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SUMMARY: In this paper we present an analysis of the results of a study into wholesale
(spot) electricity price forecasting utilising Neural Networks (NNs) and Support Vector Machines
(SVM). Frequent regulatory changes in electricity markets and the quickly evolving market
participant pricing (bidding) strategies cause efficient retraining to be crucial in maintaining the
accuracy of electricity price forecasting models. The efficiency of NN and SVM retraining for
price forecasting was evaluated using Australian National Electricity Market (NEM), New South
Wales regional data over the period from September 1998 to December 1998. The analysis of the
results showed that SVMs with one unique solution, produce more consistent forecasting accuracies
and so require less time to optimally train than NNs which can result in a solution at any of a
large number of local minima. The SVM and NN forecasting accuracies were found to be very
similar.

1 INTRODUCTION

Electrical Supply Industries (ESI) worldwide have
been restructured (deregulated) with the intention
of introducing levels of competition into energy
generation and retail energy sales. In any market with
levels of competition information of future market
conditions can contribute to giving market
participants a competitive advantage over their
fellow market participants.

In an open auction style electricity market such as
the Australian National Electricity Market (NEM) a
large volume of information on historical and
predicted market conditions is available to all market
participants. As the ESI is a large volume industry
all market participants can gain advantages from
even a small increase in the accuracy of their
electricity price forecasts.

However, maintaining optimum accuracy of a
forecasting model requires time and expertise, both
of which can be costly to an electricity market
participant. In this study we construct, train and test
price forecasting models based on Neural Networks

(NNs) and Support Vector Machines (SVMs) with the
goal of investigating the following two hypotheses:

1. SVM require less time and expertise to train than
NN.

2. SVM optimise threshold functions and so should
consistently preform forecasting more
accurately than NN.

Electricity markets have frequent regulatory changes
and quickly evolving market participant pricing
strategies so the accuracy of electricity price
forecasting models will degrade significantly faster
than the accuracy of demand forecasts over time.
Keeping price forecasting models with good accuracy
requires more frequent and complete retraining than
demand forecasting models required. Thus the ease
and automation of retraining is crucial in developing
a price forecasting tool useful to electricity market
participants.

In showing  our investigation of these hypotheses
this paper has been set out to:

1. Introduce the need for this research.
2. Give a brief introduction to NN for electricity

demand and price forecasting.  NN theory is not
discussed in this paper as there are many texts
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available on NN theory and operation.1

3. SVM structure, operation and theory.
4. Outline of Procedures and methods of

producing the required results.
5. Results.
6. Conclusions.

2 NEURAL NETWORK FOR ELECTRICITY
DEMAND AND PRICE FORECASTING

Neural Networks (NN) are highly parallel models
which have advantages of being flexible and can be
used to extract (to learn) complex linear and non-
linear relationships from the data. The suitability of
NN for forecasting time series problems like
electricity demand2 and price3,4 is shown in literature
available on NN forecasting studies. NNs have two
levels of training:

1. The first level of training is to train the NN
weights from the training data set. A number of
automatic algorithms are available to train the
weights, the most commonly used is known as
feed-forward back-propagation (bp) algorithm.
The bp algorithm is designed to minimise the
error through an iterative process which can be
visualised as similar to the iterative method of
solving a load flow. The drawback of this
algorithm is that the initial NN weights are
randomised. For the system under study this
training algorithm may give the global or any
of a number of local minima depending on the
randomised initial weights. So in NN parameter
optimisation studies the results of a number of
forecasts need to be averaged to allow for the
random differences in the accuracy of individual
forecasts.

2. The second level of training is to optimise the
parameters that describe the NN structure.
These parameters include the number of hidden
layers, the number of neurons in each hidden
layer, the momentum, the learning rate and
others such as weight decay parameters.  The
drawback is that optimisation of these
parameters is performed by a human trainer
expertise, utilising previous studies in the
literature and time expensive trial and error
methods. There is no commonly accepted
algorithm to globally optimise these parameters.

3 SUPPORT VECTOR MACHINE THEORY

With the goal of reducing the time and expertise
required to construct and train price forecasting
models we considered the next generation of NNs
called support vector machines (SVM). SVM have
fewer obvious tuneable parameters than NNs and
the choice of parameter values may be less crucial

Figure 1: Maximum margin of support vector
machine

for good forecasting results. The SVM is designed to
systematically optimise its structure (tune its
parameter settings) based on the input training data.
The Training of a SVM involves solving a quadratic
optimisation which has one unique solution and does
not involve the random initialisation of weights as
training NN does. So any SVM with the same
parameter settings trained on identical data will give
identical results. This increases the repeatability of
SVM forecasts and so greatly reduces the number of
training runs required to find the optimum SVM.
parameter settings.

The following explanation of SVM is combination of
information from sources5,6,7 more information
regarding SVMs can be obtained from the kernel
machines web site.8

To explain the principles of SVM we begin with an
explanation of the application of a SVM to classify
data points as high or low in a two dimensional input
space. The basic principal of SVM is to select the
support vectors (shaded data points) that describe a
threshold function (boundary) for the data that
maximises the classification margin (as in figure 1)
subject to the constraints that at the support vectors
the absolute value of the threshold function must be
greater than one as in eq (1) (see figure 2).  The non
support vector data points (unshaded points) do not
effect the position of the boundary.

Boundary maximises
margin.
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Figure 2: Threshold function for SVM

To overcome the limitation that the SVM only applies
to linearly separable systems the inputs (Xk) are
mapped through a transform function F (X) into a
higher dimensional space where the system is
linearly separable.  This can be understood with the
help of the very simple example in figure 3 where
the one-dimensional system is not linearly separable
however if the system is mapped by a dot product
into two-dimensional space the system becomes
linearly separable.

low low

high
_1(x)

_2(x)

Not linearly separable in one
dimensional space Linearly separable

in two dimensional
space

_()

Map to high dimensional
space using transform

_(x) = _1(x),_2(x)
boundary

Figure 3: Example of mapping to higher
dimension to make linearly separable

This method of mapping to higher dimensions to
make the system linearly separable creates two
challenges how to choose a valid mapping transform
F (X) and that it may be impractical to perform the
dot product required for the margin optimisation in
higher dimensional space. To overcome these two
challenges a Kernel function is used as shown in  eq
(2). This Kernel function can implement the dot
product between two mapping transforms without
needing to know the mapping transform function
itself.

Kernel function perform dot product of two mapping
functions:

(2)
K X X X Xk j k j( , ) ( ) ( )= ∑F F

Once the Kernel function has been included the SVM
training can be written as the quadratic optimisation
problem in lagrangian multiplier form as:

max ( ) ˜W DT TL L L L= ∑ - [ ]1 1
2

(3)

where D d y K x xk j k j k j, ( , )=

and the vector of lagrangian multipliers is

L = ( , ,..., )l l l1 2 l

Solving this quadratic optimisation gives the vector
of lagrangian multipliers (shadow prices). Support
vectors are the only data points with non-zero
lagrangian multipliers so only support vectors are
required to produce a forecasting model (ie. describe
the boundary in figure 1).

s S X only ifs s ssupport vectors = πl 0

To produce forecast implement eq (4) below as in
figure 4.

Output of SVM:
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Figure 4: Structure of SVM

To apply SVM to regression forecasts a slack variable
xk is applied for each data point, which allows for an
error between the target price yk and the output of
the SVM. The optimisation becomes:

SVM training for regression
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C is a parameter chosen by the user to assign
penalties to the errors. A large C assigns more penalty
to the errors so the SVM is trained to minimise error,
can be considered lower generalisation. A small C
assigns less penalty to errors so SVM is trained to
minimise margin while allowing errors, higher
generalisation.

At the two extremes:

• At C=infinity. No errors are tolerated so the SVM
is trained to memorise and so correctly forecast
every data point in the training set. Results in a
complex model with low generalisation.

• At very small C. All errors are tolerated which
results in a low complexity model (in traditional
regression this would be a ‘smooth’ function
y=f(x)) with higher generalisation.

4 PROCEDURE

The SVM training and forecasts were performed with
the mySVM program developed by Stefan Rüping.9

The program was designed to solve the dual of the
optimisation in eq (5) by dividing the training set
into small working sets or chunks.10

All NN and SVM price forecasting models were
trained with 90 days of data and tested by forecasting
the next seven days of NSW regional electricity price.
Nine weeks of price forecasts were carried out (see
table 1). This data was obtained from the SEM (NSW
State Electricity Market) a forerunner of the NEM
(data now available on the NEMMCO web site).

Table 1
Dates of training and test data sets

Week Training files 1998 Testing files 1998

from to days from to days

1 9/07 6/10 90 7/10 13/10 7

2 16/7 13/10 90 14/10 20/10 7

3 23/7 20/10 90 21/10 27/10 7

4 30/7 27/10 90 28/10 3/11 7

5 06/8 03/11 90 04/11 10/11 7

6 13/8 10/11 90 11/11 17/11 7

7 20/8 17/11 90 18/11 24/11 7

8 27/8 24/11 90 25/11 01/12 7

9 03/9 01/12 90 02/12 08/12 7

All forecasting models utilised the same set of 11
input variables.

Inputs to NN and SVM

Input Input Name Half-hour Comment
number delay.

t=0 time of
forecast

Target Pool Price t=0 Cents/MW

1 Half-hour t=0 1-336
of week

2 Half-hour t=0 1-48
of day

3 Regional t=0 Actual
Demand Demand
in MW

4 Pool Price t= 383 8 days
5 Pool Price t=384 8 days
6 Pool Price t=385 8 days
7 Pool Price t=671 2 weeks
8 Pool Price t=672 2 weeks
9 Pool Price t=673 2 weeks
10 Pool Price t=1008 3 weeks
11 Pool Price t=1344 4 weeks

Table 2
Inputs variables

The scope of this research was limited to older market
data from 1998 and a standard set of 11 input
variables to enable researchers and the readers to
make comparisons with previous studies.11

Investigation into the data available on the
NEMMCO web site has shown more informative
data variables are now available however these were
not used in this study to maintain consistency with
previous studies.

5 RESULTS

5.1 Neural network training

The results (table 3) are shown from an investigation
into the variation in NN forecasts due to the random
initialisation of weights and the variation of accuracy
attributed to network architecture. The architecture
is defined by the code 10,5 which is ten neurons in
the first hidden layer and five neurons in the second
hidden layer. Each set of results is from two NN first
and repeat, which were trained with identical inputs
and parameter settings. Thus the only difference
between the two networks is the value of the
randomly initialised weights.  The networks were
trained with 56 days and tested over 21 days of data.
The data was divided into five partitions based on
the 336 half-hours of the week (only results for the
first two partitions shown): partition 1 1-48, partition
2 49-96.
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Table 3
Results MAE% of NN identical runs

architecture Partition 1 Partition 2

first repeat first repeat

8,5 31.1 30.4 38.7 30.0

10,5 26.7 25.7 39.7 26.0

25,5 29.6 30.3 31.5 34.5

100,10 28.1 30.1 26.9 40.7

60,5 28.7 29.2 28.8 22.9

40,20,15,10 28.6 28.8 37.0 32.2

100,5 27.3 29.3 34.2 36.3

10 30.5 31.9 25.6 18.1

As a researcher attempting second level training to
optimise the parameters of the NN forecasting tools
the random variation of forecasting accuracy is a
frustrating challenge. More importantly this
variation in accuracy reduces the confidence of a
customer using any forecasting tool . Results show
that the training of a SVM produces the same
network and so the same accuracy given identical
input data and training parameters. Results of
repeated SVM training are an identical copy of the
results displayed in table 4. This consistent accuracy
of SVM is a great advantage in training price
forecasting tools and convincing customers to have
confidence in the forecasting tool.

5.2 Variation of C parameter in SVM training

The results in figure 5 were from testing  to
investigate the change in the accuracy of a SVM price
forecaster trained on identical data and all
parameters except different values of C.

Optimising C in SVM training has an influence on
the generalisation of the SVM and can be considered
similar to optimising the architecture of a NN. In this
research the values of C was varied between 0.1 to
5000 with limited change in forecasting accuracy. The
consistent accuracy of SVM forecasts makes
optimising C faster and simpler than optimising the
architecture of a NN. As the results in table 3 show,
in training NN the random variation is often equal
or larger than the accuracy difference due to changes
in architecture and so the average of many training
runs must be taken. This greatly increases the time
required to optimise the training of a NN. From these
results a C of 0.5 was used for all remaining SVM
training.

MAE of SVM price forecaster trained with different values of C
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Figure 5:  SVM trained with different C values

5.3 Accuracy of SVM forecasts

The errors Mean Absolute Error (MAE) of SVM price
forecasts are shown in table 4. Each SVM was trained
first level only (all parameters held constant) with a
90 day training set (see table 1) and then tested over
the remainder of the nine week testing period.
Shaded cells are showing results for back-casts (SVM
is ‘forecasting’ data it has seen in the training set)
and are not included in the calculation of the total
MAE.

Table 4
MAE of SVM results for 7 day ahead

price forecasts

training Tested with test set from week Total

week 1 2 3 4 5 6 7 8 9 error

Data used MAE MAE

1 24% 21% 35% 39% 31% 24% 22% 18% 18% 26%

2 8% 21% 37% 45% 42% 35% 31% 26% 20% 32%

3 8% 5% 38% 47% 42% 38% 35% 29% 21% 36%

4 8% 5% 9% 44% 40% 36% 32% 27% 20% 33%

5 9% 5% 8% 12% 37% 33% 28% 23% 19% 28%

6 10% 5% 7% 11% 9% 25% 24% 20% 19% 22%

7 11% 6% 7% 10% 8% 8% 20% 17% 19% 18%

8 11% 6% 7% 10% 9% 8% 7% 16% 20% 18%

9 11% 6% 7% 10% 9% 8% 8% 7% 20% 20%

The error of the SVM price forecasts over nine weeks
was MAE= 25.8% which was very similar to the
accuracy of the NN price forecasting model which
had an error of MAE=25.5%.  The training data sets
were optimised for NN training over a number of
months so it is possible that optimising the training
length and data variables for the SVM may increase
the accuracy of the SVM forecast.

Both the NN and SVM models produced more
accurate price forecasts for weeks 1,2,7,8 and 9 than
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for weeks 3,4,5 and 6. Thus it can be concluded that
both models extracted similar patterns from the data.
Visual inspection shows weeks 3,4,5 and 6 included
price spikes which helps explains the lower accuracy
during these weeks.

6 CONCLUSIONS

From a limited analysis of NN and SVM price
forecasting  results we make the following
conclusions:

1. SVM require less time to optimally train than
NN. This is mainly because SVM are trained
with a structured algorithm (quadratic
optimisation), which has one unique solution
and so consistently produces the same results
when trained with identical data and
parameters. This consistency saves time as the
average of multiple training runs are not
required to optimise the parameter settings. It is
questionable if SVM require less expert
knowledge to train than NN however the
consistency of SVM results makes programming
automatic optimisation algorithms simpler and
less time consuming than for NN optimisation.

2. For this study the SVM price forecaster
performed with an equivalent accuracy to the
NN price forecaster. However to help in
comparison the training data sets which were
optimised for NN were used to train the SVM
so accuracy maybe improved if data is optimised
for SVM.

These results did not lead to concrete conclusions but
raised a number of questions to be pursued in future
research:

1.  Investigation of developing an automatic SVM
parameter optimisation program for electricity
price forecasting. An over all optimisation
algorithm may be impractical but limiting the
optimisation to only a SVM price forecasting
model in one particular market regulatory
framework is worth to investigate.

2. Test to see if optimising the training data set for
SVM increases the accuracy of the forecast.

3. Investigate the validity of forecasting models
over a longer time period to access the ability of
forecasting models to cope with electricity
market evolution.

4. Investigate if the unique SVM solution is at or
close to the optimum forecasting solution for
NEM electricity price forecasting.

Considering that NN and SVM produce similar
forecasting accuracies and that SVM are more
consistent and so more efficient in retraining we will
be favouring SVM over NN in future price and load
forecasting studies.

In this paper we have presented the latest results in
an ongoing University of Queensland research
project to develop an electricity price forecasting tool
for electricity market participants, which utilises
publicly available historical and predicted market
condition information.
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