib, Tkin and &. The origin of the z-axis has been set to the
point at which p/p; = p2/p1 = 5.93, which corresponds to p = 0.359. The z-coordinate
has been normalized using the nominal mean free path in the upstream gas, given by

AL =241/ (p161)

where ¢ = [8kT}/ (WmNQ)]% . From Cole and Wakeham,?? the upstream nitrogen vis-
cosity at T; = 300 K is p; = 17.90 pPa-s, giving A\; = 1.0052 x 1075 m. Note that this
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real viscosity is higher than the power law viscosity of 15.46 uPa-s obtained using the
data in Table 2. The difference arises because the VHS parameters in Table 2 were
selected to match the real nitrogen viscosity at high temperature. The extent of the
simulation domain was approximately 266);.

Downstream profiles of p, & and T are shown in Fig. 2. For computational
efficiency, the simulation domain was truncated where the results from the macroscopic
method were within ~1% of the equilibrium conditions. For clarity, a 51-point moving
average filter was used to smooth the profiles, with a reduced number of points near
the downstream boundary.

Experimental values of p/p; downstream of the shock were obtained by Kewley
and Hornung,'® as reported by Bird.!'” These values have been presented in Fig. 3
with the density profiles from Figs. 1 and 2. A first approximation of the errors in the
experimental results has been obtained as follows. Firstly, from Ref. 16, the error in
the number of fringe shifts F' is approximately +0.1. By comparing p/p; versus x/A,
as given by Ref. 17 with F' versus x/A; from Ref. 16, it can be shown that

p— p1 ~ 0.047F

for the flow under consideration. Therefore, the error bounds of p/p; are approximately

p+ 0.1 x0.047
P1

= p/p1 £ 0.63.

Secondly, for the 7.31 km/s condition, the mean error in z/); is approximately +8.
These approximate error bounds have been included in Fig. 3, and show that the
DSMC solution obtained using the macroscopic chemistry method gives acceptable
agreement with the experimental results.

D. Rarefied dissociating nitrogen flow over a blunt cylinder

In this section, the rarefied hypersonic flow of dissociating nitrogen over a blunt
circular cylinder is considered. An axisymmetric DSMC code was used, with the sim-
ulation geometry illustrated in Fig. 4. The code used cell based weighting factors,
without subcells. The freestream conditions were uy, = 10* m/s, po, = 1.84 x 107°
kg/m? and T,, = 195 K, which approximate superorbital entry conditions at an al-
titude of 95 km. These freestream conditions give a frozen Mach number M of 35.1
and A\yms = 2.563 x 1072 m. The cylinder radius r, was 0.5 m, with a hot wall at
Twan = 1000 K with diffuse reflection and full thermal accommodation. The Knudsen
number Kn = 0.026 and continuum breakdown parameter ~ KnM = 0.9 both show
that the flow was rarefied,?® and that large departures from equilibrium conditions are
expected. The VHS gas model, reaction rates and equilibrium constant were the same
as those used in §IIIC.

The flowfield was computed without chemistry, and also with the macroscopic
chemistry method. The initial number of particles /Ny in these calculations was 4 x 10°.
Steady state was assumed to have been attained after 25 transits of the simulation
domain by u.,. This was confirmed by checking that the number of particles of each
species had reach a constant value, within statistical scatter.



The stagnation streamline is approximated by the row of cells adjacent to the
flow axis. The resulting normalized profiles of p, T}y, Trot, Tvib, Tkin and « along this
stagnation streamline are shown in Figs. 5 to 10. The density profile in Fig. 5 shows
a continuous compression up to the cylinder face, which is characteristic of rarefied
flows with Kn > 0.01.2* Fig. 11 shows profiles of the radial, circumferential and
axial translational temperatures, denoted 7,, Ty and T, respectively. These profiles,
together with the kinetic temperature profiles in Figs. 6 to 8 demonstrate that there
was considerable thermal non-equilibrium within the flowfield.

Momentum fluxes and heat fluxes ) to the cylinder face were recorded during
each simulation, and the resulting drag coefficients C'p and heat transfer coefficients
Crn = 2Q/ (pou’,) are shown in Table 3. The mean total number of particles in
each simulation at steady state, denoted NV, is also included in Table 3. As expected,
chemistry has a negligible effect on Cp, but decreases C'y significantly.

The effects of having few particles in each cell were examined by reducing N, to
10°. The total number of flowfield samples was then increased to obtain a final sample
size similar to that for the original case. The resulting profiles are also included in
Figs. 5 to 10, and indicate that the number particles per cell has a small effect on the
flowfield. For these simulations, N;, Cp and Cp are included in Table 3.

This blunt cylinder problem is computationally demanding for the DSMC method
due to the high densities and hence small cell sizes required near the cylinder face. The
ratio of the cell dimensions in the r and z directions, denoted Ar and Az respectively,
to the local Ayys calculated using T;, was determined. For all cases, Az/Ayys > 0.5
and Ar/Ayys > 0.5 only in a small zone within ~0.06r, of the face. Also, in a smaller
zone within ~0.02r, of the face, the ratio At/7yus > 0.5, where 7yys is the VHS mean
collision time! calculated using T;,. The effects introduced by these inaccuracies will
be limited to the small zone near the cylinder face.

IV. COMPARISON WITH A CONVENTIONAL CHEM-
ISTRY METHOD

The above results were compared to those obtained using a conventional DSMC
chemistry method. Dissociation reactions were modeled using the method introduced
by Bird?® for bimolecular reactions, which have the general form

A + B — products.

The method assumes that reaction probability, denoted P, to indicate the forward
direction, depends only on the total collision energy €., with no biasing towards any
particular energy mode, and is therefore referred to as the total collision energy (TCE)
method.?® Tt is the most common chemistry method used in DSMC calculations.?*
The TCE method attempts to recover the Arrhenius rate of Eq. (12) at thermal
equilibrium. In the TCE method, the reaction probability Pj is calculated for each
collision where €. exceeds the activation energy €,. The form of Py is?

Ph=38(1—¢€i/e.) (€)€a —1)¥
for €. > ¢, and zero for ¢, < ¢,. For mathematical tractability,

xi=C+1-v
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is used, where

C = (Crot,A + Cvib,A + Crot,B + Cvib,B) /2 (16)

Bird® gives the method for finding expressions for 8 and x,. Using the g, and o,
expressions of Egs. (1) and (2), these non-dimensional parameters are

1
Ctf, (T,\?" T 1 1
: ( ) ol and X2=77+_§+U,

b= NE 9_01 F(x1 +x2+1)

where CT and 7™ are the forward rate parameters for the bimolecular reaction, f;
is a symmetry factor that is two for like particles and unity otherwise and N =
6.022 x 10?° /kmol is Avogadro’s number. = is a convenient constant with units of
m?/s given by
15 1 kT,
22-0v)B3-v) p’
which includes the VHS parameters 7}, u, and v of the collision pair.

Eq. (16) shows that ¢ depends on (4, of each particle participating in the collision.
In a DSMC simulation, the effective number of vibrational degrees of freedom (;p
can be assumed to be a constant value characteristic of the flowfield temperature.?”
Alternatively, using Egs. (A2) and (A3), ¢ can be calculated for each cell using the
local vibrational kinetic temperature 7y;,, which is calculated using a time-weighted
average value of €,,. This alternative method has been used here.

(1]

Recombination reactions are often ignored in DSMC calculations of reacting flow,
because they are relatively infrequent in the low density flows usually simulated. How-
ever, in normal shock simulations, recombination reactions must be modeled to achieve
an equilibrium state downstream of the shock. Recombination reactions are termolec-
ular, described by

A+B+M— AB+ M,

where M is a third body. Since the DSMC method considers only binary collisions,
methods for modeling such reactions cannot use the TCE method as formulated for
bimolecular reactions. Here, the DSMC recombination model of Boyd?® has been used.
The recombination probability has the form

Pp = (nam/ny) (66/611)“ )

where ny; is the time-weighted average third body number density. This probability is
applied when collisions occur between atomic particles. The form of P, was selected
for mathematical tractability. In a symmetrical diatomic gas,

m = p(1 + @)/ (2ma) .

Because P depends on ¢, this recombination method may be regarded as an exten-
sion to the TCE method to account for termolecular reactions. The procedure for
calculating the parameters n, and & is given by Boyd,?® and the results are

Oq

1t 2 <Tr)%_” D(7/2 4 (/2 - v)

1
— d =t —p*— = (1
T2+ —vtr M4 m=n—m—g+o {17)

n, C*N2?2E
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Note that C* and 5t apply to the forward dissociation reaction for the recombination
reaction being considered, and that the VHS parameters =, 7, and v refer to collisions
between atomic particles. This recombination model is limited in that k* and K*
must be in the form of Egs. (12) and (13) respectively. In Eq. (17), ¢ is the mean
number of degrees of freedom in the third body. For atomic particles, ( = 0 and for
diatomic particles, ¢ = 2+ (i, where (y, is calculated from the mean cell vibrational
temperature.

For the flow conditions in Table 1, shock profiles were computed using the TCE
chemistry method, and are shown in Figs. 1 to 3. The simulation conditions were
the same as those in §IIIC. It is clear that the results obtained using the macroscopic
method are generally in excellent agreement with those obtained using the conventional
TCE chemistry method, even within the shock where there is significant thermal non-
equilibrium.

For the TCE results, downstream profiles of p, & and Tiin are shown in Fig. 2.
For clarity, smoothing was applied as described in §IIIC, and only one in about 48
points are shown. Fig. 2 shows that the TCE method does not recover the calculated
downstream equilibrium conditions. This is because the TCE method gives rates that
can differ significantly from the expected Arrhenius rates. These differences arise be-
cause the TCE parameters (3, x2, n, and k are derived by assuming that all molecular
energy modes are distributed according to continuous distributions, whereas, in com-
mon with the code used here, most DSMC codes employ quantum vibration models.
Consequently, the actual collision energy distributions occurring in the simulations
differ from the assumed continuous distributions, and the rates differ slightly from
the expected Arrhenius rates. Gimelshein et al.?? examined this issue for bimolecular
reactions, and proposed procedures to account for the use of discrete distributions and
recover the Arrhenius rates at equilibrium.

A further effect contributing to the different equilibrium state observed for the
TCE method arises because the recombination probability P, can greatly exceed unity
where ny is high and €, is low. In such cases, a single recombination event is performed,
resulting in a recombination rate lower than that expected from the Arrhenius rates.
This introduces a number density dependence into the recombination rate achieved
using the TCE method.

Using the TCE method, the flowfield for the blunt cylinder discussed in §IIID was
calculated. Stagnation streamline profiles are included in Figs. 5 to 10, and Cp and
Cpy are shown in Table 3. There is excellent agreement between the macroscopic and
TCE results along the stagnation streamline. The effects of having few particles per
cell were also examined for the TCE method, and were found to be negligible.

For the shock simulation results compared in Figs. 1 to 3, the execution time on a
single processor for the macroscopic method was 85.5% of that required for the con-
ventional TCE method. The relative CPU times shown in Table 3 also indicate that
the macroscopic method is slightly more efficient than the TCE method. It is impor-
tant to note that the codes used here have not been optimized extensively, and that
some improvements in computational efficiency may be possible for both the macro-
scopic and TCE methods. Some of the improvement in computational efficiency for
the macroscopic method can be attributed to the fact that no reactions are computed
in equilibrium regions where & = 0.

12



V. MACROSCOPIC CHEMISTRY METHOD WITH A DIF-
FERENT FORM OF RATE EQUATION

The macroscopic chemistry method is not limited to the use of the Arrhenius
equation for the forward rate k*. Other forms of k™ can be used, and these may be
any empirical or theoretical function of the macroscopic flow conditions. For example,
the two-temperature rate model of Park,®® which is employed in continuum studies to
account for vibrational favoring effects in dissociation reactions, can be used for k™ in
reactions 1 and 2. In this model, a geometrically averaged temperature 7,, given by

Ta = ﬂi—l—rotTvligs’
is calculated, where T}, is the kinetic temperature of translation and rotation. For
a symmetrical diatomic gas, Tiirot i given by Eq. (A4) with (eyip) = 0 and (i = 0.
The average temperature T, replaces the thermodynamic temperature 7" in Eq. (12)
to give the two-temperature rate k. For reactions 1 and 2 in nitrogen, Park®® gives

ki, = 246 x 10" (T,/04) "% exp (=04/T,) m*/(kmol-s) (18)
and kf, = 5.74x10" (T,/0,4)""exp (—04/T,) m®/(kmol-s) (19)

respectively. Typically, the constant s ranges from 0.5 to 0.7. Lower values of s
correspond to higher degrees of vibrational favoring.

The shock conditions of Table 1 were simulated using the two-temperature rates
of Egs. (18) and (19) with s = 0.5. To implement the two-temperature model in the
macroscopic chemistry method, the rates k7, and k, replace k{" and & respectively
when calculating the dissociation rate in Eq. (6). Following Park,?® an approximate
averaged equilibrium constant K} = K*(7,) may be used, which replaces K* in Eq.
(6). The resulting density profile, shown in Fig. 12, gives acceptable agreement with
the experimental data of Kewley and Hornung.!®

Also shown in Fig. 12 is the profile obtained using the rates of Egs. (18) and (19)
with the overall kinetic temperature 7};, instead of the averaged temperature 7,. These
single temperature rates have the Arrhenius form of Eq. (12) and give a density profile
in relatively poor agreement with the experimental data. The discrepancy is because
the single temperature rates exclude the effects of vibrational favoring provided by
the two-temperature rates, resulting in a high initial dissociation rate. This indicates
that the macroscopic chemistry method can successfully incorporate the effects of
vibrational favoring in dissociation reactions, by using an appropriate two-temperature
rate model.

If expressions for k= are available rather than K*, Eq. (6) can be written

o

= deloor - (5)7]

YE = akf + (1 — @)ky /2.

where

Therefore, calculation of & does not rely on an expression for the equilibrium constant.
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VI. MACROSCOPIC CHEMISTRY METHOD WITH A DIF-
FERENT FORM OF EQUILIBRIUM CONSTANT

The macroscopic chemistry method is not limited to the use of the common form
of the equilibrium constant K* as given by Eq. (13). Other forms of K* could be used,
and these could be any function of the macroscopic flow conditions. Gupta et al.'®
gives the equilibrium constant K¢ in the form

5

In[Kg(T,n)] =3 A; [In (104/T)]° (20)

=0

where A; = A;(n). This adds a total number density n dependence into the equilibrium
constant, which contrasts with the common expression of Eq. (13) where K* depends
on T alone. This effect is due to the number density dependence of the electronic
partition function of the atomic species.'®30 Park®® gives a form of the equilibrium
constant similar to K, and as noted by Boyd and Gokgen,?! such complex forms of K*
are not mathematically convenient for use in conventional DSMC chemistry models.
Gupta et al. give A; values for 10 /m® < n < 10%°/m3. For a given value of n, the
values of 4; in Eq. (20) may be estimated by linear interpolation against Inn.

Fig. 13 illustrates the effect of n on the equilibrium constant. The difference be-
tween K* and K¢ is most significant at high temperature and low density, which
are the conditions of interest in high enthalpy rarefied gas dynamics. Because the
equilibrium constant effectively controls the recombination rate, and because the re-
combination rate is low, the effects due to different forms of the equilibrium constant
in such flows will be small.

To demonstrate the effects of K¢, on the structure of a strong shock, a simulation
was performed for the conditions in Table 1 using the macroscopic chemistry method
with K¢, rather than K*. The equilibrium downstream conditions differed slightly
from those in Table 1 and were (p*/py, T* /11, o) = (14.43, 26.23, 0.479). The resulting
profiles are shown in Fig. 14. In this representation, Tkin, Tvib and & are plotted versus
p, which accentuates differences between the results where density gradients are high.
All results have been normalized using the downstream equilibrium conditions for K*
from Table 1. The results obtained using K¢ are almost identical to those obtained
using K*. It appears that in flows where the chemistry is primarily dissociative,
the number density dependence of the equilibrium constant has little effect on the
macroscopic flowfield.

Under low temperature, high density conditions where significant recombination
is occurring, the number density dependence of the equilibrium constant will have a
significant effect on the recombination rate, and will therefore influence the flowfield.
Such effects have been assessed by studying the constant volume recombination of pure
atomic nitrogen at a density of 0.2 kg/m? and initial temperature of 1000 K. Similar
conditions may exist in the stagnation region of hypersonic flow over a blunt body with
a cold wall. The calculated equilibrium conditions are 7™ = 9164 K and o* = 0.778
using K*, and T* = 9520 K and o* = 0.768 using K¢,. Initial and equilibrium number
densities are 8.60 x 10**/m?® and approximately 7.6 x 10**/m® respectively. Exact
solutions of the relaxation behavior of 7' and « versus time were calculated using a
fourth-order Runge-Kutta method with a time step ~ |2x10*x &|™", and the relaxation
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profiles are shown in Figs. 15 and 16 respectively. Different forms of the equilibrium
constant give markedly different relaxation profiles.

This relaxation case was simulated with the DSMC method, using the macroscopic
chemistry method with both K* and K¢,, and the TCE method. The VHS gas model
was the same as that used in §IIIC, and the forward reaction rates were those of
Egs. (14) and (15). The results are shown in Figs. 15 and 16, and demonstrate that
the macroscopic chemistry method can accurately simulate the relaxation behavior
for forms of the equilibrium constant that differ from the common form of Eq. (13).
When using K¢ in the macroscopic chemistry method, a Runge-Kutta method was
required to estimate o/ for the first time step. For the simulations performed using the
TCE method, the relaxation profiles and equilibrium conditions deviate significantly
from the expected behavior. This deviation is a result of the difference between the
Arrhenius rates and the actual rates given by the TCE method, as discussed in §IV.

VII. DISCUSSION

The macroscopic chemistry method offers significant advantages over conventional
DSMC chemistry methods, which are usually limited to assuming the VHS collision
model, a particular form of Py that attempts to reproduce the Arrhenius rates at ther-
mal equilibrium, and a particular form of the equilibrium constant. The macroscopic
method can employ reaction rates and an equilibrium constant that are any func-
tion of the local flow conditions. Furthermore, the macroscopic method allows simple
chemistry modeling with any collision model, including realistic potentials such as the
Lennard-Jones potential, for which there currently appears to be no means of modeling
chemistry in the DSMC method.

The macroscopic chemistry method may offer advantages over conventional DSMC
chemistry methods in hybrid codes that employ both continuum solvers and the DSMC
method. When using conventional DSMC chemistry methods, such hybrid codes are
usually limited to the Arrhenius rate models and the common form of the equilibrium
constant. As the macroscopic chemistry method can use any forms of these, this
limitation is removed.

In this study, those diatomic particles with higher internal energies are more likely
to undergo dissociation. Although this approximates the physics of the dissociation
process, it might be regarded as being quite arbitrary, and is a disadvantage of the
macroscopic chemistry method. The chemistry procedures of Refs. 7 and 8 offer a
means of implementing the decoupled chemistry approach whilst allowing individual
reaction events to be modeled with any desired level of physical detail.

The macroscopic chemistry method differs from the conventional approach to
DSMC simulations in that macroscopic information derived from all energy modes
in a cell, rather than information from individual collisions as they occur, is used to
determine the reaction rate. The use of macroscopic conditions in the DSMC method
has been used previously. For example, methods for establishing the simulator colli-
sion rate in each cell have always used an estimate of the local macroscopic number
density. Bird! suggested that the rotational and vibrational relaxation numbers could
be taken as functions of the cell temperatures. Boyd and Stark3? proposed a form of
P, for a conventional DSMC chemistry method that included a reaction rate that was
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a function of the local macroscopic cell temperature. Also, methods have been pro-
posed whereby any viscosity law p = u(7") can be incorporated in the DSMC method
by using simple collision models that depend on cell kinetic temperatures.3334

At one level, the justification for these approaches is that they can be shown to
work efficiently, suggesting that the fine details of collision processes are relatively
unimportant. At another level it can be argued that these methods are safer because
they do not rely on the physical details of the microscopic collision processes, which are
generally poorly known. They use the available macroscopic near-equilibrium infor-
mation about reaction rates, rotational and vibrational relaxation rates and viscosity
laws, but make no detailed assumptions about how the gas behaves far from equilib-
rium, or how individual collisions proceed. The same near-equilibrium information is
usually used to formulate conventional DSMC collision models, with the hope that
the models will behave realistically in non-equilibrium situations. Clearly, it would be
good if the models did behave realistically far from equilibrium, but often there is no
way of knowing if this is so.

VIII. CONCLUSIONS

The macroscopic chemistry method developed here adopts a decoupled approach
to chemistry modeling in which collision and reaction processes are simulated sepa-
rately. The number of reaction events that must be performed in each cell at each time
step is determined from rate equations and an equilibrium constant calculated using
macroscopic flow conditions. In the test cases examined, this macroscopic method
gives results in agreement with those obtained using the conventional TCE chemistry
method, even where considerable thermal non-equilibrium conditions exist. Further-
more, the macroscopic method gives results in agreement with experimental data for
the density downstream of a strong shock in nitrogen. The number of particles per
computational cell appears to have a minimal effect on the results provided by the
macroscopic method.

Any rate equations and equilibrium constant can be used with the macroscopic
method, and these may be any function of the macroscopic conditions. The use of two-
temperature rates showed that the macroscopic method can successfully incorporate
the effects of vibrational favoring of the dissociation reactions. When the equilibrium
constant includes a number density dependence, the resulting constant volume chem-
ical relaxation behavior is accurately modeled using the macroscopic method. Such
number density dependence cannot be modeled using current conventional DSMC
chemistry methods. For the flow downstream of a strong shock, it appears that the
number density dependence of the equilibrium constant has little effect on the flow
conditions. The accuracy and flexibility of the macroscopic chemistry method show
that it has significant potential for the modeling of rarefied reacting flow with the
DSMC method.
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Appendix: KINETIC TEMPERATURES

For a particular species with molecular mass m, the mean translational thermal
energy of velocity component 7, denoted (¢;), for the velocity distribution f(v;) is

(€:) - / (v; — )2 f (v;) dv;. (A1)

The integral in Eq. (A1) is the variance of the distribution f(v;). For a sample of N
random variates X, the best estimate of the variance of the parent population is®

1 N N 2
(X)=———|NY X7-— X;
S()N(N—l) Z? ZJ
j=1 j=1
Therefore, the best estimate of (¢;) using a sample of N particles is
<€i> = mSz(vZ)/Q

For a gas mixture containing N, species,
-1

<€z> = (§N3<€i>s> X (ZPN5> 5

where N, is the number of particles of species s. The mean translational thermal
energy of all species in a gas mixture is

(ewr) = (€z) + (&) + (€2).
For velocity component ¢, the translational kinetic temperature 7; is given by
T, = 2(e;) [k
and the overall translational kinetic temperature 73, is
Tw= T, +T,+T,)/3.

In the usual case where rotation is fully excited, diatomic molecules have two rotational
degrees of freedom and the rotational kinetic temperature 7} is given by

Trot = <6r0t)A2/k-

For the unbounded SHO vibration model, the effective number of vibrational degrees
of freedom (,j, is

20yib/Tvib
vib — y A2
it exp (Oyin/Tyin) — 1 (A2)
where the vibrational kinetic temperature 7, is given by

Ovib
Tvi = . A3
b ln (k@vib/<€vib>Ag + 1) ( )

The overall kinetic temperature Ty, is given by
Tn = 2<€> _ g v <€tr> + <€rot> + <€vib> ‘ (A4)

k() k 3+ (246w (1-a)/(1+a)

Note that (€1) = [Z;VZI (€rot) ] /N is the mean rotational energy of all particles.

Similarly, (e,p) is the mean vibrational energy of all particles.
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TABLES

Pt =
Uy =
T =
M, =
(075} =

7.48 x 1073
7.31

300

20.71

0

kg/m3
km/s
K

p2/ p1
T2 /Tl
p*/p1
T* /T,
Of*

9.93
84.34
14.72
25.62
0.486

Table 1: Flow conditions of Kewley and Hornung,'® as reported by Bird.!” The sub-
script 1 refers to upstream conditions, the subscript 2 refers to Rankine-Hugoniot
conditions downstream of a vibrationally and chemically frozen shock, and the super-
script * refers to equilibrium downstream conditions calculated using K* from Eq.

(13).
Collision Ly v oy Jr
partners (uPa-s) (m?) (m/s)
Ny + Ny 38.61 0.26  4.991 x 107*° 1089
N+ N 44.75 0.28 3.118 x 10719 1541
Ny +N 36.87 0.29 4.421 x 10719 1334

Table 2: High temperature viscosity and VHS parameters for Ny and N. In all cases,

T, = 1000 K was used.

Chemistry Ny/10® N, /10° Ch Cu Relative
method CPU time
No chemistry 400 790.4 1.772 0.288 0.99
Macroscopic 400 870.0 1.772 0.234 1
Macroscopic 100 217.7 1.772 0.232 1.15
TCE 400 868.4 1.772 0.232 1.09
TCE 100 216.9 1.772 0.231 1.23

Table 3: Summary of blunt cylinder simulation results. Ny refers to the initial number
of particles, and N; refers to the mean number of particles during sampling at steady

state.
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Figure 1: Normalized profiles of p, Ti;, Trot, Tvib, Tkin and « within a Mach 20.71
shock in nitrogen, calculated using the macroscopic and conventional TCE chemistry

methods.
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Figure 2: Normalized profiles of p, Ty, and a downstream of a Mach 20.71 shock
in nitrogen. Some smoothing has been applied for clarity, as detailed in §IIIC. The
profiles calculated using the macroscopic method approach the calculated equilibrium
conditions, whereas those for the conventional TCE method do not.
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Figure 3: Profiles of density ratio p/p; downstream of a Mach 20.71 shock in nitrogen,
calculated using the macroscopic and conventional TCE chemistry methods. Exper-
imental data points of Kewley and Hornung,'® as reported by Bird,'” are included,
with approximate error bars.
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Figure 4: Geometry of simulation domain for blunt cylinder calculations with p/pu
contours. Region ¢ is indicated by R;. Each region had a regular rectangular grid. In
R;, the numbers of cells in the (z,7) directions were (100, 150). In Ry, R3 and Ry, the
numbers of cells were (100, 500), (70,200) and (120, 60) respectively.
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Figure 5: Profiles of p/p. along the stagnation streamline for the blunt cylinder
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Figure 6: Profiles of T}, /Ty along the stagnation streamline for the blunt cylinder
simulations. The key is given in Fig. 5.
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Figure 7: Profiles of T, /T along the stagnation streamline for the blunt cylinder
simulations. The key is given in Fig. 5.
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Figure 8: Profiles of Ty, /T, along the stagnation streamline for the blunt cylinder
simulations. The key is given in Fig. 5.
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Figure 9: Profiles of Ty, /T along the stagnation streamline for the blunt cylinder
simulations. The key is given in Fig. 5.
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Figure 10: Profiles of o along the stagnation streamline for the blunt cylinder simula-
tions. The key is given in Fig. 5.
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Figure 11: Profiles of translational temperatures along the stagnation streamline for
the blunt cylinder simulations using the macroscopic chemistry method with Ny =
4 x 10°.
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Figure 12: Profile of density ratio p/p; downstream of a Mach 20.71 shock in nitrogen,
calculated using the macroscopic chemistry method with the two-temperature rate
model of Park.3® The profile obtained using the single temperature rates with Tin,
which have the Arrhenius form, instead of the two-temperature model is also shown.
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Figure 13: Ratio of the number density dependent equilibrium constant K¢ of Gupta
et al.'® to the common form of the equilibrium constant K*, for dissociating nitrogen.

28



Normalized quantity

0.0 0.2 0.4 0.6 0.8 1.0
Normalized p

Figure 14: Normalized profiles of Ti;, and « versus normalized p for a Mach 20.71
shock in nitrogen, calculated using the macroscopic chemistry method. Results are
shown for calculations using the common form of the equilibrium constant K* from
Eq. (13), and the form given by Gupta et al'® from Eq. (20), denoted K¢, which
includes a number density dependence.
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Figure 15: Temperature profiles for constant volume recombination of atomic nitrogen
with different forms of the equilibrium constant. “Exact” Runge-Kutta continuum
solutions are compared to DSMC solutions obtained using both the macroscopic and
TCE chemistry methods.
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Figure 16: Profiles of dissociation fraction « for the constant volume recombination
of atomic nitrogen with different forms of the equilibrium constant. “Exact” Runge-
Kutta continuum solutions are compared to DSMC solutions obtained using both the
macroscopic and TCE chemistry methods.
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