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Abstract— Optical Flow, the extraction of motion from a
sequence of images or a video stream, has been extensively
researched since the late 1970s, but has been applied to the
solution of few practical problems. To date, the main applications
have been within fields such as robotics, motion compensation in
video, and 3D reconstruction.

In this paper we present the initial stages of a project to extract
valuable information on the size and structure of the lungs using
only the visual information provided by a bronchoscope during
a typical procedure. The initial implementation provides a real-
time estimation of the motion of the bronchoscope through the
patients airway, as well as a simple means for the estimation of
the cross sectional area of the airway.

I. I NTRODUCTION

T HE ability to produce accurate, repeatable measurements
of the human body is becoming increasingly important

in many fields. Some systems, such as modern Magnetic
Resonance Imaging (MRI) and Computed Tomography (CT),
can provide this information to the operator, without any
additional requirements.

However, for a number of other imaging systems, and
particularly those that rely on direct visualization by an
operator, such as endoscopy (e.g., bronchoscopy, gastroscopy,
colonoscopy, laproscopy), obtaining even rough measurement
estimates can be a lengthy or complicated process. Making a
rough guess of the extent of an injury or a patient’s progress
over time may in fact be of little use, due to inter- and
intra-observer variations. And, even if a procedure is archived
by some means for future reference, there is often no other
way to accurately compare two procedures over time or
between patients than by eye. Simple image manipulation and
comparison tools may give a numerical answer, but the vast
number of variables in procedures such as these could make
any results obtained using such methods invalid.

Our objective in this work is to develop a system that takes
the guesswork out of obtaining measurements from any of
the endoscopy procedures, and providing a fast, accurate and
repeatable method to obtain and compare this information. The
initial focus with this work is bronchoscopy, the visualization
of the larger regions of the lower respiratory tract. The goal
of this work is to provide real-time information during a
procedure to physicians, giving the distance traveled by the

bronchoscope within the airway, an estimation of the size of
the trachea or bronchi, and a rotation guide to help with the
positioning and operation of the bronchoscope itself.

The primary measurement principle behind the majority of
this system is known as Optical Flow, which is one of several
method for extracting the apparent motion in a sequence of
images. There are in turn many different implementations
of optical flow, with different strengths and trade-offs. The
flow field is then provided to a second algorithm, which is
used to estimate the three-dimensional motion of the camera
relative to the scene, known as Egomotion. The output of
this algorithm provides not only a measure of how far the
bronchoscope has traveled, but also provides the 3D rotation
of the bronchoscope’s camera relative to a specified starting
location. Estimating the area of the airway is a relatively
simple procedure involving basic ellipse fitting, but more
advanced methods can give far more accurate results without
significant overhead.

Many of these principles and algorithms have already been
presented by a number of authors, particularly in the field of
robotics, where the recovery of motion from video data can
produce results that are far more accurate than more traditional
methods such as wheel odometers, due to factors such as
wheel slippage from loose or slippery terrain. However, many
of these practical applications optimize these techniques and
algorithms used to suit the typical conditions that the robot
may face. Because of this, much of the findings of other
researchers may not be directly applicable to this particular
application.

The tools this system provides can all be accomplished
using the tremendous processing power available in today’s
personal computers. By harnessing existing media frameworks
and signal processing libraries provided by the operating
system of choice and third party developers, such as Microsoft
DirectShow and Intel’s OpenCV, and the advanced processing
features of modern CPUs or video hardware, an efficient and
accurate algorithm can be implemented to provide relevant
information in real-time, in an easily understandable format,
without compromising the safety of the patient, and still
provide the original image data for the operator.

The remainder of this paper is organized as follows: The
challenges this project must overcome are discussed in section
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2. Section 3 describes the principle of optical flow, and how
the current algorithm is implemented. Section 4 shows the
robust motion recovery used to extract the distance traveled
and rotation of the bronchoscope’s head as it travels through
the body. Section 5 details the method used for the estimation
of the cross-sectional area of the currently visible section of
airway. Section 6 details some of the future work to be derived
from this, and section 7 concludes.

II. CHALLENGES

Most procedures today make use of the flexible broncho-
scope, developed in the 1960’s by Professor Shigeto Ikeda
[1], a Japanese bronchologist. Most modern systems now use
videobronchoscopes, which incorporate a CCD sensor at the
distal tip of the bronchoscope, replacing the fragile fibreoptic
system used in earlier devices. A video processing unit pro-
vides high resolution colour images for the physician and other
staff through a monitor, which can also be archived to tape
with a VCR or video camera. A typical videobronchoscope is
shown in figure 1.

Fig. 1. An Olympus flexible videobronchoscope [2].

The respiratory system is not easily accessible due to its
anatomy, and that of the surrounding structures. The trachea
and bronchi require the use of a narrow, flexible bronchoscope,
which limits the size of the CCD image sensor, and hence the
image quality and light sensitivity. Motion of the bronchoscope
is further hindered by the upper respiratory system such as
the pharynx, which contains structures designed to protect the
lungs from damage.

Since the final goal of this application is to be of use during
clinical procedures, it would be beneficial to use systems that
can be easily used by a respiratory physician or assistant
during a procedure. To keep costs low, it should be able to
run on commodity hardware, so that upgrades and replacement
parts are easily available.

III. O PTICAL FLOW

Optical Flow is one of a number of methods which have
been proposed to extract the apparent motion within an image
sequence, but is one of the most extensively studied. Recov-
ering image motion has many other important applications,
in fields such as video compression, where it is an essential
component of the MPEG encoding process [3].

The origins of optical flow have been attributed to the
work of Fennema and Thompson [4], though the term was

first defined by Horn and Schunck [5] as the distribution of
apparent velocities of movement of brightness patterns within
an image, based upon the apparent motion of regions of similar
intensity over an image sequence. In its simplest form, this can
be expressed as

dI

dt
=

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t

To recover the optical flow from a sequence of images,
the vector field of this motion,−→o (x, y) must be recovered
from the intensity fieldI(x, y, t). Since the equation has only
one constraint, a second constraint must be used to obtain a
solution. This is typically one of:
• Use a higher-order derivative using additional assump-

tions about the motion
• Impose a global smoothness constraint to the velocity

field, or
• Impose a parametric model to the local velocity field,

such as constant or linear variation.
The latter two approaches are the most common. The smooth-
ness constraint assumes that neighboring groups of pixels will
all have the same motion, except when one region within an
image is occluded by another object in the scene, causing
a discontinuity within the flow field. Applying a velocity
constraint is used to simplify the calculation, by reducing the
search space to the motion range specified by the model.

Three classes of algorithms have been developed, depending
on the method used to recover the optical flow from an image
sequence. Block matching methods divide the images into a
grid of smaller blocks, then attempt to compare these blocks in
two frames using some form of matching metric, such as cross-
correlation. While this is the simplest approach, it can break
down in low-contrast and smooth images. Phase Correlation
methods make use of the 2D spatial Fourier domain to directly
estimate pixel motion, and it is used in a number of video
encoding systems. Gradient methods use a multidimensional
image gradient operator to generate image gradient maps,
which are used to directly evaluate the optical flow. However,
this method works for small displacements in the image.

The method chosen initially was the Pyramidal Lucas-
Kanade method [6], an extension of the gradient approach,
which uses a multi-resolution approach to give a sparse
optical flow for a series of feature points detected within the
image, and effectively overcomes the displacement issues with
traditional gradient approach. A series of images of different
resolutions is generated from the original image, each time
decreasing the resolution in both thex and y coordinates by
a factor of two. This process effectively anti-aliases the image
using a filter kernel of5× 5 pixels.

The next phase of the algorithm is to track the motion
between consecutive frames within the image,I and J . The
results of the optical flow calculations of the lowest resolution
images,Im andJm, are used as estimates for the calculation
of the optical flow within the next images in the pyramid,
Im−1 and Jm−1. This process continues until the optical
flow has been calculated for the original image sequences.
This algorithm is greatly beneficial in many applications,
since it allows large feature movements to be tracked through
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the image sequence, but still retains sub-pixel accuracy for
each feature’s coordinates. By using a pyramid depth of 4,
the maximum length of a motion vector can be 31 times
larger than is possible to detect with a standard Lucas-Kanade
implementation. Unfortunately, due to the filtering of the
image, smaller or less prominent features may not be easily
detected, since the lowest resolution image, used for the initial
feature detection, may simply not include enough detail of the
original image.

The optical flow algorithm used here utilizes the original
Lucas and Kanade method [7], which was originally defined
as the image matching error function

ε =
∑

x∈<
(F (xA + h)− αG(x) + β)2

wherex is an n-dimensional row vector, such as the pixel
coordinates(x, y), F and G correspond to the functions of
the two imagesI(x, y) and J(x, y), the parametersA and
h give the linear transformations of the first image, such as
scaling, rotation or shearing, andα andβ are the parameters
for contrast and brightness adjustment. This can be simplified
by simply constrainingα andβ.

To further enhance the algorithm, the standard Lucas-
Kanade method has been implemented iteratively, which is
used to obtain successive approximations of the pixel displace-
ment d, with each approximation effectively translating the
second imageJ by the initial guess determined in the previous
stage of the algorithm, such that

Jk(x, y) = J(x + dk−1
x , y + dk−1

y )

The residual pixel motion vector̄ηk = [ηk
x, ηk

x] is then given
by

εk(η̄k) =
px+wx∑

x=px−wx

py+wy∑
y=py−wy

(I(x, y)−Jk(x+dk−1
x , y+dk−1

y )

This can also be presented in the matrix form

η̄k = G−1b̄k (1)

where b̄k is a 2 × 1 vector known as the image mismatch
vector, which is defined as

¯
b̄k =

px+wx∑
x=px−wx

py+wy∑
y=py−wy

[
δIk(x, y)Ix(x, y)
δIk(x, y)Iy(x, y)

]

the matrixG is given by

¯
G =

px+wx∑
x=px−wx

py+wy∑
y=py−wy

[
I2
x IxIy

IxIy I2
y

]

with Ix and Iy as the image derivatives in thex and y
directions, and thekthimage derivativeδIk is defined for all
points within the search window surrounding a pixelp as

δIk(x, y) = I(x, y)− Jk(x, y)

Since the two image derivatives can be precalculated at
the start of each iteration, the matrix G remains constant
throughout the entire operation, and onlyb̄k need be calculated

at each stage. However, this will only hold true ifG is an
invertible matrix, which occurs only when the image has
gradients in both thex andy directions.

Once η̄k has been calculated, the new pixel displacement
guess is given by

dk = dk−1 + η̄k

This process will continue until either̄ηk is less than a
specified threshold, or the maximum number of iterations has
taken place. The final solution for the optical flow vector is
then given as

dL =
K∑

k=1

η̄k

Feature detection is an important aspect of this optical flow
system, and the speed, accuracy and robustness of a chosen
algorithm can greatly affect the final results. Since feature
detection and tracking has been implemented as part of the
optical flow method presented here, it is utilized to initially
select feature points as well.

The G matrix is first calculated for each pixel within the
image, and the smallest eigenvalueλm for each pixel is stored.
The maximum eigenvalueλmax is found, and allλm within
a threshold (normally 5 or 10%) ofλmax are retained. Of
this subset of pixels, those which are the local maximum of a
3×3 window are said to be “good to track”, and form the set
of features detected by the algorithm. Unlike the optical flow
algorithm, which must track specific points through the image,
a 3 × 3 window is sufficient for the initial location of good
features. Once the initial features have been located, a sub-
pixel corner detector is used to further refine these coordinates.

The algorithm presented here produces a real-time esti-
mation of the optical flow occurring in images, and on its
own, runs with only minimal delay on a reasonably modern
machine. The implementation has not been hand-optimized,
but compiler optimizations do make some use of available
vector processing units on the underlying hardware. Further
use of this hardware, as well as additional code optimizations,
will no doubt improve the performance of this algorithm.
However, the validity of using point features within this
specific application remains questionable, and the low-contrast
environment of the airway further compounds the problem,
which can be seen in figure 2.

IV. M OTION RECOVERY

Once the optical flow has been recovered from a pair of
images, we would like to know how the camera has moved
relative to the scene. Just as with optical flow, there are nu-
merous methods for this given a set of point correspondences,
with different benefits and weaknesses. Optical flow gives a
2D motion field, so some method must be used to determine
what kind of motion the vector field represents, in order to
extract the 3D motion and rotation of the camera relative to
the scene [8].

The use of projective geometry, which considers 2D points
as a triplet x = (x1, x2, x3) and a 3D point asx =
(x1, x2, x3, x4), the so-called homogeneous coordinates [9],
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Fig. 2. A sample frame showing matches and displacement vectors between
consecutive frames from a Bronchoscopy procedure. The poor contrast within
the image highlights the difficulties with tracking features in this environment.

helps to simplify much of the mathematics for this process
into matrix forms. An image is then considered as a 2D
projection of the 3D scene. Transforming between image and
world coordinates is performed using a camera’s projection
matrix P , which contains information on the camera’s intrin-
sic parameters (focal length, aspect ratio and principal axis
projection point) and its extrinsic parameters (orientation and
location in world coordinates). A point in spaceX can then
be transformed to image coordinatesx by

x = PX

The goal of motion recovery is to estimate the Essential
Matrix, E, which encapsulates all of the geometric information
about the camera’s position and orientation between two
frames of the image sequence. By using a camera’s calibration
matrix C (a component of the projection matrixP ), it is
possible to obtain the Fundamental MatrixF , which should
yield accurate measurements in the units specified for the
calibration, and can be determined by

F = C−T EC−1

Motion recovery algorithms are classified into two general
categories [10], robust and non-robust, based on the treatment
of data which does not fit the model. In non-robust methods,
these incorrect correspondences, known as outliers, the error is
assumed to be small enough to be averaged over the entire data
set. These algorithms deal well with synthetic data with no
outliers, and can produce fast and accurate results. However,

these break down in the presence of gross outliers, as is
the case in all real-world situations, and if outliers can be
identified before being incorporated into the model, they can
be discarded or compensated for in order to obtain a more
accurate answer.

Least-squares optimization is the most commonly used due
to it’s speed and stability, but outliers can cause distortion in
the final outcome so much that it becomes an arbitrary fit of
the data. In order to discard outliers from their calculations,
an algorithm must first identify these outliers. One of the
most common algorithms used for this process is known
as RANSAC, the Random Sample Consensus [11]. Unlike
other methods, which use all available data points to try and
determine outliers within the data, RANSAC uses the smallest
possible set of data needed to solve the given hypothesis,
using points chosen at random. This estimation is repeated
on a variety of sets of data, until the probability that one of
these sets contains data with only inliers. The best solution
to the problem is then the estimation that maximizes the
number of points whose residuals are below a given threshold.
RANSAC then assigns a penalty to outliers, and no change
to inliers. Other algorithms, such as Torr’s MLESAC and
MAPSAC [12] overcome some of the issues associated with
this scoring system. Despite this, RANSAC was chosen for this
implementation due to its relative simplicity and widespread
use in other vision applications, and it can easily be replaced
with another method at a later stage, if required.

RANSAC is a general purpose algorithm, which can be
used on a number of problems. In order to use it for a
particular application, a specific hypothesis test algorithm must
be chosen. For egomotion estimation, a range of equations
exist which solve this “relative pose” problem, which can
estimate the position of the camera from as few as 3 point
correspondances, though they typically use between 5 and 9
points for more accuracy [13]. These algorithms require the
construction of a1× 9 constraint matrix̃q, such that

q̃ = [q1q
′
1 q2q

′
1 q3q

′
1 q1q

′
2 q2q

′
2 q3q

′
2 q3q

′
1 q3q

′
2 q3q

′
3]

where q and q′ represent the homogeneous coordinates
(q1, q2, q3) from of a single feature in both images. The
constraint matrices for each point are concatenated together
to form ann× 9 matrix q̂, such that̂qT Ẽ = 0. From this, the
single value decomposition is used to extract the fundamental
matrix from the column of the right singular matrix that
corresponds to the smallest singular value

[U,D, V ] = svd(q̂)
F = V [:, 0]

Once the estimate has been obtained, a second single value
decomposition is taken of the estimate to ensure the result has
a rank of 2

[U,D, V ] = svd(F )

F = U




D11 0 0
0 D22 0
0 0 0


 V T
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The resulting matrixF is then the resultant Fundamental
Matrix, and contains both the translation and rotation infor-
mation for the camera motion between the two frames. We
can extract the translation vectort as

t ∼ tu =
[

u13 u23 u33

]T

and the rotation matrixR by either

Ra = UDV T

Rb = UDT V T

whereD is given by

D =




0 1 0
−1 0 0
0 0 1




Since any combination ofR and t are a solution for the
problem, due to the epipolar constraints, additional constraints
are needed in order to produce the correct result. If we assume
that the first camera projection matrixF0 is [I|0], and thatt is
of unit length, then only four possible solutions to this problem
exist

Pa = [Ra|tu], Pb = [Ra| − tu], Pc = [Rb|tu], Pd = [Rb| − tu]

Only one of these combinations represents the true camera
motion between the two consecutive frames. Of the remaining
3 options, one represents the twisted pair, obtained by rotating
on the views 180 degrees around the baseline, the line joining
the center of the camera in the two frames. The other two
are reflections of the true configuration and twisted pair.
Transforming between the twisted pair and the correction
solution can be obtained using the transform

Ht =
[

I 0
−2v13 − 2v23 − 2v33 1

]

The reflected views can also be transformed using

Hr =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




To choose the correct orientation, it is first assumed that the
scene lies in front of the camera, then the correct orientation
is selected based upon the triangulation of a single point.

V. A REA ESTIMATION

Knowing the circumference or area of the airway is of
obvious benefit for respiratory physicians and surgeons, who
need to be able to gauge the effectiveness of treatment, and the
extent of disorders within the airway. The current procedure
requires the procedure to be recorded to a miniDV tape using
a standard digital video camera. This is then reviewed after a
procedure using a firewire-enabled computer, and the desired
frames are selected from the tape and imported into ImageJ.
Here, a simple manual threshold operation is used to segment
an approximate region of the airway from the image, which is
then flood-filled, and the number of pixels within this region

are counted. However, differences in lighting and other factors
can cause this operation to fail, requiring additional tweaking
in order to obtain a suitable answer. Additionally, the region
of interest must lie within the center of the bronchoscope’s
field of view, otherwise the substantial non-linear distortion
will interfere with the simple scaling factor used to translate
pixel count into an approximate area. In all, the process of
selecting, segmenting and measuring the size of the airway can
take over an hour per image, and cannot guarantee accurate
or repeatable results.

All these tasks can be completed in real-time by a computer,
with no impact on performance of the visual odometer whatso-
ever. As with the manual method, a simple binary threshold is
used to obtain an approximation for the airway directly ahead
of the CCD sensor on the bronchoscope. However, rather than
attempting to count the number of pixels directly, each region
isolated by the threshold is fit to an ellipse, which should give
a good approximation for a healthy airway. Then, by simply
selecting the largest ellipse within the image and calculating
its area, the result can be achieved in real time during a
procedure. This can easily be extended to use an alternative
method the segmentation of the airway, and multiple areas
could be calculated simultaneously, for cases such as when
both the trachea and one or more bronchi are visible in a
single image.

In tests with just a standard digital video camera and
a simulated airway, such as in figure 3, the system can
easily identify the airway, and by adjusting the threshold, the
distance down the airway from the camera can be increased
or decreased accordingly. Tests with real footage from a
bronchoscopy produce show that the system can detect and
measure the airway when the image is suitable, but fails under
certain conditions. A more robust method is still required in
order to overcome some issues such as contrast variations
and unusually shaped airways or views. In cases where the
camera is not orthogonal to the cross section, some means for
adjusting the area may be required. This may not be possible
with the currently calculated data, and will be the focus of
future work in this area.

VI. FUTURE WORK

There is still a great deal that needs to become accomplished
before this system can be used in a clinical setting.

Currently, the distortion produced by the wide-angled lens
of the bronchoscope is not accounted for, and all calculations
are based on the raw, distorted images. A means of correcting
this distortion, using additional pre-processing by the com-
puter, will be needed in order to obtain accurate measurement
data from the system.

A specific comparison of a number of the various techniques
proposed for both optical flow and camera motion estimation
is needed, in order to identify which methods are better suited
for this particular environment. Challenges such as the low
contrast environment, rapid and jerky movements, and the
obstruction of the lens by fluids, tissue or other objects, will
all impact the performance of the system. The identification of
features to track within the image may also require additional
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Fig. 3. A sample frame showing the real-time airway area measurement
within a simulated airway. In this case, the threshold has been set to find the
circumference a short distance in front of the camera’s lens.

work, as features lying on contours are not easily tracked
by the system, since the identified feature points tend to
float along these contours as they move through the image
sequence. Additional constraints applied to the regions of the
image used to extract motion from, such as the edges of the
image, since the wide angle lens shows more the walls of
the trachea and bronchi than would otherwise be visible, may
assist with the tracking of features within the image sequence.
There is also a number of areas where hardware optimizations
can take place, utilizing both CPU and video card hardware
to increase the performance of this system.

The airway area measurement will also need to be improved.
While the current system provides a fast approximation that
may be correct in normal circumstances, it will perform poorly
in cases where there are deformities or other abnormalities
within the airway. By applying a fast, robust contour-finding
system, a more accurate representation of the airway’s true
shape can be obtained, and allow them to be compared
between procedures. It also relies on image correction pro-
vided by the calibration system in order to produce accurate
measurements.

VII. SUMMARY

A system for the measurement of distance, rotation and
airway size was presented. By using optical flow, there is no
need for the modification of medical equipment, nor the need
for external markers or other measuring equipment. While still
in early stages of development, the work to date suggests
that this method is a valid approach to the problem, and with
further work, we believe that the system will be of great value
in a number of different procedures.
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