
Systematic Operational Profile Development for Software Components

Rakesh Shukla, David Carrington and Paul Strooper
School of Information Technology and Electrical Engineering,

The University of Queensland, St. Lucia 4072, Australia.
{shukla, davec, pstroop} @itee.uq.edu.au

Abstract

An operational profile is a quantification of the
expected use of a system. Determining an operational
profile for software is a crucial and difficult part of
software reliability assessment in general and it can be
even more difficult for software components. This
paper presents a systematic method for deriving an
operational profile for software components. The
method uses both actual usage data and intended
usage assumptions to derive a usage structure, usage
distribution and characteristics of parameters
(including relationships between parameters). A usage
structure represents the flow and interaction of
operation calls. Statecharts are used to model the
usage structures. A usage distribution represents
probabilities of the operations. The method is
illustrated on two Java classes but can be applied to
any software component that is accessed through an
Application Program Interface (API).

1. Introduction

Software-based systems are some of the most
complex artefacts ever produced. There is a growing
trend to build complex software by integrating software
components. As a result, the assurance of quality and
especially reliability of software components has
become an issue of critical concern. The reliability of a
software component is a probability prediction for
failure-free execution of the component.

The reliability of a software component depends on
how the component is used. If different users use the
component in different ways, they are likely to
encounter different errors in the component, if there are
any. Statistical testing of a component generates an
estimate of the reliability of the component based on
some model of its usage, which we call an operational
profile. Specifically, an operational profile is a

quantification of the expected use of a software
component consisting of a set of input operations and
their associated probabilities of occurrence for each
possible state of the component. The test cases that are
executed during a reliability test are a sample from the
operational profile. The measure of reliability obtained
in this way depends upon the operational profile.
Determining an accurate operational profile for
software is difficult in general [1] and it is very difficult
for many software components because it requires
anticipating the future use of the component [2] .

Poore et al. [3] define a two-phase construction
process for an operational profile using Markov chain
models. The structural phase establishes the states and
transitions of the model, and the statistical phase
assigns the transition probabilities. They define three
approaches to the statistical phase: (1) uninformed-
used when no information is available about future
usage of the software; (2) informed- used when some
actual usage sequences (usage data) are available from
a prototype or a prior version of the software; and (3)
intended usage assumptions- used when the sequences
are obtained by hypothesizing runs of the software by a
careful and reasonable user. Whittaker and Poore [4]
state that “the informed approach with known
sequences for one or more classes of users is best”. We
build on this work and develop a method for
developing operational profiles of software
components based on both usage data and intended
usage assumptions.

Our contributions are to derive a usage structure
from both usage data and intended usage assumptions
and use of statecharts [5, 6] to model this structure. The
usage structure represents the flow and interaction of
operation calls. We use statecharts because of their
ability to define highly structured models with
hierarchy and parallelism, and their popularity means
that tool support is widely available.

Another contribution is that we describe a method
for deriving constraints on, and relationships between,

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

operation parameters, so that we can generate suitable
values for input parameters during testing. Most of the
research on operational profiles has focused on
operations and little is said about the operation
parameters. For software components, we have found
that assigning appropriate values for input parameters
can be quite complicated, because they depend not only
on the type of the parameter, but there are often also
constraints on individual parameters and intricate
relationships between different input parameters (to the
same or even different calls) and between output
parameters of calls and input parameters of subsequent
calls. In this paper, we describe a method for deriving
those constraints and relationships as part of the
operational profile.

This paper presents a systematic method that
provides a step-by-step procedure for developing
operational profiles for software components. The
method uses both intended usage assumptions and
usage data to discover a usage structure, usage
distribution and characteristics of parameters. The
usage distribution defines the probabilities of the
operations. The method contains four steps: (1)
information gathering; (2) structure modelling; (3)
usage quantification; and (4) parameter analysis. The
method develops a usage structure using guidelines
from the information gathered in the first step, and then
models the usage structure using statecharts [5, 6]. The
usage quantification process produces a usage
distribution. The parameter analysis process defines
parameter characteristics. To demonstrate the method,
we apply it to the SymbolTable and Tree components
of the PGMGEN testing tool [7].

The method is intended to be part of a more general
framework for the reliability assessment of software
components [8]. The framework includes support for
test case execution and output evaluation, which are not
discussed further.

Section 2 describes our use of statecharts. Section 3
defines our method for operational profile
development. Sections 4 and 5 describe the results of
applying the method to the symbol table and tree case
studies. Section 6 describes related work and Section 7
presents conclusions and future work.

2. Probabilistic Statecharts

Component usage is event-driven and reactive.
State-based formalisms are especially useful in
modelling event-driven and reactive systems. A
problem with finite state machines and other flat,
directed graphs is the description of the inherent
complexity of the real world. As the size of the

problem increases, state transition diagrams become
unmanageable, resulting in unstructured and chaotic
diagrams. To overcome this state explosion problem,
we use statecharts, which are convenient and
sufficiently powerful for describing component usage.
Statecharts constitute a visual formalism for describing
states and transitions in a modular fashion, enabling
clustering and ‘zoom’ capabilities for moving easily
back and forth between levels of abstraction. Following
[5], we extend statecharts by adding probabilities.

Figure 1 shows an example of a probabilistic
statechart. The statechart relates events and states. A
change of state caused by an event is called a
transition. A state is drawn as a rounded box containing
an optional name. An initial state is shown by a solid
circle and a final state is shown by a bull’s-eye. A
transition is drawn as an arrow from the source state to
the target state. The transition can be labelled with
Event Condition Action (ECA) rules, to which we have
added probabilities. The syntax of a rule is E[C, P]/A,
where E is an event, C denotes a guard condition, P
represents probability of occurrence, and A represents
action(s). These are all optional. An event represents an
operation call. A guard condition is a boolean function
that must be satisfied to enable an associated transition.
A probability represents the probability that a transition
whose guard is true takes place. An action is an
executable atomic computation that results in a change
in the state of the model or the return of a value.

To simplify modelling and reasoning with these
probabilistic statecharts, we place two restrictions on
them. First, we do not allow overlapping guard
conditions between different transitions from a single
state. For example, the conditions on the two
transitions from State 1 in Figure 1 are c=n and
0<=c<n. Overlapping guards can always be eliminated
by a simple transformation. Second, the probabilities of
all the transitions with the same guard from a single
state must add up to 1.0.

Figure 1: A probabilistic statechart

The context of the statechart in Figure 1 consists of
the counter variable c and the constant n. The transition

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

from the initial state to State1 also results in the action
that assigns 0 to c. While in State1, the transition event
op1 occurs conditionally (0�c<n) and the state changes
to State2. While in State2 the probability of occurrence
of op2 is 0.6 and op3 is 0.4. The action c=c+1 on the
transition from State4 to State1 updates the context.
When the counter c is equal to n, an op1 event occurs
and the state changes to the final state.

3. Method Overview

Figure 2 shows an overview of the method to
develop an operational profile for a software
component from the intended usage assumptions and/or
usage data. The rectangles represent processes and
ovals indicate inputs/outputs.

Figure 2: Method overview

The method contains four steps: (1) information
gathering; (2) structure modelling; (3) usage
quantification; and (4) parameter analysis. The steps
are described further below.

3.1 Information Gathering

The information gathering process gathers and
generates inputs for our method by collecting
information about the component and its use. The
component under reliability test can be either an in-
house or a third-party product. However, we consider
the component as a black box for operational profile
development, and assume the component will be
accessed through an API. The specification of a
component is therefore the specification of its interface.
Expected use of the component is described in the form
of intended usage assumptions and actual use of the
component is described by usage data.

A component API defines how a component is
accessed by other components. A component API has a
(class/component) name and a collection of operation
signatures. An operation signature consists of the name
of the operation and a number of inputs and outputs.
Exceptions are treated as outputs. Java and CORBA
interfaces are examples of APIs.

Intended usage assumptions are quantitative and
qualitative assumptions about the expected use of a
component. The intended usage can be described in
natural language and/or using diagrams.

The actual usage data consists of traces from
execution of a previous version of the component, a
prototype, an actual implementation, or a simulation. A
trace is an ordered sequence of operation invocations,
including both inputs and outputs. A complete trace is
produced by a complete run of a system/application in
which the component is used. When a
system/application does not terminate, there are no
complete, finite traces, and we must consider finite
initial traces. We assume that any usage data that we
collect represents a correct behaviour of the
component.

3.2 Structure Modelling

The structure modelling process shown in Figure 3
consists of two steps: structure analysis and modelling.

Figure 3: Structure modelling

The component’s API, usage data and intended
usage assumptions are used for structure modelling.
The component’s API defines the syntax and semantics
of the component operations. Structure analysis
extracts a usage structure that represents the flow and
interaction of operation calls, ignoring the operation
parameters. Modelling provides a visual representation
of the usage structure using statecharts.

We propose two approaches to derive a usage
structure: top-down and bottom-up. The top-down
approach can be applied when patterns such as

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

repeated sequences of operations can be identified in
the usage data. When this is not the case, the bottom-up
provides a more suitable approach. In complex cases, it
may be possible to apply a top-down approach first,
followed by a bottom-up approach (see Tree example
in Section 5).

The top-down approach consists of the following
steps.

1. Examine the operations in the traces and divide
them into groups of repeating patterns of
operations.

2. Identify relationships between the identified
patterns, both within sequences of repetition
and across such sequences.

3. Identify context variables and predicates on
these variables that capture these relationships.

Once these steps have been performed, the
translation into a statechart is a straightforward process.
The initial state is typically the class constructor or a
similar initialisation. The states and transitions are
determined by the patterns derived. Finally, the context
variables and predicates associated with the transitions
are specified on guard conditions and on actions as
context update functions to build a usage model.

With the bottom-up approach, the statechart is
constructed more directly. The bottom-up approach
consists of the following steps.

1. Add a state for each operation that appears in
the usage data. This state represents the last call
that was made.

2. Add a separate initial state. For each initial
operation call c1 appearing in a trace in the
usage data, add a transition from the initial state
to the state representing that operation.

3. For each subsequent operation call ci appearing
in a trace in the usage data, add a transition
from the state representing the operation call
immediately preceding ci to the state
representing operation ci.

3.3 Usage Quantification

Usage quantification adds probabilities into our
statecharts. The usage quantification process shown in
Figure 4 involves: (1) transition analysis; (2) frequency
calculation; and (3) probability calculation or
estimation. Usage quantification is not always
necessary. A usage model is deterministic, if for every
source state s, there is exactly one output transition for
each guard condition c (recall from Section 2 that we
do not allow overlapping guard conditions on output
transitions). If the usage model is deterministic, there is
no need for the usage quantification process; each

transition in the probabilistic statechart will have a
probability of 1.

When the usage model is nondeterministic, that is, if
there is a source state s and a guard condition c, for
which there is more than one output transition, then
usage quantification is necessary. For this, either the
usage data can be used to calculate probabilities
following the process outlined in [3, 9, 10], or the
intended usage assumptions must be used to estimate
these probabilities. If available, we prefer to use usage
data for accurate usage distribution.

Figure 4: Usage quantification

Following [3, 9, 10], we first construct a transition
matrix that records all possible transitions with guard
conditions between states. Deterministic transitions
have a probability of 1, impossible transitions have a
probability of 0, and the nondeterministic transitions
are the ones for which we have to calculate or estimate
the probabilities. To calculate the probabilities from the
usage data, we first count frequencies of all the
transitions in the transition matrix and then convert
these to probabilities using a straightforward
calculation. For example, if there are two possible
transitions from state s1 to state s2 with the same guard
condition c, and the first one is taken 3 times and the
second one 7 times, then the probabilities for the two
transitions are 0.3 and 0.7 respectively.

A significance test [11] can be applied to the
frequency table when usage data is used. The
significance test produces a significance level, the
probability that a given result could not have occurred
by chance. If the significance level is not “satisfactory”
more usage data must be collected or the probabilities
must be refined with intended usage assumptions.
When intended usage assumptions are used instead of
usage data, an entropy computation (following [3]) on

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

the usage distribution can be used to measure the
degree of disorder or randomness in the usage model.

3.4 Parameter Analysis

Appropriate values for input parameters depend not
only on their types, but often also on additional
constraints and relationships between them. During
parameter analysis, the usage data and intended usage
assumptions are used to model the parameter types,
constraints and relationships so that suitable values for
input parameters can be determined during test case
generation.

Parameter analysis consists of three steps.
1. Identify the type of the parameters from the

API.
2. Analyse the usage data to look for constraints

on individual parameters and relationships
between parameters. Here the usage model
derived during the structure modelling is often
useful to distinguish between different
occurrences of the same operation. Intended
usage assumptions can also be used to suggest
constraints and relationships, or to provide a
justification for the existence of these in the
data. Of course, if no usage data is available,
only intended usage assumptions can be used to
define any constraints or relationships.

3. Model the constraints and relationships so that
they can be used for test case generation. We
have used textual descriptions for this.

Note that in some cases, some of the identified
relationships may force us to reconsider the structure
we have come up with in the structure analysis,
although we have found in practice that the separation
of structure and parameter analysis is a useful
separation of concerns.

4. Case Study 1: Symbol Table

We apply our method to PGMGEN’s SymbolTable
component. PGMGEN [7] is a testing tool that
generates batch test drivers from test scripts. A test
script contains a set of test cases and each test case
contains a description of the expected behaviour,
including any expected exceptions.

The purpose of this and the next case study is to
derive operational profiles that reflect how the
SymbolTable and Tree components are used in
PGMGEN. Because the use of usage data represents
the more interesting and challenging aspects of the
method, we try to use this usage data as much as

possible in the case studies. In more realistic case
studies, such usage data may not be available,
especially when devising an operational profile for new
components or existing components in new
applications, and one would have to rely more on
intended usage assumptions.

4.1 Information Gathering

The API of SymbolTable is shown in Figure 5. The
table stores pairs of symbols (strings) and identifiers
(integers). Symbols and identifiers must be unique. The
constant MAX_SYMBOLS indicates that a maximum of
50 symbols are allowed in the table and
MAX_SYM_LENGTH indicates that the maximum
length of a symbol is 20. The operation
insert(sym) adds a new symbol sym and assigns
an identifier to it. size returns the number of pairs in
the table. The function existId(id) returns
whether identifier id is in the table. Similarly
existSym(sym) returns whether symbol sym
occurs in the table. The operation del(id) deletes
identifier id and its corresponding symbol from the
table. The functions getSym and getId return the
symbol and identifier for a given identifier and symbol
respectively. The Java exception handling mechanism
is used to signal exceptions in the implementation. The
operation insert(sym) throws MaxLengthExc if
sym has more than MAX_SYM_LEN characters,
FullExc if the table has MAX_SYMBOLS symbols in
it, and ExistSymExc if sym already exists in the
table. The operations del(id) and getSym(id)
throw NotExistIdExc if there is no identifier id in
the table. The operation getId(sym) throws
NotExistSymExc if sym is not in the table.

public class SymbolTable {
 static final int MAX_SYMBOLS = 50;
 static final int MAX_SYM_LENGTH = 20;
 public SymbolTable();
 public void insert(String sym) throws
 MaxLengthExc, FullExc, ExistSymExc;
 public int size();
 public boolean existId(int id);
 public boolean existSym(String sym);
 public void del(int id) throws
 NotExistIdExc;
 public String getSym(int id) throws
 NotExistIdExc;
 public int getId(String sym) throws
 NotExistSymExc;
}

Figure 5: API for SymbolTable

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

The intended usage assumptions are based on
knowledge about how SymbolTable is used in the
PGMGEN system. SymbolTable first stores exception
names as symbols. The supplied exception names must
be unique. Then PGMGEN uses the list of exception
names to generate exception handler code in the test
driver.

To gather actual usage data about how SymbolTable
is used, we instrumented the SymbolTable
implementation and ran PGMGEN on five test scripts.
Figure 6 shows one complete trace obtained from
SymbolTable in this way. The operations are separated
by commas. Each operation contains the name of the
operation, input parameter values in brackets and
output values after a colon (:). For the trace in Figure 6,
two symbols are added to the table (“empty” and
“full”), and these symbols are assigned the identifiers 0
and 1 respectively, as can be seen from the calls to
getId in the trace. We use the special symbol
“termination” to indicate termination of the system, so
that we can easily distinguish complete traces from
incomplete ones.

SymbolTable(), size():0, existSym(“empty”):false, insert(“empty”),
size():1, existSym(“full”):false, insert(“full”), size():2, size():2,
size():2, size():2, getSym(0):”empty”, size():2, getSym(1):”full”,
size():2, size():2, size():2, getSym(0):”empty”, size():2,
getSym(1):”full”, size():2, size():2, existSym(“empty”):true,
getId(“empty”):0, existId(0):true, existId(0):true,
existSym(“empty”):true, getId(“empty”):0, existId(0):true,
existId(0):true, existSym(“full”):true, getId(“full”):1, existId(1):true,
existId(1):true, termination

Figure 6: A complete trace

While the five traces we collected are sufficient to
come up with an operational profile, these traces were
all obtained by analysing the use of PGMGEN on
existing, textbook scripts. As such, they may not be
representative of the actual usage of PGMGEN and
hence the usage of SymbolTable within PGMGEN.
However, collecting such actual usage data is beyond
the scope of this paper. Instead, we assume that the
usage data we have in the five traces is representative
and use the method to derive a suitable operational
profile from that usage data.

4.2 Structure modelling

We are able to identify patterns in the usage data
and therefore apply the top-down approach. The first
step of the top-down approach is to examine the
operations (ignoring operation parameters) in the traces
and divide them into groups. The process of
subdividing is typically an iterative process, where by

investigating one or more traces, particular patterns are
identified, which are then confirmed (or rejected) by
investigating other traces in the usage data.

As expected, the first operation in each trace is the
class constructor and it occurs only once in each trace,
so the first sequence identified is S1 = <SymbolTable>.
We then recognise a pattern of repeated calls to size,
existSym, and insert, which is confirmed by
investigating the other traces. We record the pattern as
a repeated occurrence of the sequence S2 = <size,
existSym, insert>. Note that we could also have
recorded it as the occurrence of a single call to size (S2'
= <size>) and then a repeated occurrence of the
sequence S3' = <existSym, insert, size>. The other
traces do not provide further information about which
of the two is more appropriate, so we assume the first,
slightly simpler version is sufficient (until we find data
to the contrary). Continuing with this, we identify the
following other sequences of interest: S3 = <size>; S4
= <getSym, size>; S5 = <existSym, getId, existId,
existId> and S6 = <termination>.

The second step is to identify relationships within
and across the sequences. Sequence S1 is always first
in a trace followed by the sequence S2. S2 contains
size, existSym, and insert. Each existSym in S2 returns
false in the usage data. From the intended usage
assumptions, we deduce that this sequence of calls is
probably used to add exception names that appear in
the test script to SymbolTable, and that the check to
existSym is there to ensure that the same exception
name is not added multiple times. The reason that the
call always returns false in our usage data is that we
have only run PGMGEN on correct test scripts, which
do not contain duplicate exception names. As
indicated above, this may not reflect how PGMGEN
would actually be used in practice, but in line with the
assumption that the usage data we have is
representative, we mimic this behaviour in our
operational profile. Thus, S2 appears as many times as
there are exception names defined in the PGMGEN
script. After that, S3 appears four times. The next
sequence S4 appears the same number of times as S2
appears and then S3 appears twice. S4 appears again
the same number of times and then S3 once. From the
intended usage assumptions, we deduce that the
sequence S5 appears once for each test case in the
PGMGEN script with an exception in it. Finally, S6
appears once. Thus the sequences appear in the order
S1, S2, S3, S4, S3, S4, S3, S5, S6, where S2 and S4 are
repeated n1 times, once for each exception name
defined in the PGMGEN script, and S5 is repeated n2
times, once for each test case in the PGMGEN script
with an exception in it.

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

The third step is to capture the above relationships
using context variables and predicates. We use two
constants to control the iterations of S2, S4, and S5:

• n1 - represents the number of exceptions in the
script and is used to control the number of
iterations of S2 and S4; and

• n2 - represents the number of test cases with
exceptions in the script and is used to control
the number of iterations of S5.

We also need a number of context variables that count
the number of iterations as we traverse the model.

Figure 7 shows part of the resulting statechart. It
contains seven composite states, where the composite
state create table represents iterations of S2, get
symbols represent iterations of S4, access table
represents iterations of S5, and the states Size1,
Size2, and Size3 represent different repetitions of
S3. The bottom part of Figure 7 shows the details for
the composite state create table, which models
n1 iterations of the sequence S2=<size, existSym,
insert>.

Figure 7: Usage model

4.3 Usage Quantification

The statechart derived for SymbolTable is
deterministic because all decisions have been
incorporated into context variables and constants based
on intended usage assumptions. As a result, usage
quantification is not necessary.

To generate test cases from the statechart we still
need to select suitable values for the constants n1 and
n2. However, since we know what these constants

represent, we can use this knowledge to select these
values from a suitable range.

4.4 Parameter Analysis

The first step is to identify the types of the
parameters from the API (Figure 5). The operations
insert, existSym, and getId have a String
input parameter representing a symbol. The operations
existId, del, and getSym have an integer input
parameter representing an identifier. We also note the
output parameters: booleans for existId and
existSym, a symbol (String) for getSym, and an
identfier (int) for getId. Although we do not need
to assign values to output parameters when generating
test inputs from our operational profile, there are
sometimes relationships between output parameters of
calls and input paramaters of subsequent calls that we
should capture in our operational profile.

We then analyse each sequence identified during the
structure modelling and consider the ones for which
input parameter values must be determined. In this
case, these sequences are S2, S4, and S5.

 For the sequence S2, the two instances in the trace
(Figure 6) are:

size():0, existSym(“empty”):false, insert(“empty”)
size():1, existSym(“full”):false, insert(“full”)
From the intended usage assumptions we have

deduced this is where SymbolTable is loaded. From the
usage data, it is clear that the input parameter sym to
existSym and insert in each occurrence of S2 is
the same in both calls. As discussed in Section 4.2, we
have also deduced that each of the symbols is unique.
We must therefore ensure that the same is true for the
test sequences that we generate.

For S4, both instances of repetitions of S4 are
identical and contain two occurrences of S4:

getSym(0):”empty”, size():2
getSym(1):”full”, size():2
In this case, the input parameter id to getSym

seems to increase from 0 to n1-1, where n1 is the
number of symbols in SymbolTable, which is
confirmed by the other traces.

For S5, the three instances are:
existSym(“empty”):true, getId(“empty”):0,
 existId(0):true, existId(0):true,
existSym(“empty”):true, getId(“empty”):0,
 existId(0):true, existId(0):true,
existSym(“full”):true, getId(“full”):1,
 existId(1):true, existId(1):true
In this sequence, SymbolTable is accessed and the

constraints on the input parameter sym to existSym and
getId are that the same parameter is used in both cases

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

and that it is an input parameter that has previously
occurred in S2 (i.e., it represents a symbol that is
actually stored in the table). Moreover, the input
parameter id of both calls to existId is the same as
the output parameter of the preceding call to getId.

4.5 Test Case Generation

We have implemented a Java program that
generates sequences of calls to SymbolTable according
to the operational profile derived above. The program
is a straightforward implementation of the probabilistic
statechart, with the constraints and relationships that
were derived in Section 4.4 implemented to generate
the input parameters for the operation calls in the
sequences.

5. Case Study 2: Tree

We have also applied the method to the Tree
component of PGMGEN, which is used to build an
abstract syntax tree of the input script file. Tree
supports a forest of trees and has operations to add new
nodes to the forest, to add a sub-tree as a child of
another node, and to traverse a tree. Each node has a
value (the token in the input file), a type (the type of
the token), and the line number on which the token
occurs.

The operations makeNode, setType,
setValue, setLnum, and addChild are used to
construct a tree. makeNode adds a new empty node to
the forest. The operations setType, setValue
and setLnum assign a type, a value, and a line
number of a given node. addChild adds a child node
as the rightmost child of a parent node. The other
operations are used for tree traversal. childCount
returns the number of children of a given node.
getNthChild, getType, getValue and
getLnum return the n-th child node, the type, the
value, and the line number of a given node.

The same five PGMGEN scripts as for
SymbolTable were used to generate actual usage data
for Tree. In this case, the traces are much longer and
more complex. For example, the shortest trace consists
of 2024 calls, while the longest trace consists of 13015
calls.

Although we can identify some patterns in the traces
for Tree, there are some sequences of calls in the traces
for which we cannot detect or explain the order in
which they occur. We therefore first apply a top-down
approach to deal with the patterns that we can identify,
and then the bottom-up approach for the remaining
calls. One pattern that we can identify is that every use

of Tree consists of an initial phase in which the tree is
constructed, followed by a phase in which the tree is
traversed. Moreover, the tree creation phase consists of
n calls to makeNode, followed by calls to setType,
setValue, setLnum, and addChild (not
necessarily in that order and in some cases repeated
more than once). This is why we apply the bottom-up
approach to fill in the remaining detail.

The resulting statechart is not deterministic, so we
then apply usage quantification on the usage data. The
resulting probabilistic statechart is shown in Figure 8,
where the two composite states correspond to tree
creation and tree traversal. The labels in the statechart
represent the following operations: O1 - makeNode,
O2 - setType, O3 - setValue, O4 - setLnum, O5
- addChild, O6 - getType; O7 - getLnum; O8 -
getNthChild, O9 - childCount, and O10 -
getValue.

We applied a statistical significance test [11] to the
frequency table used to calculate the probabilities and
the result was satisfactory.

The parameter analysis for Tree was much more
complex than for SymbolTable. For example, all
methods of Tree except makeNode have at least one
parameter that must represent a pointer to a valid node
that was previously added using a call to makeNode.
If such a parameter does not represent a valid node, the
method should throw the InvalidNodeExc
exception. This means that if we randomly generate
the parameters for such calls, it is very likely that all
these calls will throw this exception (even if we restrict
the range to valid pointer values). However, in the use
of Tree in PGMGEN, no such exceptions should be
thrown, indicating that there are relationships between
the parameters of calls to Tree that should be
incorporated into the operational profile.

Note that if we attempt to completely capture all
such relationships our operational profile may become
arbitrarily complex (e.g. more complex than the
implementation of Tree itself). We therefore have to
make a trade-off between the accuracy of the
operational profile (how will it captures the use of Tree
in PGMGEN) and its complexity.

The parameter analysis revealed a significant
number of non-trivial relationships between the
parameters. For example, during tree creation, the node
parameter to all calls to setType, setValue, and
setLnum are the output parameter of the last call to
makeNode preceding it. Similarly, the two node
parameters to addChild were return values to
preceding calls to makeNode, but not always the most
recent one. We incorporated many of these
relationships in the operational profile. Even so, a

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

Figure 8: Probabilistic statechart

number of calls generated by the operational profile
can still throw exceptions. Since the operational
profile for this case study represents a simplified
approximation to the usage data, our generated test
cases produce some exceptions not observed in the
actual usage data. Further refinement is required to
minimise these exceptions.

Similar to SymbolTable, the operational profile for
Tree was implemented in a Java program that generates
test cases for Tree according to this profile.

6. Related Work

Our work focuses on operational profiles and the
use of state machines to model these. In the literature,
there are different approaches to developing
operational profiles using different usage environments
and models. In [12, 13], the actual software usage is
described by assigning unconditional probabilities to
software inputs. The usage is described using a tree,
and different possible sequences of stimuli are
described as paths in a tree.

In recent years, Markov models have been proposed
to describe operational profiles [3, 9, 14, 15].
Whittaker and Poore [14] use Markov chain properties
to define a usage model (distribution) and to generate
test cases based on the model. In the Markov chain, the
usage is described in terms of states and transitions.
The states represent user states and user stimuli are
connected to the transitions. Whittaker and Thomason

[15] extend the Markov chain model by including
analytical results and failure data in the testing chain.

Doerner and Gutjahr [9] extend the Markov chain
model by defining the syntax and semantics of a
language that allows non-Markovian transitions
between states. The addition of this feature adds
limited non-standard state in Markov models
maintaining the Markovian property, but it requires a
special-purpose language for describing non-
Markovian transitions. Woit [10] describes a technique
for the specification of operational profiles, using a
small example of intended usage, without mentioning
how to develop operational profiles. We expand on
Woit’s approach and provide a systematic method for
deriving a usage structure and parameter
characteristics.

A major problem in operational profile development
for software components is in the difficulty of
describing usage behaviours. The Finite State Machine
(FSM) [16] provides concepts of states and state
transitions for specifying behaviour. However, a
complex behaviour cannot be effectively described
using a FSM because of the state explosion problem
related to the inherent complexity of the real world.
Harel [5] introduces statecharts to extend finite state
machines for complex behaviour. The UML features
state machines based on Harel’s statechart notation [6].
We use statecharts to model our usage structure to
avoid the state explosion problem and the problem of
having to introduce a new language/notation. To

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

incorporate probabilities, we adopt the probabilistic
statechart approach suggested by Harel [5].

The method described in this paper is an important
part of our framework for the reliability assessment of
software components [8], which also incorporates test
case execution and output evaluation.

7. Conclusions

We have presented a systematic method for
developing operational profiles for software
components using both usage data and intended usage
assumptions. After gathering information about the
component and its usage, the method attempts to derive
a deterministic usage model by identifying
relationships within and across the identified patterns
using context variables and predicates. However when
a usage model contains nondeterministic choices, the
choices are replaced by probabilities from the usage
distribution. Parameter analysis considers constraints
on, and relationships between, parameters so that
suitable values for input parameters can be derived
during test case generation from the operational profile.

The application of the method to two components
and their usage data establishes the practical viability
of the method. For structure analysis, the top-down
approach has been applied to one example and a mix of
the top-down and bottom-up approaches to the second.
Although both components are Java classes, the
method is applicable to any component that can be
accessed through an API (such as CORBA, EJB, and
COM+ components).

The main areas for future work are to provide tool
support for the method and the more general
framework [8], and to apply it to an industrial case
study.

References

[1] D. Hamlet, "Are We Testing for True Reliability?,"
IEEE Software, vol. 9, pp. 21-27, 1992.

[2] J. A. Stafford and J. D. McGregor, "Issues in predicting
the reliability of composed components," In
Proceedings of 5th ICSE Workshop on Component-
based Software Engineering (CBSE5), Orlando,
Florida, USA, 2002.

[3] J. H. Poore, G. H. Walton, and J. A. Whittaker, "A
Constraint-based approach to the representation of
software usage models," Information and Software
Technology, vol. 42, pp. 825-833, 2000.

[4] J. A. Whittaker and J. H. Poore, "Statistical testing for
cleanroom software engineering," In Proceedings of
Twenty-Fifth Hawaii International Conference on
System Sciences, pp. 428 -436, 1992.

[5] D. Harel, "Statecharts: A visual formalism for complex
systems," Science of Computer Programming, vol. 8,
pp. 231-274, 1987.

[6] J. Rumbaugh, I. Jacobson, and G. Booch, The unified
modeling language reference manual: Reading, Mass. :
Addison-Wesley, 1999.

[7] D. M. Hoffman and P. A. Strooper, Software Design,
Automated Testing, and Maintenance A Practical
Approach: International Thomson Computer Press,
1995.

[8] R. Y. Shukla, P. A. Strooper, and D. A. Carrington, "A
framework for reliability assessment of software
components," In Proceedings of 7th International
Symposium on Component-based Software
Engineering (CBSE7), Edinburgh, UK, pp. 272-279,
2004.

[9] K. Doerner and W. J. Gutjahr, "Representation and
optimization of software usage models with Non-
Markovian state transitions," Information and Software
Technology, vol. 42, pp. 873-887, 2000.

[10] D. Woit, Operational Profile Specification, Test Case
Generation, and Reliability Estimation for Modules,
PhD Thesis, in Computing and Information Science.
Kingston, Ontario, Canada: Queen's University, 1994.

[11] A. J. Hayter, Probability and statistics for engineers
and scientists. Boston: PWS Pub. Co., 1996.

[12] B. D. Juhlin, "Implementing operational profiles to
measure system reliability," In Proceedings of Third
International Symposium on Software Reliability
Engineering, Research Triangle Park, NC, USA, pp.
286 -295, 1992.

[13] J. D. Musa, "Operational profiles in software-reliability
engineering," IEEE Software, vol. 10, pp. 14 -32,
1993.

[14] J. A. Whittaker and J. H. Poore, "Markov analysis of
software specifications," ACM Transactions on
Software Engineering and Methodology, vol. 2, pp. 93-
106, 1993.

[15] J. A. Whittaker and M. G. Thomason, "A Markov chain
model for statistical software testing," IEEE
Transactions on Software Engineering, vol. 20, pp.
812-824, 1994.

[16] A. Gill, Introduction to the theory of finite-state
machines. New York: McGraw-Hill, 1962.

Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04)
1530-1362/04 $ 20.00 IEEE

