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Abstract — We propose a circuit sizing model that

takes layout parasitics into account. The circuit and

layout parameters are stored in a parameterized lay-

out description format, GBLD. The layout parasitics

are stored as closed form expressions. Layout optimiza-

tion tools can modify the layout and recalculate par-

asitics on the fly. If the results of sensitivity analysis

are passed to those tools, optimization for performance

can be achieved with relatively few iterations involving

time consuming circuit simulations.

I. Introduction

The difficulties in analog integrated circuit design are due
to numerous electrical effects induced by layouts, especially
for high performance and high speed circuits. Lack of exact
layout information during circuit sizing leads to long design
iterations involving time consuming runs of complex tools.

The traditional analog design flow, as shown in Fig.1(a),
involves repetitive iterations of circuit sizing, layout gener-
ation, electrical values extraction, and performance evalu-
ation. Circuit simulators, such as Spice, are used during
circuit sizing. Designers have to simulate different sets of
parameters in order to evaluate circuit performance. After
circuit sizing, layout is generated according to the circuit
and parameters. Considerable experience is needed from
the designer to manually produce good layout for a given
sized circuit. Then circuit parasitics are extracted from the
detailed layout and performance is evaluated. Redesign is
needed whenever the final performance does not conform
to the specification.

Novel analog design flows [1-3] have been proposed in or-
der to automate the iterations and thus reduce the design
time. In the layout-in-the-loop approach [1,2], as illustrated
in Fig.1(b), procedural layout generation tools are used to
automate generation of layouts. In [3], estimations of para-
sitics are used in order to replace slow layout generation and
extraction steps. In all these approaches, however, there is
no information about how layout parameters affect final
performance. Therefore, iterations may never converge by
just trying many combinations of circuit sizing parameters.

Another problem in the approaches above is that only
one version of layout is generated according to one combi-
nation of circuit sizing parameters. Since a combination of
circuit sizing parameters can have many different layouts,
it is possible that we can correct the design performance

by modifying the layout instead of sizing the circuit and
generating the layout again.

Our approach in this paper is to keep both circuit and
layout parameters updated along the design flow, with par-
asitics represented as closed form equations. Quite many
parasitics can be calculated that way and extraction tools
are invoked only when necessary. GBLD, our parameter-
ized layout format, provides for easy storage and manip-
ulation of those parameters. After extraction, parametric
and symbolic analysis techniques can be used to analyze
the relationships between parameters and performance of
the design. Then decisions of the parameter values can be
made for the next circuit sizing loop. The automation of
the loop in the design flow can be achieved with the support
of software which has parameter control functions.

This paper is organized as follows. We introduce pa-
rameterized layout format GBLD in section II. Symbolic
extraction is presented in section III. In section IV, we dis-
cuss evaluation of performance on this circuit sizing model.
The design flow is proposed in section V. Conclusions are
drawn in section VI.

(a) (b)

Fig. 1. Analog design flows: (a) Traditional (b) Layout-in-the-loop



II. Parameterized Layout Format

There are three common methods that can be used to
describe VLSI layouts. The most popular is the geometric
layout format, such as GDSII or CIF, used a standard rep-
resentation in physical design tools. Since coordinates of
the layout format are fixed, the formats can not describe
parameterized layouts. The second method is the proce-
dural layout language, such as CAIRO (based on C) [4],
Layla (based on Pascal) [5], and ADL (based on C) [6].
These languages are close to programming languages and
are used to generate layouts. Thus, they are not suitable
to be processed by programs.

The third method is the symbolic layout languages which
include ICDL [7], TDL [8], VIRGIL [9], and a number of
others. Unfortunately, most of them can not describe 45-
degree or all-angle geometry that is common in analog lay-
outs.

Our layout representation language, Grammar-Based
Layout Description (GBLD) [10], is based on formal meth-
ods. GBLD is compatible with geometric layout formats,
and it is parameterized. The language is hierarchical and
can describe all-angle geometry. GBLD is defined as fol-
lows, and the symbols are defined in TABLE I:

Definition of GBLD. A Grammar-Based Layout Descrip-
tion (GBLD) language is 6-tuple (T , N , S, L, U , P ), where:
1. T is a finite set, called terminal symbols (or termi-

nals), which is the set {“F”, “f”, “+”, “-”, “(”, “)”,
“[”, “]”, “{”, “}”, “!”, “0”, “1”, “2”, “3”, “4”, “5”,
“6”, “7”, “8”, “9”}. The meanings of the symbols
are defined in TABLE I.

2. N is a finite set, called non-terminal symbols (or non-
terminals).

3. S ∈ N is the start symbol. We put S as the first
production rule in all example grammars.

4. L is a finite set, called layers, which includes all layer
names in a VLSI layout.

5. U is a finite set, called usages. Usages are in the form
of <a,b> where a ∈ N and b ∈ L. Usages can only
appear on the right-hand side of production rules.

6. P is a finite set, called production rules. Each pro-
duction rule consists of a terminal, followed by an ar-
row, followed by a string of terminals, non-terminals,
and usages.

Circuit of a current mirror using NMOS transistors is shown
in Fig.2. The Spice netlist of the circuit can be written as:

M1 net1 net1 net0 0 L=3 W=3
M2 VDD net1 net0 0 L=3 W=‘w1’

where w1 is a circuit parameter in this example. The current
ratio IO/IREF can be controlled by w1.

The layout according to the circuit and circuit sizing pa-
rameters is shown in Fig.3. Note that contacts are omit-
ted and the layout is in parameterized form. Both channel
length and width of M1 are 3 units as in Fig.2 and Fig.3.
For NMOS transistor M2, the channel length is 3 units while

Fig. 2. Circuit of a current mirror

TABLE I
Symbols used in GBLD

Symbols Meanings
F Move forward one unit in the current direc-

tion and draw a line
f Move forward one unit in the current direc-

tion (without drawing a line)
+ Turn left 90 degrees
- Turn right 90 degrees
[ Push the state of the current position and

direction into a stack
] Pop the state from the top of the stack and

restore the position and direction of the tur-
tle to the state

<NT,ly> Generate string “ly(κ)” if there is a pro-
duction rule defined as “<NT>→κ” and
<NT,ly> can only appear on the right hand
side of production rules. (ly stands for layer
name or layer number. κ stands for a poly-
gon or polygons.)

{ Start recording a string except “{”, “}”, and
“!” on a magnetic tape

} Stop recording and place an end-of-the-
record symbol on the tape

! Rewind the tape to the previous end-of-
the-record symbol, generate and erase the
recorded characters of the string between the
two end-of-the-record symbols, then move to
the end of the recording

Act(x) Move forward x unit(s) in the current direc-
tion with/without drawing a line. Here Act
stands for symbol “F” or “f”

Act(x,y) Move forward x unit(s) at least but y
unit(s) at most in the current direction
with/without draw a line. Here Act stands
for symbol “F” or “f”

NT(x) Repeat the non-terminal symbol exactly x
times

NT(x,y) Repeat the non-terminal symbol at least x
times but no more than y times



Fig. 3. Parameterized layout of Fig.2.

<CM> → [<M1>][-f(4)-f(1)--<net0>][f(4)-f(4)+<net1>

][-f(7)f(<x1>)-f(3)f(<y1>)f(<y2>)F(1)

F(<y2>)F(1)--<M2>]

<poly1> → {F(3)-F(9)-}{!}

<diff1> → {F(9)-F(3)-}{!}

<M1> → [<poly1,"poly">][-f(3)-f(3)--<diff1,

"ndiff">]

<diff2> → {F(1)F(<y2>)F(1)F(<y2>)F(1)-F(9)-}{!}

<poly2> → {F(9)F(<y2>)F(<y2>-F(3)-}{!}

<M2> → [<diff2,"ndiff">][-f(3)-f(3)--<poly2,

"poly">]

<net0> → -F(1)-F(2)F(<y1>)F(<y2>)+F(2)F(x1)F(2)-

F(1)-F(2)F(<x1>)F(3)-F(1)F(<y2>)F(<y1>)F(2)

<net1> → F(1)-F(8)-F(3)+F(<x1>)F(1)-F(1)F(<y1>)F(2)

-F(1)-F(2)F(<y1>)+F(<x1>)F(5)-F(1)-F(4)+

F(2)+F(7)

Fig. 4. GBLD describing parameterized layout in Fig. 3.

the width is a parameter w1. We can derive the equation
that:

w1 = 1 + y2 + 1 + y2 + 1 = 3 + 2*y2

Note that w1 is a circuit parameter, while y2 is a parameter
from the layout. Other layout parameters include x1 and
y1. The GBLD language which describes the layout in Fig.3
is shown in Fig.4.

Another example of using GBLD to describe the layout
of a differential amplifier shown in [11] is parameterized and
presented in the Appendix. Circuit and layout parameters
used in the example are listed in TABLE A.1.

III. Symbolic Extraction

In the current analog design flow, the parameters cannot
be passed to the extraction level. Since coordinates of the
layout before extraction are fixed, no previous variables are

preserved. Thus, only one combination of circuit and layout
parameters can be simulated at a time during the long loop
of layout generation and extraction. In addition, further
analysis of the relationships between design performance
and layout parameters becomes impossible.

Since we would like to pass parameters in circuit sizing or
layout synthesis to the final performance evaluation level,
the results of the extraction step must be a netlist with
symbolic values. We call this extraction step symbolic ex-
traction.

There are many methods in modeling distributed RC
lines in layout parasitics extraction. We use the Π model
here because it is simple to demonstrate. Other RC line
models can be used in our circuit sizing model as well. For
a wire in the layout, two capacitors and one resistor are
used to model the RC effects, as illustrated in Fig.5.

Fig. 5. Π model for distributed RC line

After symbolic extraction of the parameterized layout
in Fig. 4, the extracted netlist becomes (circuit shown in
Fig.6):

M1 n01 n03 n11 0 L=3 W=3
M2 VDD n05 n12 0 L=3 W=‘3+2*y2’
R1 n01 n02R=‘10*p’
R2 n03 n04 R=‘4*p’
R3 n04 n05 R=‘(4+x1+y1)*p’
R4 n11 n12 R=‘(7+x1+y1+y2)*p’
C1 n01 0 C=‘10*q/2’
C2 n02 0 C=‘10*q/2’
C3 n03 0 C=‘4*q/2’
C4 n04 0 C=‘(8+x1+y1)*q/2’
C5 n05 0 C=‘(4+x1+y1)*q/2’
C6 n11 0 C=‘(7+x1+y1+y2)*q/2’
C7 n12 0 C=‘(7+x1+y1+y2)*q/2’

We can consider p as (sheet resistance of metal-
1)/(wire width) and q as (permittivity of SiO2)*(wire
width)/(distance between the metal-1 layer and the sub-
strate layer). Therefore, both p and q are constants.
Note that the circuit parameter w1 has been translated to
‘3+2*y2’ and thus the circuit and layout parameters are
preserved in the extracted netlist.

Another method to model distributed RC lines is to use
the Spice3 uniform-distributed RC-line (URC) model. It is
very convenient because we only need to extract the length
of the wire in symbolic form as the main parameter in the
model.



Fig. 6. The netlist after extraction

IV. Performance Evaluation

After performing symbolic extraction, a netlist with sym-
bolic parameters is generated. There are two methods that
can be used to analysis the netlist. One is to use paramet-
ric analysis from numerical simulation tools, the other is to
perform symbolic analysis.

A. Parametric Analysis

Parametric Analysis is a function that can be found in
circuit simulation tools such as OrCAD PSpice. Parame-
ters can be used as inputs of the simulator. First, users can
set the start, end, and step values of a parameter. Then
the simulator runs several times according to different val-
ues of the parameters. The result is a graph with curves
representing different parameter values. This can be a very
useful function with which designers can evaluate different
trade-offs. In addition, many combinations of parameters
are simulated at once without layout re-generation and re-
extraction.

B. Symbolic Analysis

The other method that can be used to analyze netlists
extracted by symbolic extraction is symbolic analysis. An
introduction to symbolic analysis can be found in the review
paper [12]. It is a method used to analyze analog circuits.
The results of symbolic analysis are equations representing
different circuit characteristics, such as transfer functions,
voltage gain, etc. From the generated equations, analog
designers are able to evaluate relationships between input
parameters and the design performance. Decisions can be
made better in the next circuit sizing task.

V. The Design Flow

The proposed design flow is illustrated in Fig.7. Values
of parameters that can not be decided at the circuit siz-
ing level can be left as parameters, or as parameters with
constraints. GBLD can be used to represent parameter-
ized layout according to the netlist of the circuit. Design
rules in the parameterized layout can be maintained by us-
ing constraints on layout parameters. Symbolic extraction

Fig. 7. Proposed analog design flow

only needs to be executed once for a layout structure. Af-
ter symbolic extraction, netlists with symbolic parameters
and equations inside can be analyzed. We may only need
to modify layout parameters if the performance does not
conform to the specification. With support of parameter-
control functions, both circuit and layout variables are able
to be decided incrementally and automatically.

VI. Conclusion

A circuit sizing model using parameterized layout format,
GBLD, has been presented in this paper. With this model,
both circuit and layout parameters are kept in the extracted
netlist. The netlist can be analyzed by using parametric or
symbolic analysis. Layouts can be modified to meet the
performance requirements without sizing the circuit.

Appendix

Fig. A.1. Circuit of a differential amplifier



Fig. A.2. Layout structure of the circuit in Fig. A.1.

(a) <pmos12> for M1, M2 (b) <pmos34> for M3, M4

(c) <nmos56> for M5, M6 (d) <net35>

(e) <net234>

(f) <net46>

Fig. A.3. Part of parameterized layout in Fig. A.2.

<AMP> → [<m34_1>][f(3.5)-f(3.5)+<net35,"m1">][f(3.5)-
f(3)f(<W3>)f(<n234c>)f(<W3>)++f(0.5)-<net46,
"m1">][-f(3)f(<W3>)-f(8)f(<L5>)f(3)-f(1)f(<W5>)
-<m56>][f(6)f(<L3>)f(3.5)-f(0.5)+<net234,"m1">]
[f(6)f(<L3>)f(11)-f(0.5)f(3)f(<n234d>)f(<n234b>)
f(2)f(<n234a>)f(0.5)--f(<W1>)f(3)f(<W1>)f(3)-}
<m12>]

<diff12> → {F(3)F(<L1>)F(3)-F(<W1>)}-}{!}
<poly12> → {F(<L1>)-F(2)F(<W1>)F(2)-}{!}
<pmos12> → <diff12,"pdiff">f(3)+f(2)-<poly12,"poly">
<diff34> → {F(3)F(<L3>)F(3)-F(<W3>)-}{!}
<poly34> → {F(<L3>)-F(1)F(<W3>)F(1)-}{!}
<pmos34> → <diff34,"pdiff">f(3)+f(1)-<poly34,"poly">
<diff56> → {F(3)F(<L5>)F(3)-F(<W5>)-}{!}
<poly56> → {F(<L5>)-F(1)F(<W5>)F(1)-}{!}
<nmos56> → <diff56,"ndiff">f(3)+f(1)-<poly56,"poly">
<net234> → F(2)-F(3)F(<n234d>)+F(4)-F(<n234b>)+F(7)-F(2)

F(<n234a>)-F(2)-F(<n234a>)+F(7)-F(<n234b>)+F(2)+
F(<n234d>)F(3)-F(2)-F(3)+F(3)-F(n234d)-F(3)+
F(<n234c>)+F(3)-F(<n234d>)-F(3)+F(3)-

<net35> → F(2)-F(<n35a>)F(2)-F(11)+F(3)-F(5)-F(2)-F(3)+F(3)
F(<n35b>)-F(2)-F(<n35b>)+F(9)+F(<n35a>)-

<net46> → F(2)+F(<n46a>)F(2)+F(8.5)+F(1)-F(4.5)+F(2)
F(<n46c>)+F(2)+F(<n46c>)-F(2.5)-F(<n46b>)+F(2)+
F(<n46b>)F(1)-F(4.5)-F(<n46a>)+

<n12poly> → {F(<L1>)-F(<n12a>-)}{!}
<m12_1> → [<pmos12>][f(3)-f(<W1>)+<n12poly,"poly">][-

f(<W1>)f(<n12a>)+<pmos12>]
<nwell1> → {F(6)F(<L1>)F(6)-F(3)F(<W1>)F(3)F(<W1>)F(3)-}{!}
<ibias> → {F(2)+F(<nbias>)+}{!}
<nplus1> → {F(3)-F(3)F(<W1>)F(3)F(<W1>)F(3)-}{!}
<ibpoly> → F(3)F(<L1>)-F(7)-F(<L1>)-F(4)+F(3)-F(3)-
<m12> → [<nwell1,"nwell">][f(3)-f(3)+<m12_1>][f(3.5)-

f(3)f(<W1>)--f(0.5)-<ibias,"m1">][f(6)f(<L1>)
f(3)<nplus1,"nplus">][f(3)+f(4)-<ibpoly,"poly">]

<n35poly> → {F(<L5>)-F(<n35c>)-}{!}
<m56> → [<nmos56>][f(3)-f(<W5>)+<n35poly,"poly">][-f(<W5>)

f(<n35c>)+<nmos56>]
<m34> → [<pmos34>][-f(<W3>)f(<n234c>)+<pmos34>]
<in1> → {F(1)+F(<nin1>)+}{!}
<in2> → {F(1)-F(<nin2>)-}{!}
<nplus2> → {F(3)-F(3)F(<W3>)F(3)F(<W3>)F(3)-}{!}
<nwell2> → {F(6)F(<L3>)F(6)-F(3)F(<W3>)F(3)F(<W3>)F(3)-}{!}
<m34_1> → [<nwell2,"nwell">][f(3)-f(3)+<m34>][f(6)-f(2)+

<in1,"poly">][f(6)-f(3)f(<W3>)f(<n234c>)f(<W3>)
f(1)+<in2,"poly">][f(6)f(<L3>)f(3)<nplus2,
"nplus">]

Fig. A.4. The GBLD syntax for the parameterized layout in Fig. A.2.

TABLE A.1
Lists of circuit and layout parameters in Fig. A.4.

Circuit Parameters <L1>, <W1>, <L3>, <W3>, <L5>, <W5>

Layout Paramaters <n234a>, <n234b>, <n234c>, <n234d>,

<n35a>, <n35b>, <n35c>, <n46a>, <n46b>,

<n46c>, <nin1>, <nin2>, <n12a>, <nbias>
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