
A Gentzen System for Reasoning with

Contrary-To-Duty Obligations.

A Preliminary Study

Guido Governatori
School of Information Technology and Electrical Engineering

The University of Queensland
Brisbane, QLD 4072, Australia
email: guido@itee.uq.edu.au

Antonino Rotolo
CIRSFID, University of Bologna,

Via Galliera 3, I-40121 Bologna, Italy
email: rotolo@cirfid.unibo.it

Abstract

In this paper we present a Gentzen system for reasoning with contrary-
to-duty obligations. The intuition behind the system is that a contrary-
to-duty is a special kind of normative exception. The logical machinery
to formalize this idea is taken from substructural logics and it is based
on the definition of a new non-classical connective capturing the notion
of reparational obligation. Then the system is tested against well-known
contrary-to-duty paradoxes.

1 Introduction

One of the main themes in the philosophical discussion on deontic logic is about
reasoning with contrary-to-duty (CTD) obligations. In this perspective, it is
widely acknowledged that the crisis of Standard Deontic Logic (SDL) is strongly
related to the formulation of some notorious paradoxes centering around the
regulation of the violation of obligations. Puzzles like Chisholm’s and For-
rester’s paradoxes, Reykjavik scenario and Möbius strip example, depict situa-
tions where various combinations of reparational and unconditional obligations
give rise to logical contradictions or counterintuitive conclusions. As a matter of
fact, a great part of the efforts in deontic logic have been driven by solving these
problems and a plethora of different strategies have been accordingly proposed.
A full analysis of all these contributions is obviously beyond the scope of this
paper.

97

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982252?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


However, we believe that some of those approaches deserve to be considered
here in some detail. We refer in particular to the works whose starting-point
can be summarized in the following thesis: “no logic of norms without attention
to the normative systems in which they occur” [12, p. 32]. Even though this
idea at first sight seems to be obvious, it is greatly valuable since it proposes
what we could call a “holistic reading” of normative reasoning. Actually, we
think this intuition is fundamental for at least two reasons. Firstly and generally
speaking, it makes closer areas often too far such as philosophy of norms (and,
more specifically, philosophy of law) and deontic logic. It is quite odd, for a
legal philosopher, to conceive of norms in isolation. Norms interplay each other.
Thus, a normative set can (must) have different meanings and may (should)
contribute to diverse conclusions if it is included in distinct normative systems.
The “spirit” of such norms changes according to their systematic reading. Sec-
ondly, thanks to this approach to normative reasoning, it is possible to give both
a simple and appealing account of CTD obligations and consequently solutions
to the just mentioned paradoxes of deontic logic.

In a wide sense, significant examples in this direction are some papers by
H. Prakken and M. Sergot [15, 16]. Basically, they regard CTD structures as
contextual obligations, that is obligations strictly relative to a certain context of
application. Accordingly, they are not just conditional obligations which hold
without restriction and so factual detachment is not in general permitted. On
the other hand, it must be the case that primary obligations related to CTDs
are still in force at least outside their specific context of violation. Thus, the
authors argue that some cases are to be inconsistent, in particular when a CTD
norm states a reparational obligation which is in contradiction with an another
primary obligation in the system. In logical terms, this idea has been first im-
plemented by the so-called principle of “downwards inheritance” for checking
the unrelatedness between contexts and primary obligations [15]. Later, they
developed a peculiar semantical construction to characterize a preference or-
dering over the worlds which is strictly sensitive of the “number” of reciprocal
incompatibilities (potential violations) between norms.

A different approach, inspired by similar intuitions, has been developed in
particular by D. Makinson and L. van der Torre. Their main idea, as pointed
out by Makinson [12] himself, is to be traced back to a pionieristic work by
Stenius [19] and it has been later improved by Alchourrón and Bulygin [2, 1].
This line of investigation is based on the intuition that any obligation can be
thought in terms of a consequence relation of what is explicitly stated as oblig-
atory in a normative system. Actually, Makinson and van der Torre’s approach
is a further step in this direction. In particular, if their analysis is meant to cap-
ture this original idea, on the other hand it claims to impose some constraints
on the manipulation of conditional norms. As expected, some restrictions are
required both on strengthening of antecedent and on transitivity, since this is
vital in CTD contexts. A related point thus concerns the directionality of nor-
mative conditionals. It is commonly acknowledged that contraposition cannot
be accepted. For the consequence relation under which a normative system is
closed is not classical but is to be modelled by permitting only a directional
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iterative detachment of obligations. The conditions of such a detachment are
in turn strictly connected with performing a consistency check in the normative
system. More precisely, the detachment of an obligation B can only be obtained
by using the regulations which are consistent with the condition stated for B.
If it is not the case, then B is a not a consequence of the normative system.
This task can be done within a labelled deductive system based on the so-called
Input-Output logic developed by L. van der Torre [20, 13, 14].

Basically, our system starts from this last conception of normative reasoning.
First, it is based on a purely syntactic view of deontic logic so that all the
machinery consists of defining a suitable consequence relation for dealing with
norms. Second, some intuitive conditions are required to capture adequately
the global interplay between the norms included in a given normative system.
In particular this is done by introducing a new logical operator of “normative
reparation” in order to make explicit the relation between primary obligations
and their related CTDs and to combine them in single regulations. This will
allow us to give a plausible reading of CTD structures.

In what follows we first argue that, logically, CTD obligations are a special
kind of exceptions (Section 2). Then we propose a Gentzen system specially
tailored to cope with the above intuition. In particular, as usual with Gentzen
systems, we provide general inference rules for the introduction and the elim-
ination of a non-classical connective intended to capture the meaning of CTD
structures (Section 3). Before introducing the formal notions of normative sys-
tem, ideal situation, violation, etc., in Section 5, we present some of the most
common instances of the inference rules, and we shortly discuss them in relation
to well-know patterns of normative reasoning (Section 4). At this point we have
all the formal machinery needed to examine in depth some of the most impor-
tant CTD paradoxes (Section 6). We conclude the paper with some insights
about possible extensions of the system, such as the definition of a normative
consequence relation for the notion of permission.

2 The Main Intuition of Our Approach

What is a contrary-to-duty obligation? The common reading suggests that is
nothing but a reparational obligation of a violated norm; accordingly, it is in
force only when a violation occurs. In this paper we would like to argue that a
CTD obligation can be conceived of in a slightly different way, namely as special
kind of normative exception.

What does it mean that a CTD obligation is an exception?
Norms are by definition violable: a norm which cannot be violated is mean-

ingless or, at least, seems to be useless. If a norm says that it is obligatory to
kill or not to kill, then the norm says nothing. It is not a reason to act. In
other words, norms do not concern simply what should be the case in any ideal
situation but they should be open to their violation. This intuition is widely
accepted but we feel it has not been fully investigated from a logical point of
view. If we look at realistic normative domains (e.g., law) we realize that the
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obligation not to kill is usually rendered as a norm stating an appropriate sanc-
tion which ought to follow in case of violation. Actually, it is not by chance
that H. Kelsen [11] talks about legal obligations, that he calls primary norms,
as norms stipulating sanctions. A similar approach can be found in the anal-
ysis of deontic logicians like A.R. Anderson [3] who define ought-assertions as
obligations to do something or to repair their violations by means of sanctions.
We are aware that this is one of the most discussed issues in contemporary phi-
losophy of norms (for a recent overview, see, e.g., [22]) since it concerns hard
problems such as the very nature of conditional obligations. However, besides
the plethora of different opinions on this matter, a point seems intuitively to
be clear. If a norm is categorical, then it does not admit violations. In logical
terms this means that is to be impossible to derive from it a secondary obliga-
tion. Otherwise, it is not categorical at all. In the case of CTD structures we are
not dealing with this kind of norms but with different normative domains. Of
course, a norm-giver who makes norms as obligations conditioned to sanctions
is trying first to state what is obligatory. On the other hand, he/she is to be
ready to reply to violations. The notion of CTD norms as exceptions is clear if
we reason from the point of view of the addressee of a norm. In this case, norms
like these can be interpreted in terms of alternative reasons to act: do x or you
will be sanctioned. Actually the addressee has two logical options. Even the
second can be acceptable; however, since it is a sanction, it has to be considered
as a normative exception to the primary obligation. Something similar holds
also in the perspective of the norm-giver. In fact, he/she has to impose a fair
and proportional sanction for the violation of a given obligation; in this way,
any action which is a violation of a primary obligation must be understood as
an “exceptional action” with respect to what is obligatory.

In this perspective, a CTD obligation (1) is a special kind of logical excep-
tion of the normative content of a primary obligation, and (2) is not a usual
conflicting obligation which overrides such a primary obligation. As we shall
see, an immediate consequence of this thesis is that a primary obligation and its
CTDs can and must give raise to a unique norm, expressing the true meaning
of the normative content they define in a given normative system.

Given this general background, let us see in detail why and how CTD norms
can be logically thought of as special exceptions of primary obligations. Ac-
cording to the usual logical account, a norm with exception can be represented
as

A ⇒ B
A,E1 ⇒ ¬B

...
A,En ⇒ ¬B

Let us now consider ⇒ as a sub-structural consequence relation ` without the
structural rules of contraction, duplication, and exchange. The main reason
for this choice is that we want to investigate the very nature of normative
consequence without any commitment to the classical interpretation. In this
perspective the comma does not correspond to the classical conjunction on the
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left side of ` and the classical disjunction on the right side. Thus the meaning
of the expression

A1, . . . , An ` B1, . . . , Bm

is: the sequence A1, . . . , An comports that B1 is the case; but if B1 is not satis-
fied, then B2 should be the case, and so on. In a normative context, this means
that the content of the obligation determined by the conditions A1, . . . , An is
B1; however the violation B1 can be repaired by B2 and so on.

Now, let us consider the standard rules for negation, that is:

A,B ` C

A ` ¬B,C

A ` B,C

A,¬B ` C

If ¬ is an involutive operator (i.e., ¬¬A ≡ A), the effect of these rules is to move
a formula on the other side of `, changing the polarity. Accordingly, given the
norm

A ⇒ B (1)

and its exception
A,¬B ⇒ C (2)

we can obtain
A ⇒ B,C (3)

applying the rule for the negation on (2).
The norm in (1) says that B should be the case when the condition A obtains.

According to (2) C should be the case given A and ¬B; thus (2) is, at the same
time, a CTD obligation and an exception of (1). In a classical reading of (3),
“,” would correspond to the classical disjunction. However, this is not the case
in the present interpretation, where, intuitively, the expression on the right side
of ` in (3) can be thought of as

B ∨ (¬B → C) (4)

Hence the norm in (3) subsumes the norms in (1) and (2). In other words it
states that, given A, B ought to be the case; otherwise, under the same condition
A, C is obligatory. Therefore, not surprisingly, (3) is a CTD obligation of (1).

What we have just said gives us the possibility to deal with CTD reasoning
within a purely syntactic framework. The next section provides a formaliza-
tion of CTDs in terms of a Gentzen system for the non-classical connective ⊗,
corresponding to the “,” on the right side of a normative consequence relation
` characterizing obligations. Given the intended interpretation of A ⊗ B as
“B is the reparation of A”, the connective ⊗ permits to combine primary and
CTD obligations into unique regulations. It has been argued that violations
are different from exceptions [15, 21]. We think this analysis is correct insofar
as it maintains that a norm is still in force even when is violated, whereas a
default like ‘birds fly’ is cancelled, e.g., by the fact that Tweety does not fly.
As a matter of fact, it is quite odd to say that an obligation is cancelled by
its violation. On the other hand, our idea that a CTD is a special kind of
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exception does not mean that the primary obligation has to be cancelled or
even overriden by its CTDs. As we shall see, we do not introduce any kind of
machinery to account for the overriding of a nprimary norm by its CTDs. We
simply argue that a normative system containing primary and CTD obligations
actually gives its addressees the possibility to comply with either primary or, as
exceptions, secondary (tertiary, etc.) obligations. Obviously, compliance with
primary norms or their CTDs are not put at the same level, but refer to different
degrees of ideality. In this perspective, it should be noted in advance that the
introduction of ⊗ can be done iteratively depending on the number of levels of
ideality determined by the chains of CTDs contained in the normative system.
This is in a way the sytactic counterpart of the thesis, quite common in the
DL community, that CTDs are semantically rendered in a preference (ordering)
semantics, where the order among sets of worlds expresses different levels of
ideality and violability.

3 A Gentzen System for CTD Obligations

First of all, let us define our formal language L. It consists of a countable set of
atomic formulas. Well-formed-formulas are then defined using the unary con-
nective ¬ (negation) and the binary connective ⊗ which is intended to formalize
CTD statements.

Definition 1 Let `O be a binary consequence relation defined over P(WFF )×
WFF . Thus the expression Γ `O A is a sequent where Γ (the antecedent) is a
finite (possibly empty) set of formulas and A is a formula.

As usual in Gentzen systems the meaning of operators and connectives is given
by the rules for their introduction and elimination (cf., e.g., [17]). More pre-
cisely, this is true in the presence of the structural rules of exchange, duplication
and contraction. Otherwise, the introduction and elimination rules have to be
supplemented by rules for the “structural” meaning of the operators involved
[8, 18].

According to Definition 1 the usual rules of contraction, duplication and
exchange hold trivially for the formulas in the antecedent. However, they do
not make any sense for the consequent so that we need properties describing
the structural behaviour of ¬ and ⊗.

The only property we assume for ¬ is that it is an involutive operator, i.e.,
¬¬A ≡ A for any formula A; while the basic logical properties for ⊗ are the
following:

1. A⊗ (B ⊗ C) ≡ (A⊗B)⊗ C

2.
⊗n

i=1 Ai ≡ (
⊗k−1

i=1 Ai)⊗ (
⊗n

i=k+1 Ai) where Aj = Ak and j < k

Condition 1 is just associativity of ⊗, while condition 2 corresponds to du-
plication and contraction. In fact, according to the intuitive reading of this
connective given in the previous section, the expression on the right side of `
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can be considered as an ordered set. However, the full meaning of the operator
⊗ is given by a rule for its introduction (⊗I) and the corresponding rule for its
elimination (⊗E). Thus, let us see its logical characterization wrt the normative
consequence relation `O.

Γ `O A⊗ (
⊗n

i=1 Bi)⊗ C ∆,¬B1, . . . ,¬Bn `O D

Γ,∆ `O A⊗ (
⊗n

i=1 Bi)⊗D
(⊗I)

Γ `O A⊗B ⊗ C ∆ `O A⊗ ¬B ⊗D

Γ,∆ `O A⊗ C
(⊗E)

To complete the formal description of the system we have to give the conditions
for > –an always true formula– and for ⊥, a generic formula for a contradiction
(or normative conflict).

> is defined in terms of ⊗; more precicesly

A⊗ ¬A ≡ >.

This formula states that the reparation of A is ¬A; but a reparation occurs
when the thing it repairs fails, so ¬A should be the case when ¬A is the case.
Thus A ⊗ ¬A is fulfilled when we have either A or ¬A; in each state of affairs
we have either A or ¬A, so any state of affairs satisfies A⊗¬A. It is immediate
to see that

A⊗> ≡ >⊗A ≡ >;

accordingly it is reasonable to stipulate that

A⊗⊥ ≡ ⊥⊗A ≡ A.

The following rule is devised for making explicit conflicting norms (contra-
dictory norms) within the system:

Γ `O A ∆ `O ¬A

Γ,∆ `O ⊥
(I⊥)

where

1. there is no sequent Γ′ `O X such that either ¬A ∈ Γ′ or X = A⊗B; and

2. there is no conditional norm ∆′ `O X such that either A ∈ ∆′ or X =
¬A⊗B; and

3. for any formula B, {B,¬B} 6⊆ Γ ∪∆.

The meaning of these three conditions is that given two conditional norms (se-
quents), we have a conflict if the normative content of the two norms is opposite,
such that none of them can be repaired, and the the states of affairs they require
are consistent.

The last aspect of the system we want to deal with is the relation of sub-
sumption between two sequents.
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Definition 2 Let n1 = Γ `O

⊗m
i=1 Ai ⊗ B and n2 = Γ′ `O C be two sequents.

Then n1 subsumes n2 iff

1. Γ = Γ′ and
⊗m

i=1 Ai = C; or

2. Γ ∪ {¬A1, . . . ,¬Am} = Γ′ and B = (C ⊗D).

The idea behind this definition is that the normative content of the norm n2

is fully included in the norm n1. Thus n2 does not add anything new to the
system and it can be safely discarded.

4 Commentary and Examples

The inference rules introduced in the previous section allow us to characterize
formally the notion of CTD obligation with respect to `O. They are presented
there in the most general version. In order to make clearer their intuitive mean-
ing, in this section we will give to the reader some simplified variants which
correspond to intuitive situations in which CTDs may occur.

Let us consider a norm like
Γ `O A.

Given an obligation like this, if we have that

∆,¬A `O C,

then the latter must be a good candidate as reparational obligation of the former.
This idea is formalized is as follows:

Γ `O A ∆,¬A `O C

Γ,∆ `O A⊗ C

According to this view, if there exists a conditional obligation whose antecedent
is the negation of the propositional content of a different norm, then the latter
is a reparational obligation of the former. In this way, the CTD obligation can
be forced to be an explicit reparational obligation with respect to the violation
of its primary counterpart. Accordingly, it seems to be reasonable to discard
both premises when they are subsumed by the conclusion. Their reciprocal
interplay makes them two related norms so that they cannot be viewed anymore
as independent obligations. Notice that if Γ and ∆ are empty, then we are
dealing with the basic case in which the primary obligation has the format of
an apparently categorical obligation.

As we have alluded to above, the rule ⊗I can also generate chains of CTDs
in order to deal iteratively with violations of reparational obligations. The
following case is just an example of this process.

Γ `O A⊗B ¬A,¬B `O C

Γ `O A⊗B ⊗ C

Chains of CTDs can be manipulated in different ways. An interesting case is
when other reparations are added inside a sequence of CTDs built via the ⊗
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operator. This is possible since any conditional norm can be combined with a
different obligation insofar as the former regulates the violation of the latter.
Given an obligation we may thus infer more than a single explicit new ⊗-norm
conditioned to its violation: in fact, a norm-giver can stipulate different repa-
rations for a particular violation. The presence of such new regulations in the
normative system is equivalent to saying that it is obligatory to fulfil the con-
junction of several CTD obligations if the same violation occurs. More precisely,
even if a primary obligation can be discarded after some applications of ⊗I, an-
other explicit CTD regulation can be drawn with respect to the first obligation
of the chain of reparational obligations we have already in the system:

Γ `O A⊗B ⊗ C ∆¬A `O D

Γ,∆ `O A⊗D

What about disjunctions of CTDs? It is quite common in our every-day ex-
perienceto tackle situations where different obligations can repair alternatively
to the violation of the primary obligation. Suppose John eats a piece of cake
even though his mother commanded him not to touch it, since it is for some
guests invited for dinner. When she realizes that John has eaten the cake she
could say to John: buy another cake or apologize for your bad action! As a
matter of fact, both secondary obligations can repair alternatively to the viola-
tion of the primary obligation. Situations like this are far from being unusual
also in legal contexts. It is not hard to find examples, at least in most west-
ern countries, where the legislator states different sanctions for certain kind of
crimes as alternatives to the prison. Actually, the system we provided seems
to be unable to capture these cases for the trivial reason that it is based on a
language which does not include the boolean connectives. However, something
very close to a disjunctive obligation can be represented when the normative
system permits to get the symmetry of two obligations wrt ⊗:

Γ `O A ¬A `O B

Γ `O A⊗B

Γ `O B ¬B `O A

Γ `O B ⊗A

In this case, A and B repair each other, so that it can be said that it is obligatory
to do A or B if Γ holds.

Let us see now the rule ⊗E. To understand its intuitive meaning, it is useful
to look at a couple of derived rules. First of all, consider its trivial instance
when n = 2:

Γ `O A⊗B ∆,¬A `O ¬B

Γ,∆ `O A
(5)

Informally, if the normative system contains both a reparational obligation of A
and a norm stating the negation of such a reparation as a CTD obligation of the
violation of A, then each of the two secondary obligations makes meaningless
the other as a true reparation of A. Notice that these norms do not generate a
contradiction: both premises are consistent with the original primary obligation
A. This fact should not be strange: a “contradiction” between two secondary
obligations conditioned to the violation of the same primary obligation A is
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nothing but a (perhaps bizarre) way for restating A as obligatory. The presence
of B and its negation as CTDs of A is in a way irrelevant for A. For similar
reasons, we can derive a rule like the following:

Γ `O A⊗B ∆ `O A⊗ ¬B

Γ,∆ `O A
(6)

In general we have to distinguish between genuine normative conflicts from
apparent ones. By normative conflict we mean any situation ruled by opposite
norms and which results in an impossible state of affairs; or, in other words, a
situation in which the normative content of all relevant norms cannot be fulfilled,
ending inevitably in a violation that cannot be repaired.

The simplest case of conflict of norms obtains when only two categorical
obligations are given, that is, when we have both `O A and `O ¬A. It is
immediate to see that we can apply I⊥, thus deriving `O ⊥.

Let us consider the following patterns of apparent conflicts. In the case of

A `O B ¬A `O ¬B

the conflict is apparent because the conditions of application of the two norms
are mutually exclusive; thus a situations where both norms are applicable does
not exist.

On the other side, given

`O A `O ¬A ¬A `O B

we have two conflicting categorical obligations. However, a closer analysis shows
that actually one of them is not categorical insofar as it admits a CTD. Thus the
situation where the CTD obligation is in force is still normatively acceptable,
even if the corresponding primary obligation is violated. But in this case the
other categorical obligation is fulfilled.

This pattern also shows that the system at hand is nonmonotonic: the pres-
ence of ¬A `O B prevents the application of I⊥. Hence `O A and `O ¬A no
longer derive `O ⊥.

The above discussion points out that the only conflicts we have to worry
about are the so called genuine conflicts. Those conflicts indicate that part of
the normative system they are part of is not rational. In idealized situations
they should not occur. Unfortunately this is seldom the case in real-life. Thus
methods to restore rationality should be devised. Indeed, many and many of
them have been put forth, and it is beyond the scope of the paper to investi-
gate such a topic. However, unlikely more traditional treatments of CTDs, the
present approach considers CTDs and normative conflicts just as two orthogo-
nal aspects of normative reasoning. Accordingly the interested reader can try
to plug-in it her preferred way to deal with (genuine) conflicts.
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5 Consequence Relations and Normative Sys-
tems

Now we need to introduce a formal definition of normative system. We distin-
guish between normative codes and normative systems. The former can just be
considered as the set of explicitly promulgated norms, while its related norma-
tive system is obtained from the normative code by adding principles to derive
other norms. Formally:

Definition 3 Let D be a set of deontic notions (e.g., obligation, permission,
etc).

• A Normative Code is a set {Si}i∈D where each Si is a finite set of norms.

• An Implicit Normative Systems is a set {(Si,`i)}i∈D, where each Si is a
finite set of sequents, and each `i is a normative consequence relation for
i.

• An Explicit Normative Systems is a set {↑ (Si,`i)}i∈D, where each
↑ (Si,`i) is the least fixed point (if it exists) of the closure under `i and
subsumption of Si.

This is a very general definition of normative system. One of the main advan-
tages of explicite normative systems resides in the fact that complete meaning
and content of a norm is entirely encoded in the formulation of the norm itself
and not scattered around the normative systems. In fact, in this paper, we
consider the normative system obtained from the deontic notion of obligation
and the corresponding normative consequence relation we have investigated in
Section 3. Some insights about the integration of obligation and permission will
be given in Section 7.

We are now ready to give conditions under which we are able to determine
whether a state of affairs is compatible with a normative system or it represents
a violation of some norms. To this end, we shall consider a state of affairs as a set
of literals; moreover we will restrict ourselves to the case where all the formulas
made explicit in the norms (sequents) of a normative system are literals as well.
Notice that this choice does not allow us the use of expressions like ¬(A ⊗ B)
on the right side of `O nor occurrences of ⊗ in the antecedents of the sequents.

We are aware that this is a debatable limitation. However, the intuitive
meaning of ¬(A ⊗ B) is unclear, or at least it seems to admit several possible
interpretations. What does it mean that B is not a reparation of A?1 Until
we have a precise answer to this question we prefer not to commit ourselves to
any particular interpretation; therefore we do not give the logical meaning of
negation. Indeed, the introduction and elimination rules for ¬ have not been
given. Moreover, it is not easy to give an intuitive account of formulas such
as A ⊗ B if they occur on the left side of the consequence relation. A possible

1See Section 7 for some intuitions about the relation between ¬ and ⊗ wrt an explicit
consequence relation of permission.

107



interpretation could be that such occurrences mean something like: “It is a fact
that B is a reparational obligation of A”. However, we prefer here to refrain
from presenting solutions to these problems. Of course, these are matter of
further investigations, but we feel that they can be resolved in a satisfactory
way as soon as a suitable machinery for reasoning about norms is introduced in
the system.

First of all we define when a state of affairs is either ideal, sub-ideal, or
non-ideal with respect to a norm. Then we extend this notions both to explicit
and to implicit normative systems.

Definition 4

• A state of affairs s is ideal wrt to a sequent (norm) Γ `O A1 ⊗ · · · ⊗ An

iff if Γ ⊆ s, then A1 ∈ s.

• A state of affairs s is sub-ideal wrt to a sequent (norm) Γ `O A1⊗· · ·⊗An

iff if Γ ⊆ s and ∃Ai, 1 < i ≤ n such that ∀Aj, j < i {¬A1, . . . ,¬Aj} ⊆ s,
then Ai ∈ s.

• A state of affairs s is non-ideal wrt to a sequent (norm) Γ `O A1⊗· · ·⊗An

iff it is neither ideal nor sub-ideal.

According to Definition 4, a situation is ideal wrt to a norm if the norm is not
violated; sub-ideal when the primary obligation is violated but the norm admits
a reparation, which is satisfied; non-ideal when the primary obligation and all
its reparations are violated. This definition can be easily extended to the case
of explicit normative systems:

Definition 5

• A state of affairs s is ideal wrt to an explicit normative system iff there
is no norm in the system for which s is either sub-ideal or non-ideal.

• A state of affairs s is sub-ideal wrt to an explicit normative system iff
there is a norm for which s is sub-ideal, and there is no norm in the
system for which s is non-ideal.

• A state of affairs s is non-ideal wrt to an explicit normative system iff
there is a norm for which s is non-ideal.

Definition 5 follows immediately from the intuitive interpretation of ideality
and of the related notions we have provided in Definition 4. On the other side,
the relation between an explicit normative system and the implicit one from
which is obtained seems to be a more delicate matter. A careful analysis of the
conditions for constructing an explicit normative system allow us to state the
following general criterion:

Definition 6 A state of affairs s is ideal (sub-ideal, non-ideal) wrt an implicit
normative system N if s is ideal (sub-ideal, non-ideal) wrt the explicit normative
system obtained from N .
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It is worth noting that Definition 6 shows the relevance of the distinction explicit
and implicit normative systems. This holds in particular for the case of sub-
ideal situations. Suppose you have an implicit normative system consisting of
the norms

`O A ¬A `O B

The corresponding explicit normative system is

`O A⊗B

While the state of affairs s = {¬A,B} is sub-ideal wrt to the latter, it would
be non-ideal for the former. In the first case, even if ¬A `O B expresses in fact
an implicit reparational obligation of `O A, this is not made explicit. So, there
exists a situation which apparently accomplishes a norm and violates the other
without satisfying any reparation. This conclusion cannot be accepted because
it is in contrast with our intuition according to which the presence of two norms
like `O A and ¬A `O B must lead to a unique regulation. For this reason, we
can evaluate a situation as sub-ideal wrt an implicit normative system only if
is sub-ideal wrt its explicit version.

Finally, let us define the notion of ought. It is intended to formalize what
any explicit normative system requires as obligatory, if a state of affairs is given.

Definition 7 Given a state of affairs s and an explicit normative system N ,
Ought(s) is a set of sets of literals O(s)− s such that for each O(s):

• s ⊆ O(s); and

• O(s) is one of the smallest sets of literals such that O(s) is at least sub-
ideal wrt N ; and

• O(s) does not contain a literal and its negation.

This definition is meant to capture the best possible alternatives to a given
situation. It also provides a semantics for `O and ⊗. Let Γ `O A be a sequent,
and let s be the smallest state of affairs satisfying Γ. Then s satisfies A iff
Ought(s) contains a set O(s) which is at least sub-ideal with respect to A. The
above construction does not distiguish the degree of ideality between states of
affairs. It only says whether complex obligations are fulfilled or violated by some
states of affairs. For example given the empty state of affairs and the norm

`O A⊗B,

both {A} and {¬A,B} are in Ought(∅). Therefore we have to identify the most
ideal situations: in the case at hand {A} beacuse it is ideal, while {¬A,B} is
sub-ideal.2 Notice that in general is not possible to determine the most ideal

2A possible solution for this problem is to supplement the definition of satisfiability by
adding a degree of violation similar to the degree of diasappointment proposd by Brewka,
Benferhat and Le Berre [5] for their logic of ordered disjunction. However a careful analysis
of this topic is left as a matter of future work.
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situation. Let us consider the following normative system

`O A⊗ (B ⊗ C) `O A⊗ (C ⊗B)

As we have seen in Section 4, given s = {¬A}, both B and C are reparations
of A, as well as the reparation of each other. Thus the two states of affairs
s1 = {¬A,B} and s2 = {¬A,C} are both in Ought(s). It is immediate to see
that s1 is sub-ideal wrt the first norm, while for the second norm every extension
containing C or ¬C will be sub-ideal wrt it. Similarly for s2.

Besides what we said in Section 4 about the consequence relation `O, it is
worth noting that also the notion of ought exhibits a nonmonotonic behavior.
In fact, if we consider `O as a connective, ought can be viewed in terms of a
consequence relation where Ought(s) follows from a normative system N and a
set of states of affairs. If so, not only would different normative systems imply
trivially diverse Ought(s), but, given the same N , different states of affairs (and
different violations) could give as well distinct “oughts”. This confirms van der
Torre and Tan’s [21] thesis that violability has to be read as special kind of
defeasibility.

In very general terms, our formulation follows the intuition of Jones and
Pörn [9, 10] insofar as it permits to represent the real (actual) obligations ex-
pressed by the system. However, our approach is based on purely syntactical
notion of ideality and is strictly related to the role of the operator ⊗. In this
way, it does not suffer of some drawbacks of Jones and Pörn’s analysis such
as the necessity of introducing hierarchies of sub-sub-ideal, sub-sub-sub-ideal
worlds and so forth.

6 Dealing with CTD Paradoxes

Now, let us see how to deal in our system with some of the most infamous
paradoxes of CTD reasoning. In particular, we want to give a formal account of
Chisholm’s [6] and Forrester’s [7] paradoxes, Belzer’s [4] “Reykjavik scenario”
and Makinson’s [12] “Möbius strip example”. Since these puzzles are well-known
in the deontic logic community we shall not recall any of their intuitive examples
but we will confine our analysis to their logical representation in our formalism.

Chisholm’s Paradox The basic scenario depicted in Chisholm’s paradox cor-
responds to the following implicit normative system:

{`O h, h `O i, ¬h `O ¬i}

plus the situation s = {¬h}. First of all, note that the system does not determine
in itself any normative contradiction. This can be checked by making explicit
the normative system. In this perspective, a normative system consisting of the
above norms can allow only for the following inference:

`O h ¬h `O ¬i

`O h⊗ ¬i
(7)
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Thus, the explicit system is nothing but

{h `O i, `O h⊗ ¬i}

It is easy to see that s is ideal wrt the first norm. On the other hand, while s is
not ideal wrt `O h⊗¬i, we do not know if it is sub-ideal wrt such a norm. Then,
we have to consider the two states of affairs s1 = {¬h, i} and s2 = {¬h,¬i}. It
is immediate to check that s1 is non-ideal in the system whereas s2 is sub-ideal.
If so, given s, we can conclude that the normative system says that ¬i ought to
be the case (see Definition 7).

The Gentle Murderer Let us see now the logical structure of the implicit
system of norms which corresponds to Forrester’s scenario:

{`O ¬k, k `O g}

Even in this case, we have a single application of ⊗I:

`O ¬k k `O g

`O ¬k ⊗ g

so that the explicit normative system is trivially as follows:

{`O ¬k ⊗ g}

As is well-known, the paradox is based to the following assumptions: (1) k is
given as a fact; (2) g implies k. In SDL such premises permit to apply the
inference rule RM thus obtaining a normative contradiction with the obligation
¬k. Since our formalism is not able to treat formulas with boolean operators, it
seems impossible to represent the implication of k from g. Actually, we think this
is not a real problem. It is enough to replace k `O g with k `O k in the implicit
system. Thus, the explicit system will consist of the norm `O ¬k⊗ k. If so, the
situation s = {k} is trivially sub-ideal wrt the system (remember that ¬k⊗k is
equivalent to >). On the other hand, turning back to the original formulation
of the paradox, if s is given, the system consisting of `O ¬k ⊗ g expresses
consistently that g ought to be the case. In fact, the situation s′ = {k, g} is
sub-ideal wrt the system.3

Reykjavik Scenario Consider now this version of Reykjavik Scenario:

{`O ¬r, `O ¬g, r `O g, g `O r}

Similarly to the previous examples, we can draw the following inferences:

`O ¬g g `O r

`O ¬g ⊗ r

`O ¬r r `O g

`O ¬r ⊗ g

3And it is compatible with implication of k from g.
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Accordingly, the explicit normative system is:

{`O ¬g ⊗ r, `O ¬r ⊗ g}

Given the situation s = {r}, the solution of the paradox consists of concluding
that g ought to be case without deriving its negation. Actually, in our approach
this is easily obtained since the situation s′ = {r, g} is sub-ideal wrt the explicit
normative system.4

Möbius Strip Finally, let us look at Makinson’s “Möbius Strip” example. Its
logical structure is represented as follows:

{c `O ¬b, a `O c, b `O a}

This implicit normative system can be made explicit by drawing the following
inference:

c `O ¬b b `O a

`O ¬b⊗ a
(8)

Similarly to the previous examples, the explicit normative system is as follows:

{`O ¬b⊗ a, a `O c}

Given the state of affairs s = {b}, it is expected to conclude that both a and
c should be the case. Actually, this is what we get from the normative system
since the situation s′ = {b, a, c} is sub-ideal wrt it. In fact, if b holds, this
means that the primary obligation ¬b is violated. Accordingly, the reparational
obligation a ought to be the case. As a consequence, since a is to be given, the
obligation c should follow as well.

7 Further Extensions and Final Remarks

Our analysis of the above paradoxes has shown that the sets of norms that
characterize each of them are trivially consistent. However, even if such para-
doxes correspond to relatively simple cases, our formalism is able to capture, at
least potentially, more complicated normative structures. For this reason, we
think the notion of normative consistency seems to deserve additional and more
general remarks. A normative system is consistent if it does not allow for any
application of rule (⊥). Roughly speaking, if A or ¬A cannot be repaired by
the system5, then

Γ `O A ∆ `O ¬A

4Makinson [12] pointed out that the conclusion of g must be based on a prioritisation among
promulgations. In a way, this remark applies also to our approach insofar as the norms of
the explicit normative systems outweigh their counterparts in the implicit normative system.
Remember that in our view a CTD is considered as an exception of a primary obligation.

5See Section 3 for the formulation of all the conditions of rule (⊥), and the end of Section 4
for a discussion.
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should correspond to a normative contradiction. However, while this is quite
clear when A is an atom, it is more difficult to understand intuitively the reasons
why an inconsistency must occur when A is an arbitrary formula. As previously
said, a close inspection of the inference rules shows that we can have negations of
chains of reparational obligations. Thus, the question to be solved concerns the
meaning of expressions like ¬(A⊗B). The problem is not so easy as the reader
could expect. For this reason, in Section 5 we preferred to state the conditions
to evaluate a situation with respect a normative system without considering
this kind of formulas. Of course, in a certain perspective the question could
be viewed as trivial: from a logical point of view, ¬(A⊗ B) is nothing but the
negation of a non-atomic formula. On the other hand, we think that the lack of
a rule which defines the meaning of ⊗ with respect to the negation is in a way
unsatisfactory.

Since ⊗ is not a boolean connective, it is impossible to establish a suitable
definition of it in terms of any combination of formulas built by using ⊗ and
¬.6 One of the possible lines of investigation comports to devise an additional
consequence relation corresponding to the deontic notion of permission. In
particular, such a consequence relation could be characterized at least by the
following basic rules:

Γ `O A

Γ `P A
(9)

Γ `O A⊗B

Γ `P A

Γ `O A⊗B

Γ,¬A `P B
(10)

The first rule (9) is the version in our formalism of the notorious Ought-Can
principle. The rules in 10 extend 9 to expressions containing the operator ⊗. It
is easy to understand that, if a norm says that ‘A is obligatory, otherwise B’,
this must imply that both A and B are permitted.

Moreover, thanks to the introduction of `P it is possible to give a convincing
account of formulas like ¬(A⊗B). Since the negation applies to ⊗, this means
that B is not a reparational obligation of A and so its negation is permitted. In
other words, we can have the following rule:

Γ `O ¬(A⊗B)
Γ¬A `P ¬B

(¬⊗)

Even though this seems to be a good intuition, some problems are far from
being solved. Suppose to have a norm like this

Γ `O ¬(A⊗B)⊗ C

This sequent is admitted in our formalism. However, its meaning is not clear
and the application of a rule like (¬⊗) does not make sense in this case. If

6In [5] Brewka and colleagues argued that negation transforms their nested ordered dis-
junctions into standard disjunctions. In this way, the truth of ¬(A⊗B) makes A and B false.
Unfortunately, we do not think this solution is adequate to account for our indended meaning
of the ⊗ operator.
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¬(A⊗B) means that B is not a reparational obligation of A, then the question
is: What does C stand for?

Problems like this, as well as the role of ⊗ on the left side of ` or, more
generally, the statement of some formal properties enjoyed by the our Gentzen
system are a matter of future work. Here we can just advance some lines of
further research:

• Identifying the conditions of existence of an explicit normative system,
given its corresponding implicit counterpart; and the algorithm to com-
pute the least fixed point of `O.

• Defining an appropriate semantics for the system in order to prove sound-
ness and completeness. As a starting point, we expect it would be a
possible world semantics based on selection functions.

• Extending the deductive power of the system by means of non-monotonic
patterns such as cumulativity, restricted transitivity, etc.

To sum up we have presented a formal system for reasoning with CTD structures
in an easy and natural way. We hope that this can be extended to other forms
of normative reasoning.
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