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Abstract—A number of price forecasting methods are used to 

forecast wholesale (spot) electricity prices. The forecasts are 
evaluated for both accuracy and variation in accuracy (risk). 
These forecasts are used to balance revenue against forecasting 
error risk in dispatching constrained generation. The best 
dispatch method found was based on the half-hours with the 
maximum demand. 
 

Index Terms—Electricity market, spot or pool price 
forecasting 

I.  INTRODUCTION 

n Electricity Supply Industry (ESI) the generator 
companies, independent system operators (ISO), 

distributors and customers all make organizational decisions 
that include balancing return against risk. Decision makers 
benefit from estimations of risk and returns contributions of 
different factors.  
 
This paper investigates dispatching of energy constrained 
generation to obtain maximum revenue. In the first group of 
simulations, only the expected price of the price forecast is 
used to determine the half-hours of generation. In the second 
set of simulations, the expected price and variation of the 
forecasts are considered. 

II.  PRICE FORECASTS 

A.  Forecasting Data and Dates 

All price forecasting models were trained with 28 days of 
data and tested by forecasting the next seven days of New 
South Wales (NSW) regional electricity price. The results 
were obtained by testing over 25 weeks of data from the 12th 
of February to the 30th of July 2002. All data was obtained 
from the National Electricity Market Management Company’s 
(NEMMCO) web site (http://www.nemmco.com.au) [1]. The 
Australian National Electricity Market (NEM) is a regional 
(state) pool based open auction style electricity market [2]. 
The wholesale (spot) pool price of electricity is the same for 
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all market participants. The NEM market user limited 
locational nodal pricing with only 5 pricing nodes, the five 
regions.  

Note all forecasts are SEVEN days ahead, which are 336 
half-hour time steps. The accuracy of the forecasts increases 
when forecasting 24 hours ahead and especially one half-hour 
(one time step) into the future. For dispatch planning, it 
requires a minimum of 48 hours and we found little accuracy 
difference between forecasting two days or seven days into 
the future. 

The 25 weeks of testing data was divided into two sets. 
One set, the first 14 weeks for evaluating the accuracy of the 
forecasts and another set the last 11 weeks (15 to 25) for 
calculating the revenue of the dispatching methods. Table I 
displays the inputs presented to the neural network and 
Support vector Machine price forecasting methods. 

 
TABLE I 

IN PUTS TO THE NEURAL NETWORK AND SUPPORT VECTOR MACHINE MODELS 

 Inputs to NN & SVM  
Input Input Name Half-hour delay. 

t=0 NOW 
Comment 

Target spot price     t=-336 Cents/MW 
1 spot price     t=3 1 hour 
2 daily half-hour t=-336  
3 weekly half-hour  t= -336  
4 capacity required    N/a 
5 reserve required     N/a 
6 reserve surplus     N/a 
7 PASA demand 10%   N/a 
8 PASA demand 50%    N/a 
9 PASA demand 90%   N/a 

PASA File 
at delay t=2 
Data read at  
time delay 
t=-336 

10 spot price     48 1 day 
11 spot price     96 2 days 
12 spot price     144 3 days 
13 spot price     336 1 week 
14 spot price     672 2 weeks 

B.  Summary of Price Forecasting Methods 

 
    1)  Same as Last Week 

A very simple forecasting method is to assume that the 
electricity price this week is the same as last week.  

 
    2)  Linear regression as sum of sine waves 

Linear regression models have been used to forecast loads 
for many years. The load pattern is modeled by the addition of 
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a number of sine waves of different frequencies and 
amplitudes. Visualize that the load pattern is modeled by 
overlapping a number of sine waves over the load pattern. 
Sine waves are used with different frequencies and 
amplitudes. The form of the function is always a sine wave so 
that the sine wave is called the kernel function. The amplitude 
and frequency are the parameters of this kernel function (1). 
The amplitude and frequency are the parameters that are 
trained (adjusted) through a linear regression algorithm to fit 
the data with a minimum of error. 
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We have found that linear regression of sine waves is far 
less accurate than taking a simple average. The load is more 
suitable for linear regression [3] as the load pattern follows 
clear cycles. In the FFT of the demand Fig. 1 the 7 day, 1 day, 
0.5 day (12 hour) and 0.33 day (4 hour) cycles can be clearly 
identified. In the FFT of the price (Fig. 2) only a daily cycle is 
clear and this indicates correctly that the electricity price 
pattern is unsuitable for linear regression modeling. 
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Fig. 1.  Fast Fourier Transform of 2048 half-hours (~43 days) of electricity 
demand. 
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Fig. 2.  Fast Fourier Transform of 2048 half-hours (~43 days) of electricity 
price. 
 

    3)  Neural Network 
A neural network is designed to model a set of data by the 

sum of non-linear threshold kernel functions (2). This 
conceptual simple method of reconstructing the data with 
on/off threshold functions has been found to be a powerful 
method in many problems in electrical engineering. Most 
directly relevant to this research is the use of neural networks 
in load forecasting [4] and price forecasting [5].  

In neural networks the parameters are the weights [6]. 

These weights are trained by an algorithm that adjusts the 
weights so that the mean squared error between the network 
output F(x) and the target electricity price is minimized over 
all input vectors x in the training data [7]. The neural network 
used for price forecasting in this research was trained using 
the error back-propagation algorithm.  
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    4)  Support Vector Machines 
Support Vector Machines (SVM) enables the user to select 

from a wider range of kernel functions than neural networks. 
SVMs have been applied to similar problems as neural 
networks including forecasting in financial problems [8], [9]. 
The SVM models were trained and simulated using the 
“mySVM” program [10]. In this research, the price forecasts 
were done using radial bases functions (circular hills) (3). The 
radial bases function was found to be the most suitable of a 
number of kernel functions tested on Australian electricity 
prices Fig. 3 [11]. A simple visualization is that similar to 
neural networks, the data is modeled by overlapping many 
copies of the kernel function (circular hill) in the data space. 
The SVM is based on quadratic optimization to maximize 
margins in the weight space (4) [12], [13].  
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Equations (4) show SVM training for regression problems. 
C and ξ are constants describing error tolerance. The dot 
products are performed with the kernel functions K(x,s). 
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Fig. 3.  Structure of SVM Implementation. 

xk,1 

Xk,2 

Xk,3 

Xk,4 

Xk,l 

K(S1,Xk) 

K(S2,Xk) 

K(S3,Xk) 

K(Ss,Xk) 

Σ 
F(x) 

W1 

W2 

Ws 

W3 

Input Xk 
Weights W 



 3

 

III.  PRICE FORECASTING RESULTS 

A.  Accuracy Measures 

The forecasting results are measured by the Mean Absolute 
Error (MAE) (5). 
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This measure distorts the importance of error because 

when the actual price is small, the MAE is larger and when 
the actual price is larger, the MAE is smaller. In the market, 
the most important times are when the price is high. To 
overcome this distortion we use the MAE average based (6), 
where the actual price denominator is replaced with the daily 
average price. The squared error measure often used will 
emphases larger errors. However, the denominator distortion 
is still a problem. 
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Where n’ is start of the day containing half-hour n. 
 

B.  Same as Last Week 

The same as last week forecasting model forecasted the 
electricity price over the 25 weeks with an MAE of 33.5% and 
an MAE average based of 45.2%. 

 

C.  Neural Network Price Forecast 

The neural network forecasting model forecasted the 
electricity price over the 25 weeks with an MAE of 28.3% and 
an MAE average based of 37.4% [14]. 

 

D.  Support Vector Machine Price Forecast 

The SVM forecasting model forecasted the electricity price 
over the 25 weeks with an MAE of 27.8% and an MAE 
average based of 36.3% fig. 4 [15]. 
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Fig. 4.  Sample week of SVM price forecast. 

 
 

IV.  GENERATOR DISPATCH RESULTS 

In the simulation of dispatching an energy constrained 
generator, the total daily energy was fixed at 20MWhours 
with a maximum power output of 5MW. This output is 
equivalent to 4 hours (8 half-hours) of continuous power 
output. The situation can be visualized as a small (micro) 
hydro generator with limited temporary storage and river flow 
requirement or a bio-generation plant that must use all of the 
fuel (farm or factory waste) over a 24 hour day. 

A.  Dispatch Based on Price Only 

The simplest dispatch method is to select the 8 highest 
priced half-hours (4 hours) of the day and run at the full 
50MW. The dispatch based on price only is applied on the 
actual price (perfect knowledge) to calculate the maximum 
possible return that can be obtained from 8 half-hours of 
generation. Then the price based dispatch is applied to each of 
the price forecasts by selecting the 8 half-hours of each day 
based on the highest forecasted price and outputting the 
maximum 50 MW of power for that half-hour. 

The revenue is calculated by multiplying the actual 
electricity price of the 8 half-hours selected by 50MW and 
summing the results. 

The maximum possible revenue obtained from the actual 
price was $660233 ($8574 per day). The average spot price 
over the 11 weeks for the 8 highest priced half-hours each day 
was $214/MW compared to an average of $59/MW for all 
half-hours Table II. 

Using the SVM with Projected Assessment of System 
Adequacy (PASA) price forecast, the revenue was $587674 
($7632 per day). If this forecast was used then the total 
revenue would be $75744 less than the maximum possible 
with perfect knowledge. When this forecast was used, an 
average of 4.1 out of the 8 highest priced half-hours was 
selected correctly. This is shown in the reduction in the 
average highest 8 half-hour price from $214/MW (perfect 
knowledge) to $191/MW. 

Our neural network forecast has been found to be very 
similar to the SVM forecast but was less stable during 
repeated training. Basing the dispatch on the neural network 
forecast, the revenue was $568564 ($7384 per day). An 
average of 4.15 out of 8 of the highest priced 8 half-hours of 
each day was correctly identified by the neural network 
forecast. 

If the 8 highest priced half-hours are assumed to be the 
same as last week then the revenue was $651491 ($8461 per 
day). Assuming same as last week correctly identified 4.16 
out of 8 of the highest priced half-hours.  

Basing the dispatch on another set of perfect knowledge 
the actual demand was more successful giving a revenue of 
$655363 ($8515 per day). Using the 8 half-hours of the day 
with the greatest demand correctly identified an average of 
5.35 out of the 8 highest priced half-hours.  
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Actual demand is not available but NEMMCO makes 
publicly available a demand forecast in the PASA data. 
Selecting the 8 highest demand forecasts from the 10% POE 
(probability of exceeding) demand forecast gave a revenue of 
$652626 ($8476 per day). This method correctly identified an 
average of 4.52 out of 8 of the highest priced half-hours over 
the 77 days (11 weeks).  
 

TABLE II 
RESULTS OF EIGHT 50 MW DISPATCH BASED ON DIFFERENT PRICE FORECASTS 

Forecast Revenue MAE MAE 
average 
based 

Average 
correct 
out of 8 

Average 
top 8 
price 

Actual 
price 

660233 n/a  8 214.4 

Actual 
demand 

655363 n/a  6.68 212.8 

10% 
POE 
demand 

652626 n/a  6.26 211.9 

Same as 
last 
week 

651491 33.5
% 

45.2% 6.08 211.5 

Neural 
Network 

568564 28.3
% 

37.4% 5.96 189.3 

SVM 587674 27.8
% 

36.3% 6.04 191.1 

 

B.  Dispatch Based on Price and Risk 

One of the original goals of this research was to examine if 
the dispatch could be improved by including both the price 
and the risk. Thus, treating the dispatch as a portfolio [16], 
[17] of half-hourly generations, the revenue risk balance was 
modeled by a utility equation (8) with the forecast price 
multiplied by the 50MW output as the return and the variation 
of the error as the risk. The risk tolerance T is a constant 
chosen to model the user’s attitude to risk. 

Utility = Σ(T.return – risk)      (8) 
In the dispatch problem studied, the risk was the variation 

in forecast error and not the variation in price. The highest 
prices were the most poorly forecasted and so had the greatest 
variation in error. If risk of error was reduced then the highest 
priced half-hours would be selected less often and the revenue 
would be greatly reduced. However, after more investigation, 
it became clear that the risk in price forecasting error was not 
the relevant risk to select dispatch times for the generator.  

The best dispatch solution was to select the 8 highest 
priced half-hours so more specifically, the risk was in not 
selecting the correct eight highest priced half-hours. The 
magnitude of the price forecast for each half-hour was not 
important for the dispatch problem. The important factor was 
correctly forecasting the order of half-hours through-out the 
day from the highest priced to the lowest priced half-hours. So 
the risk was the probability that the order would be inaccurate. 

Except in the extreme case where the risk tolerance was set 

so that all half-hours were dispatched evenly, (that is 8.3MW 
(400/48) for all 48 half-hours of the day) the results including 
the risk were the same as for price based only results. That is, 
the highest 8 priced half-hours of the day were selected. 

 

V.  DISCUSSION 

The important risk in the dispatch is the risk of missing a 
high priced half-hour. This proved to be of limited importance 
as all the 8 highest priced half-hour selection methods were 
good at selecting the two or three very high priced half-hours 
of each day. After the top two or three highest priced half-
hours, the price dropped and remained similar between the 4th 
to 12th highest priced half-hours. Correctly identifying the top 
three half-hours was important in selecting the very high 
prices. In contrast, correctly identifying the other 5 half-hours 
in the top 8 priced half-hours was not as important. The 
highest priced half-hour of each day had an average price of 
$800/MW the second highest half-hour $400/MW the third 
$170/MW all other half-hours had averages of less than $50 
as shown in Fig. 5. 

The setting of the risk tolerance T was very sensitive to 
switching from dispatching the generation totally based on 
forecasted price to totally on forecasted risk over a very small 
range. This range was found by trial and error, which would 
be impractical is real situations. 
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Fig.5.  Average Price of half-hours of the day in order of price. 

 
An Investigation of the influence of the risk in forecasting 

the price order would be interesting if the generator could 
only be run at maximum output for one half-hour. 
Diversifying the risk, that is spreading the generation over a 
number of half-hours could provide benefits over choosing 
only one half-hour. The choice of one half-hour increases the 
risk of missing the one or two high priced half-hours of the 
day. So in case II only one half-hour is required. 

 

VI.  GENERATOR DISPATCH RESULTS CASE II 

In case II the total daily energy was still fixed at 20MWhours 
but with an increased maximum power output of 40MW. The 
whole of the 20MWhours daily energy output could be 
dispatched in one half-hour.  
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A.  Dispatch Based on Price Only 

The single half-hour is selected based on the half-hour with 
the greatest forecasted price or demand. The revenue is 
calculated by multiplying the actual price of the selected half-
hour by the generator output of 40MW as shown in Table III. 
The column, in top 2, represents the percentage that the 
selected half-hour was the highest or second highest half-hour 
of the day in order of actual price. That is the percentage of 
selected half-hours that were the highest or second highest 
actual priced half-hour of that day. 
 

TABLE III 
RESULTS OF EIGHT 50 MW DISPATCH BASED ON DIFFERENT PRICE FORECASTS 

Forecast Revenue 
[$] 

In 
top 2 
[%] 

In top 3 
[%] 

Average 
correct 
out of 1 

Average 
top 1 
price [$ 

Actual 
price 

2497732 100 100 1.0 811.02 

Actual 
demand 

2062620 95 98 0.78 669.68 

10% 
POE 
demand 

1915615 96 99 0.66 621.95 

Same as 
last 
week 

1991184 95 98 0.75 646.48 

SVM 1980940 86 91 0.52 643.16 
 
On 29th of June 2002 at 18:00 the price spiked to 
$8047.61/MW. This is over twice the price of all other half-
hours over the period tested. The SVM was the only 
forecasting model to correctly select this half-hour as the 
highest priced half-hour of that day. To see the difference the 
price spike made, the revenue from 29th June was removed 
from the result.  

TABLE IV 
RESULTS OF EIGHT 50 MW DISPATCH BASED ON DIFFERENT PRICE FORECASTS 

Forecast Revenue 
[$] 

Actual price 2175827 
Actual demand 1972424 
10% POE demand 1825419 
Same as last week 1900988 
SVM 1659039 

 
 

B.  Dispatch Based on Price and Risk 

The selection of dispatch was based on the probability that 
the price of the half-hour would be greater than the highest 
forecasted price for that day {max$(d)}. 

The risk of each forecast used was the standard deviation 
of the error for that half-hour of the week. Each week contains 
336 half-hours. 

Risk(n) = standard deviation( over first 14 weeks of data 
|actual – forecast| ) for all n=1,2,…,336 

The distribution of the error was approximately normal so 
the probability was calculated using a normal distribution. 
The probability of the price of the half-hour being greater than 
the max$(d) is 1 minus the cumulative probability at the 
max$(d) (9). The forecast price {for$(h)} was used as the 
mean of the normal distribution and the risk(n) as the standard 
deviation. “norm_dist(a,b,c)” is a function that gives the 
cumulative probability of a normal distribution at the value (a) 
given the mean (b) and standard deviation (c) of the normal 
distribution. 

Each half-hour of the day was dispatched by the 
probability that the price would be greater than the max$(d) 
with all half-hours normalized so the total energy for the day 
was 40MWhours (10). 

Prob(h) is the probability for half-hour h of the day d. 
Prob(h) = 1 − norm_dist(max$(d),for$(h),risk(h)) (9) 

Dispatch for half-hour h is G(h) 
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Using this probability based dispatch on the demand 10% 
POE forecast, the revenue reduced from $1915615 to 
$1040598. Applying the probability to the SVM price forecast 
method, the revenue reduced from $1980940 to $1345531. 
The aim of reducing the risk is to decrease the chance of a bad 
revenue day and to even out the revenue variation from day to 
day. The variation of revenue was not reduced compared to 
the price only revenue when using the risk. 

VII.  DISCUSSION 

Based on only price, the best selection method was to 
assume that the highest priced half-hour selected today would 
be the same half hour  selected the previous week - same as 
last week method. Based on the selection of the highest POE 
demand, forecast still functioned well. The SVM method gave 
a revenue almost as great as the same as last week method. 
However, this was due to the SVM method correctly selecting 
one very high priced half-hour. When the day containing this 
very high priced half-hour was removed from the study, the 
SVM method performed poorly compared to same as last 
week and demand methods. More data and testing is required 
to investigate if the SVM method was ‘lucky’ or is suitable for 
forecasting very high price spikes. From our other studies 
with SVM for price forecasting, we would propose that the 
SVM was ‘lucky’. 

Only selecting one instead of 8 half-hours increases the 
chance of missing the one or two highest priced half-hours of 
each day. However, all the selection methods were accurate 
enough to significantly increase the revenue compared to the 
8 half-hour case I. The selected highest priced half-hour was 
outside the three actual top prices only once for the POE 
demand, twice for actual demand and same as last week and 
for 7 half-hours when using the SVM forecast. The 
forecasting methods on almost every day selected contained 
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one of the top three priced half-hours of the day. Recall the 
three highest priced half-hours were much higher in price than 
the other half-hours. This explains why the 40MW one half-
hour selection gives an average revenue that is approximately 
three times that obtained by selecting 5MW for the top 8 
priced half-hours. 

Basing the selection on the average error did not represent 
the useful error, which is selecting the half-hours in the 
incorrect order. The useful error (risk) was small. Based on 
the 10% POE demand forecast, 33% of highest priced half-
hours were missed. However, 4% of the selected highest 
priced half-hour was not the first or second actual highest 
priced half-hours. Only 1% of the selected half-hours were 
not in the actual top three priced half-hours. The 1% is only 
one half-hour event. Therefore, this useful error is too small 
to be considered in this study. 

VIII.  CONCLUSIONS 

A simple solution that works well is usually better than a 
complex solution that functions ‘optimally’. In this research, 
the simple solution is also the solution that works best. The 
best solution was dispatching the generator during the 8 half-
hours of the day (mid-night to mid-night) with the highest 
forecast of demand. The demand forecast is publicly supplied 
by NEMMCO, the operator of the Australian National 
Electricity Market. The next best solution was to assume that 
the 8 highest priced half-hours would be the same as the same 
day last week. Both these dispatch strategies lost 
approximately 1.2% of revenue when compared to the 
maximum possible revenue that could be obtained with 
perfect knowledge of future prices. 

In the selection of only one half-hour a day to dispatch the 
generator, the same as last week method performed the best, 
followed by the demand method. 

The consideration of risk in the dispatch problem was not 
beneficial as only one or two very high priced half-hours 
needed to be identified correctly to obtain the majority of the 
available revenue. 
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