
Systematic Operational Profile Development for Software Components 

Rakesh Shukla, David Carrington and Paul Strooper 
School of Information Technology and Electrical Engineering, 

The University of Queensland, St. Lucia 4072, Australia. 
{shukla, davec, pstroop} @itee.uq.edu.au 

Abstract 

An operational profile is a quantification of the 
expected use of a system. Determining an operational 
profile for software is a crucial and difficult part of 
software reliability assessment in general and it can be 
even more difficult for software components. This 
paper presents a systematic method for deriving an 
operational profile for software components. The 
method uses both actual usage data and intended 
usage assumptions to derive a usage structure, usage 
distribution and characteristics of parameters 
(including relationships between parameters). A usage 
structure represents the flow and interaction of 
operation calls. Statecharts are used to model the 
usage structures. A usage distribution represents 
probabilities of the operations. The method is 
illustrated on two Java classes but can be applied to 
any software component that is accessed through an 
Application Program Interface (API). 

1. Introduction 

Software-based systems are some of the most 
complex artefacts ever produced. There is a growing 
trend to build complex software by integrating software 
components. As a result, the assurance of quality and 
especially reliability of software components has 
become an issue of critical concern. The reliability of a 
software component is a probability prediction for 
failure-free execution of the component. 

The reliability of a software component depends on 
how the component is used. If different users use the 
component in different ways, they are likely to 
encounter different errors in the component, if there are 
any. Statistical testing of a component generates an 
estimate of the reliability of the component based on 
some model of its usage, which we call an operational 
profile. Specifically, an operational profile is a 

quantification of the expected use of a software 
component consisting of a set of input operations and 
their associated probabilities of occurrence for each 
possible state of the component. The test cases that are 
executed during a reliability test are a sample from the 
operational profile. The measure of reliability obtained 
in this way depends upon the operational profile. 
Determining an accurate operational profile for 
software is difficult in general [1] and it is very difficult 
for many software components because it requires 
anticipating the future use of the component [2] . 

Poore et al. [3] define a two-phase construction 
process for an operational profile using Markov chain 
models. The structural phase establishes the states and 
transitions of the model, and the statistical phase 
assigns the transition probabilities. They define three 
approaches to the statistical phase: (1) uninformed- 
used when no information is available about future 
usage of the software; (2) informed- used when some 
actual usage sequences (usage data) are available from 
a prototype or a prior version of the software; and (3) 
intended usage assumptions- used when the sequences 
are obtained by hypothesizing runs of the software by a 
careful and reasonable user. Whittaker and Poore [4] 
state that “the informed approach with known 
sequences for one or more classes of users is best”. We 
build on this work and develop a method for 
developing operational profiles of software 
components based on both usage data and intended 
usage assumptions. 

Our contributions are to derive a usage structure 
from both usage data and intended usage assumptions
and use of statecharts [5, 6] to model this structure. The 
usage structure represents the flow and interaction of 
operation calls.  We use statecharts because of their 
ability to define highly structured models with 
hierarchy and parallelism, and their popularity means 
that tool support is widely available.  

Another contribution is that we describe a method 
for deriving constraints on, and relationships between, 
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operation parameters, so that we can generate suitable 
values for input parameters during testing. Most of the 
research on operational profiles has focused on 
operations and little is said about the operation 
parameters. For software components, we have found 
that assigning appropriate values for input parameters 
can be quite complicated, because they depend not only 
on the type of the parameter, but there are often also 
constraints on individual parameters and intricate 
relationships between different input parameters (to the 
same or even different calls) and between output 
parameters of calls and input parameters of subsequent 
calls. In this paper, we describe a method for deriving 
those constraints and relationships as part of the 
operational profile. 

This paper presents a systematic method that 
provides a step-by-step procedure for developing 
operational profiles for software components. The 
method uses both intended usage assumptions and 
usage data to discover a usage structure, usage 
distribution and characteristics of parameters. The
usage distribution defines the probabilities of the 
operations. The method contains four steps: (1) 
information gathering; (2) structure modelling; (3) 
usage quantification; and (4) parameter analysis. The 
method develops a usage structure using guidelines 
from the information gathered in the first step, and then 
models the usage structure using statecharts [5, 6]. The 
usage quantification process produces a usage 
distribution. The parameter analysis process defines 
parameter characteristics. To demonstrate the method, 
we apply it to the SymbolTable and Tree components 
of the PGMGEN testing tool [7]. 

The method is intended to be part of a more general 
framework for the reliability assessment of software 
components [8]. The framework includes support for 
test case execution and output evaluation, which are not 
discussed further. 

Section 2 describes our use of statecharts. Section 3 
defines our method for operational profile 
development. Sections 4 and 5 describe the results of 
applying the method to the symbol table and tree case 
studies. Section 6 describes related work and Section 7 
presents conclusions and future work. 

2. Probabilistic Statecharts 

Component usage is event-driven and reactive. 
State-based formalisms are especially useful in 
modelling event-driven and reactive systems. A 
problem with finite state machines and other flat, 
directed graphs is the description of the inherent 
complexity of the real world. As the size of the 

problem increases, state transition diagrams become 
unmanageable, resulting in unstructured and chaotic 
diagrams. To overcome this state explosion problem, 
we use statecharts, which are convenient and 
sufficiently powerful for describing component usage. 
Statecharts constitute a visual formalism for describing 
states and transitions in a modular fashion, enabling 
clustering and ‘zoom’ capabilities for moving easily 
back and forth between levels of abstraction. Following 
[5], we extend statecharts by adding probabilities.

Figure 1 shows an example of a probabilistic 
statechart. The statechart relates events and states. A 
change of state caused by an event is called a 
transition. A state is drawn as a rounded box containing 
an optional name. An initial state is shown by a solid 
circle and a final state is shown by a bull’s-eye. A 
transition is drawn as an arrow from the source state to 
the target state. The transition can be labelled with 
Event Condition Action (ECA) rules, to which we have 
added probabilities. The syntax of a rule is E[C, P]/A, 
where E is an event, C denotes a guard condition, P 
represents probability of occurrence, and A represents 
action(s). These are all optional. An event represents an 
operation call. A guard condition is a boolean function 
that must be satisfied to enable an associated transition. 
A probability represents the probability that a transition 
whose guard is true takes place. An action is an 
executable atomic computation that results in a change 
in the state of the model or the return of a value.

To simplify modelling and reasoning with these 
probabilistic statecharts, we place two restrictions on 
them. First, we do not allow overlapping guard 
conditions between different transitions from a single 
state. For example, the conditions on the two 
transitions from State 1 in Figure 1 are c=n and 
0<=c<n. Overlapping guards can always be eliminated 
by a simple transformation. Second, the probabilities of 
all the transitions with the same guard from a single 
state must add up to 1.0. 

Figure 1: A probabilistic statechart 

The context of the statechart in Figure 1 consists of 
the counter variable c and the constant n. The transition 
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from the initial state to State1 also results in the action 
that assigns 0 to c. While in State1, the transition event 
op1 occurs conditionally (0�c<n) and the state changes 
to State2. While in State2 the probability of occurrence 
of op2 is 0.6 and op3 is 0.4. The action c=c+1 on the 
transition from State4 to State1 updates the context. 
When the counter c is equal to n, an op1 event occurs 
and the state changes to the final state. 

3. Method Overview 

Figure 2 shows an overview of the method to 
develop an operational profile for a software 
component from the intended usage assumptions and/or 
usage data. The rectangles represent processes and 
ovals indicate inputs/outputs. 

Figure 2: Method overview 

The method contains four steps: (1) information 
gathering; (2) structure modelling; (3) usage 
quantification; and (4) parameter analysis. The steps 
are described further below.  

3.1 Information Gathering 

The information gathering process gathers and 
generates inputs for our method by collecting 
information about the component and its use. The 
component under reliability test can be either an in-
house or a third-party product.  However, we consider 
the component as a black box for operational profile 
development, and assume the component will be 
accessed through an API. The specification of a 
component is therefore the specification of its interface. 
Expected use of the component is described in the form 
of intended usage assumptions and actual use of the 
component is described by usage data.  

A component API defines how a component is 
accessed by other components. A component API has a
(class/component) name and a collection of operation 
signatures. An operation signature consists of the name 
of the operation and a number of inputs and outputs. 
Exceptions are treated as outputs. Java and CORBA 
interfaces are examples of APIs.   

Intended usage assumptions are quantitative and 
qualitative assumptions about the expected use of a 
component. The intended usage can be described in 
natural language and/or using diagrams. 

The actual usage data consists of traces from 
execution of a previous version of the component, a
prototype, an actual implementation, or a simulation. A 
trace is an ordered sequence of operation invocations, 
including both inputs and outputs. A complete trace is 
produced by a complete run of a system/application in 
which the component is used. When a 
system/application does not terminate, there are no 
complete, finite traces, and we must consider finite 
initial traces. We assume that any usage data that we 
collect represents a correct behaviour of the 
component. 

3.2 Structure Modelling 

The structure modelling process shown in Figure 3 
consists of two steps: structure analysis and modelling. 

Figure 3: Structure modelling 

The component’s API, usage data and intended 
usage assumptions are used for structure modelling.
The component’s API defines the syntax and semantics 
of the component operations. Structure analysis 
extracts a usage structure that represents the flow and 
interaction of operation calls, ignoring the operation 
parameters. Modelling provides a visual representation 
of the usage structure using statecharts.  

We propose two approaches to derive a usage 
structure: top-down and bottom-up. The top-down 
approach can be applied when patterns such as 
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repeated sequences of operations can be identified in 
the usage data. When this is not the case, the bottom-up 
provides a more suitable approach. In complex cases, it 
may be possible to apply a top-down approach first,
followed by a bottom-up approach (see Tree example 
in Section 5).   

The top-down approach consists of the following 
steps. 

1. Examine the operations in the traces and divide 
them into groups of repeating patterns of 
operations. 

2. Identify relationships between the identified 
patterns, both within sequences of repetition 
and across such sequences.  

3. Identify context variables and predicates on 
these variables that capture these relationships.  

Once these steps have been performed, the 
translation into a statechart is a straightforward process. 
The initial state is typically the class constructor or a 
similar initialisation. The states and transitions are 
determined by the patterns derived. Finally, the context 
variables and predicates associated with the transitions 
are specified on guard conditions and on actions as 
context update functions to build a usage model.  

With the bottom-up approach, the statechart is 
constructed more directly. The bottom-up approach 
consists of the following steps. 

1. Add a state for each operation that appears in 
the usage data. This state represents the last call 
that was made. 

2. Add a separate initial state. For each initial 
operation call c1 appearing in a trace in the 
usage data, add a transition from the initial state 
to the state representing that operation.   

3. For each subsequent operation call ci appearing 
in a trace in the usage data, add a transition 
from the state representing the operation call 
immediately preceding ci to the state 
representing operation ci. 

3.3 Usage Quantification 

Usage quantification adds probabilities into our 
statecharts. The usage quantification process shown in 
Figure 4 involves: (1) transition analysis; (2) frequency 
calculation; and (3) probability calculation or 
estimation. Usage quantification is not always 
necessary. A usage model is deterministic, if for every 
source state s, there is exactly one output transition for 
each guard condition c (recall from Section 2 that we 
do not allow overlapping guard conditions on output 
transitions). If the usage model is deterministic, there is 
no need for the usage quantification process; each 

transition in the probabilistic statechart will have a 
probability of 1. 

When the usage model is nondeterministic, that is, if 
there is a source state s and a guard condition c, for 
which there is more than one output transition, then 
usage quantification is necessary.  For this, either the 
usage data can be used to calculate probabilities 
following the process outlined in [3, 9, 10], or the 
intended usage assumptions must be used to estimate 
these probabilities. If available, we prefer to use usage 
data for accurate usage distribution. 

Figure 4: Usage quantification 

Following [3, 9, 10], we first construct a transition 
matrix that records all possible transitions with guard 
conditions between states. Deterministic transitions 
have a probability of 1, impossible transitions have a 
probability of 0, and the nondeterministic transitions 
are the ones for which we have to calculate or estimate 
the probabilities. To calculate the probabilities from the 
usage data, we first count frequencies of all the 
transitions in the transition matrix and then convert 
these to probabilities using a straightforward 
calculation. For example, if there are two possible 
transitions from state s1 to state s2 with the same guard 
condition c, and the first one is taken 3 times and the 
second one 7 times, then the probabilities for the two 
transitions are 0.3 and 0.7 respectively. 

A significance test [11] can be applied to the 
frequency table when usage data is used. The 
significance test produces a significance level, the 
probability that a given result could not have occurred 
by chance. If the significance level is not “satisfactory” 
more usage data must be collected or the probabilities 
must be refined with intended usage assumptions. 
When intended usage assumptions are used instead of
usage data, an entropy computation (following [3]) on 
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the usage distribution can be used to measure the 
degree of disorder or randomness in the usage model. 

3.4 Parameter Analysis 

Appropriate values for input parameters depend not 
only on their types, but often also on additional 
constraints and relationships between them. During 
parameter analysis, the usage data and intended usage 
assumptions are used to model the parameter types, 
constraints and relationships so that suitable values for 
input parameters can be determined during test case
generation.  

Parameter analysis consists of three steps. 
1. Identify the type of the parameters from the 

API. 
2. Analyse the usage data to look for constraints 

on individual parameters and relationships 
between parameters. Here the usage model 
derived during the structure modelling is often 
useful to distinguish between different 
occurrences of the same operation. Intended 
usage assumptions can also be used to suggest 
constraints and relationships, or to provide a 
justification for the existence of these in the 
data. Of course, if no usage data is available, 
only intended usage assumptions can be used to 
define any constraints or relationships. 

3. Model the constraints and relationships so that 
they can be used for test case generation. We 
have used textual descriptions for this. 

Note that in some cases, some of the identified 
relationships may force us to reconsider the structure 
we have come up with in the structure analysis, 
although we have found in practice that the separation 
of structure and parameter analysis is a useful 
separation of concerns. 

4. Case Study 1: Symbol Table 

We apply our method to PGMGEN’s SymbolTable 
component. PGMGEN [7] is a testing tool that 
generates batch test drivers from test scripts. A test 
script contains a set of test cases and each test case 
contains a description of the expected behaviour, 
including any expected exceptions. 

The purpose of this and the next case study is to 
derive operational profiles that reflect how the 
SymbolTable and Tree components are used in 
PGMGEN. Because the use of usage data represents 
the more interesting and challenging aspects of the 
method, we try to use this usage data as much as 

possible in the case studies. In more realistic case 
studies, such usage data may not be available, 
especially when devising an operational profile for new 
components or existing components in new 
applications, and one would have to rely more on 
intended usage assumptions. 

4.1 Information Gathering 

The API of SymbolTable is shown in Figure 5. The 
table stores pairs of symbols (strings) and identifiers 
(integers). Symbols and identifiers must be unique. The 
constant MAX_SYMBOLS indicates that a maximum of 
50 symbols are allowed in the table and 
MAX_SYM_LENGTH indicates that the maximum 
length of a symbol is 20. The operation 
insert(sym) adds a new symbol sym and assigns 
an identifier to it. size returns the number of pairs in 
the table. The function existId(id) returns 
whether identifier id is in the table. Similarly 
existSym(sym) returns whether  symbol sym
occurs in the table. The operation del(id) deletes 
identifier id and its corresponding symbol from the 
table. The functions getSym and getId return the 
symbol and identifier for a given identifier and symbol 
respectively. The Java exception handling mechanism 
is used to signal exceptions in the implementation. The 
operation insert(sym) throws MaxLengthExc if 
sym has more than MAX_SYM_LEN characters, 
FullExc if the table has MAX_SYMBOLS symbols in 
it, and ExistSymExc if sym already exists in the 
table. The operations del(id) and getSym(id) 
throw NotExistIdExc if there is no identifier id in 
the table. The operation getId(sym) throws 
NotExistSymExc if sym is not in the table. 

public class SymbolTable { 
    static final int MAX_SYMBOLS = 50; 
    static final int MAX_SYM_LENGTH = 20; 
    public SymbolTable();  
    public void insert(String sym) throws 
      MaxLengthExc, FullExc, ExistSymExc;  
    public int size(); 
    public boolean existId(int id);  
    public boolean existSym(String sym); 
    public void del(int id) throws 
      NotExistIdExc; 
    public String getSym(int id) throws 
      NotExistIdExc; 
    public int getId(String sym) throws 
      NotExistSymExc; 
} 

Figure 5: API for SymbolTable 
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The intended usage assumptions are based on 
knowledge about how SymbolTable is used in the 
PGMGEN system. SymbolTable first stores exception 
names as symbols. The supplied exception names must 
be unique. Then PGMGEN uses the list of exception 
names to generate exception handler code in the test 
driver. 

To gather actual usage data about how SymbolTable 
is used, we instrumented the SymbolTable 
implementation and ran PGMGEN on five test scripts. 
Figure 6 shows one complete trace obtained from 
SymbolTable in this way. The operations are separated 
by commas. Each operation contains the name of the 
operation, input parameter values in brackets and 
output values after a colon (:). For the trace in Figure 6, 
two symbols are added to the table (“empty” and 
“full”), and these symbols are assigned the identifiers 0 
and 1 respectively, as can be seen from the calls to 
getId in the trace. We use the special symbol 
“termination” to indicate termination of the system, so 
that we can easily distinguish complete traces from 
incomplete ones.  

SymbolTable(), size():0, existSym(“empty”):false, insert(“empty”), 
size():1, existSym(“full”):false, insert(“full”), size():2, size():2, 
size():2, size():2, getSym(0):”empty”, size():2, getSym(1):”full”, 
size():2, size():2, size():2, getSym(0):”empty”, size():2, 
getSym(1):”full”, size():2, size():2, existSym(“empty”):true, 
getId(“empty”):0, existId(0):true, existId(0):true, 
existSym(“empty”):true, getId(“empty”):0, existId(0):true, 
existId(0):true, existSym(“full”):true, getId(“full”):1, existId(1):true, 
existId(1):true, termination 

Figure 6: A complete trace  

While the five traces we collected are sufficient to 
come up with an operational profile, these traces were 
all obtained by analysing the use of PGMGEN on 
existing, textbook scripts.  As such, they may not be 
representative of the actual usage of PGMGEN and 
hence the usage of SymbolTable within PGMGEN.  
However, collecting such actual usage data is beyond 
the scope of this paper.  Instead, we assume that the 
usage data we have in the five traces is representative 
and use the method to derive a suitable operational
profile from that usage data. 

4.2 Structure modelling 

We are able to identify patterns in the usage data 
and therefore apply the top-down approach. The first 
step of the top-down approach is to examine the 
operations (ignoring operation parameters) in the traces 
and divide them into groups. The process of 
subdividing is typically an iterative process, where by 

investigating one or more traces, particular patterns are 
identified, which are then confirmed (or rejected) by 
investigating other traces in the usage data. 

As expected, the first operation in each trace is the 
class constructor and it occurs only once in each trace, 
so the first sequence identified is S1 = <SymbolTable>.  
We then recognise a pattern of repeated calls to size, 
existSym, and insert, which is confirmed by 
investigating the other traces.  We record the pattern as 
a repeated occurrence of the sequence S2 = <size, 
existSym, insert>. Note that we could also have 
recorded it as the occurrence of a single call to size (S2' 
= <size>) and then a repeated occurrence of the 
sequence S3' = <existSym, insert, size>. The other 
traces do not provide further information about which 
of the two is more appropriate, so we assume the first, 
slightly simpler version is sufficient (until we find data 
to the contrary). Continuing with this, we identify the 
following other sequences of interest: S3 = <size>; S4 
= <getSym, size>; S5 = <existSym, getId, existId, 
existId> and S6 = <termination>.  

The second step is to identify relationships within 
and across the sequences. Sequence S1 is always first 
in a trace followed by the sequence S2. S2 contains 
size, existSym, and insert. Each existSym in S2 returns 
false in the usage data. From the intended usage 
assumptions, we deduce that this sequence of calls is 
probably used to add exception names that appear in 
the test script to SymbolTable, and that the check to 
existSym is there to ensure that the same exception 
name is not added multiple times.  The reason that the 
call always returns false in our usage data is that we 
have only run PGMGEN on correct test scripts, which 
do not contain duplicate exception names.  As 
indicated above, this may not reflect how PGMGEN 
would actually be used in practice, but in line with the 
assumption that the usage data we have is 
representative, we mimic this behaviour in our 
operational profile. Thus, S2 appears as many times as 
there are exception names defined in the PGMGEN 
script. After that, S3 appears four times. The next 
sequence S4 appears the same number of times as S2 
appears and then S3 appears twice. S4 appears again 
the same number of times and then S3 once. From the 
intended usage assumptions, we deduce that the 
sequence S5 appears once for each test case in the 
PGMGEN script with an exception in it. Finally, S6 
appears once.   Thus the sequences appear in the order 
S1, S2, S3, S4, S3, S4, S3, S5, S6, where S2 and S4 are 
repeated n1 times, once for each exception name 
defined in the PGMGEN script, and S5 is repeated n2 
times, once for each test case in the PGMGEN script 
with an exception in it.  
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The third step is to capture the above relationships 
using context variables and predicates. We use two 
constants to control the iterations of S2, S4, and S5: 

• n1 - represents the number of exceptions in the 
script and is used to control the number of 
iterations of S2 and S4; and 

• n2 - represents the number of test cases with 
exceptions in the script and is used to control 
the number of iterations of S5. 

We also need a number of context variables that count 
the number of iterations as we traverse the model. 

Figure 7 shows part of the resulting statechart. It 
contains seven composite states, where the composite 
state create table represents iterations of S2, get 
symbols represent iterations of S4, access table
represents iterations of S5, and the states Size1, 
Size2, and Size3 represent different repetitions of 
S3. The bottom part of Figure 7 shows the details for 
the composite state create table, which models 
n1 iterations of the sequence S2=<size, existSym, 
insert>.  

Figure 7: Usage model 

4.3 Usage Quantification 

The statechart derived for SymbolTable is 
deterministic because all decisions have been 
incorporated into context variables and constants based 
on intended usage assumptions. As a result, usage 
quantification is not necessary. 

To generate test cases from the statechart we still 
need to select suitable values for the constants n1 and 
n2. However, since we know what these constants 

represent, we can use this knowledge to select these 
values from a suitable range. 

4.4 Parameter Analysis 

The first step is to identify the types of the 
parameters from the API (Figure 5). The operations 
insert, existSym, and getId have a String
input parameter representing a symbol. The operations 
existId, del, and getSym have an integer input 
parameter representing an identifier. We also note the 
output parameters: booleans for existId and 
existSym, a symbol (String) for getSym, and an 
identfier (int) for getId. Although we do not need 
to assign values to output parameters when generating 
test inputs from our operational profile, there are 
sometimes relationships between output parameters of 
calls and input paramaters of subsequent calls that we 
should capture in our operational profile.  

We then analyse each sequence identified during the 
structure modelling and consider the ones for which 
input parameter values must be determined. In this 
case, these sequences are S2, S4, and S5. 

 For the sequence S2, the two instances in the trace 
(Figure 6) are: 

size():0, existSym(“empty”):false, insert(“empty”) 
size():1, existSym(“full”):false, insert(“full”) 
From the intended usage assumptions we have 

deduced this is where SymbolTable is loaded. From the 
usage data, it is clear that the input parameter sym to 
existSym and insert in each occurrence of S2 is 
the same in both calls. As discussed in Section 4.2, we 
have also deduced that each of the symbols is unique. 
We must therefore ensure that the same is true for the 
test sequences that we generate. 

For S4, both instances of repetitions of S4 are 
identical and contain two occurrences of S4: 

getSym(0):”empty”, size():2 
getSym(1):”full”, size():2 
In this case, the input parameter id to getSym

seems to increase from 0 to n1-1, where n1 is the 
number of symbols in SymbolTable, which is 
confirmed by the other traces. 

For S5, the three instances are: 
existSym(“empty”):true, getId(“empty”):0,  
     existId(0):true, existId(0):true, 
existSym(“empty”):true, getId(“empty”):0,  
     existId(0):true, existId(0):true, 
existSym(“full”):true, getId(“full”):1,  
     existId(1):true, existId(1):true 
In this sequence, SymbolTable is accessed and the 

constraints on the input parameter sym to existSym and 
getId are that the same parameter is used in both cases 
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and that it is an input parameter that has previously 
occurred in S2 (i.e., it represents a symbol that is 
actually stored in the table). Moreover, the input 
parameter id of both calls to existId is the same as 
the output parameter of the preceding call to getId. 

4.5 Test Case Generation 

We have implemented a Java program that 
generates sequences of calls to SymbolTable according 
to the operational profile derived above. The program 
is a straightforward implementation of the probabilistic 
statechart, with the constraints and relationships that 
were derived in Section 4.4 implemented to generate 
the input parameters for the operation calls in the 
sequences. 

5. Case Study 2: Tree 

We have also applied the method to the Tree 
component of PGMGEN, which is used to build an 
abstract syntax tree of the input script file. Tree
supports a forest of trees and has operations to add new 
nodes to the forest, to add a sub-tree as a child of 
another node, and to traverse a tree. Each node has a 
value (the token in the input file), a type (the type of 
the token), and the line number on which the token 
occurs. 

The operations makeNode, setType, 
setValue, setLnum, and addChild are used to 
construct a tree. makeNode adds a new empty node to 
the forest. The operations setType, setValue
and setLnum assign a type,  a value, and a line 
number of a given node. addChild adds a child node 
as the rightmost child of a parent node. The other 
operations are used for tree traversal. childCount
returns the number of children of a given node. 
getNthChild, getType, getValue and 
getLnum return the n-th child node, the type, the 
value, and the line number of a given node.  

The same five PGMGEN scripts as for 
SymbolTable were used to generate actual usage data 
for Tree.  In this case, the traces are much longer and 
more complex. For example, the shortest trace consists 
of 2024 calls, while the longest trace consists of 13015 
calls. 

Although we can identify some patterns in the traces 
for Tree, there are some sequences of calls in the traces 
for which we cannot detect or explain the order in 
which they occur. We therefore first apply a top-down 
approach to deal with the patterns that we can identify, 
and then the bottom-up approach for the remaining 
calls. One pattern that we can identify is that every use 

of Tree consists of an initial phase in which the tree is 
constructed, followed by a phase in which the tree is 
traversed. Moreover, the tree creation phase consists of 
n calls to makeNode, followed by calls to setType, 
setValue, setLnum, and addChild  (not 
necessarily in that order and in some cases repeated 
more than once). This is why we apply the bottom-up 
approach to fill in the remaining detail. 

The resulting statechart is not deterministic, so we 
then apply usage quantification on the usage data. The 
resulting  probabilistic statechart is shown in Figure 8, 
where the two composite states correspond to tree 
creation and tree traversal. The labels in the statechart 
represent the following operations: O1 - makeNode, 
O2 - setType, O3 - setValue, O4 - setLnum, O5 
- addChild, O6 - getType; O7 - getLnum; O8 - 
getNthChild, O9 -  childCount, and O10 - 
getValue. 

We applied a statistical significance test [11] to the 
frequency table used to calculate the probabilities and 
the result was satisfactory. 

The parameter analysis for Tree was much more 
complex than for SymbolTable. For example, all 
methods of Tree except makeNode have at least one 
parameter that must represent a pointer to a valid node 
that was previously added using a call to makeNode. 
If such a parameter does not represent a valid node, the 
method should throw the InvalidNodeExc
exception.  This means that if we randomly generate 
the parameters for such calls, it is very likely that all 
these calls will throw this exception (even if we restrict 
the range to valid pointer values). However, in the use 
of Tree in PGMGEN, no such exceptions should be 
thrown, indicating that there are relationships between 
the parameters of calls to Tree that should be 
incorporated into the operational profile. 

Note that if we attempt to completely capture all 
such relationships our operational profile may become 
arbitrarily complex (e.g. more complex than the 
implementation of Tree itself). We therefore have to 
make a trade-off between the accuracy of the 
operational profile (how will it captures the use of Tree 
in PGMGEN) and its complexity. 

The parameter analysis revealed a significant 
number of non-trivial relationships between the 
parameters. For example, during tree creation, the node 
parameter to all calls to setType, setValue, and 
setLnum are the output parameter of the last call to 
makeNode preceding it. Similarly, the two node 
parameters to addChild were return values to 
preceding calls to makeNode, but not always the most 
recent one. We incorporated many of these 
relationships in the operational profile. Even so, a 
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Figure 8: Probabilistic statechart 

number of calls generated by the operational profile 
can still throw exceptions.  Since the operational 
profile for this case study represents a simplified 
approximation to the usage data, our generated test 
cases produce some exceptions not observed in the 
actual usage data. Further refinement is required to 
minimise these exceptions. 

Similar to SymbolTable, the operational profile for 
Tree was implemented in a Java program that generates 
test cases for Tree according to this profile.  

6. Related Work 

Our work focuses on operational profiles and the 
use of state machines to model these. In the literature, 
there are different approaches to developing 
operational profiles using different usage environments 
and models. In [12, 13], the actual software usage is 
described by assigning unconditional probabilities to 
software inputs. The usage is described using a tree, 
and different possible sequences of stimuli are 
described as paths in a tree.  

In recent years, Markov models have been proposed 
to describe operational profiles [3, 9, 14, 15]. 
Whittaker and Poore [14] use Markov chain properties 
to define a usage model (distribution) and to generate 
test cases based on the model. In the Markov chain, the 
usage is described in terms of states and transitions. 
The states represent user states and user stimuli are 
connected to the transitions. Whittaker and Thomason 

[15]  extend the Markov chain model by including 
analytical results and failure data in the testing chain.   

Doerner and Gutjahr [9] extend the Markov chain 
model by defining the syntax and semantics of a 
language that allows non-Markovian transitions 
between states. The addition of this feature adds 
limited non-standard state in Markov models 
maintaining the Markovian property, but it requires a 
special-purpose language for describing non-
Markovian transitions. Woit [10] describes a technique 
for the specification of operational profiles, using a 
small example of intended usage, without mentioning 
how to develop operational profiles. We expand on 
Woit’s approach and provide a systematic method for 
deriving a usage structure and parameter 
characteristics.  

A major problem in operational profile development 
for software components is in the difficulty of 
describing usage behaviours. The Finite State Machine 
(FSM) [16] provides concepts of states and state 
transitions for specifying behaviour. However, a 
complex behaviour cannot be effectively described 
using a FSM because of the state explosion problem 
related to the inherent complexity of the real world. 
Harel [5] introduces statecharts to extend finite state 
machines for complex behaviour. The UML features 
state machines based on Harel’s statechart notation [6]. 
We use statecharts to model our usage structure to 
avoid the state explosion problem and the problem of 
having to introduce a new language/notation. To 
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incorporate probabilities, we adopt the probabilistic 
statechart approach suggested by Harel [5]. 

The method described in this paper is an important 
part of our framework for the reliability assessment of 
software components [8], which also incorporates test 
case execution and output evaluation.  

7. Conclusions 

We have presented a systematic method for 
developing operational profiles for software 
components using both usage data and intended usage 
assumptions. After gathering information about the 
component and its usage, the method attempts to derive 
a deterministic usage model by identifying 
relationships within and across the identified patterns 
using context variables and predicates. However when 
a usage model contains nondeterministic choices, the 
choices are replaced by probabilities from the usage 
distribution. Parameter analysis considers constraints 
on, and relationships between, parameters so that 
suitable values for input parameters can be derived 
during test case generation from the operational profile.  

The application of the method to two components 
and their usage data establishes the practical viability 
of the method. For structure analysis, the top-down 
approach has been applied to one example and a mix of 
the top-down and bottom-up approaches to the second. 
Although both components are Java classes, the 
method is applicable to any component that can be 
accessed through an API (such as CORBA, EJB, and 
COM+ components).  

The main areas for future work are to provide tool 
support for the method and the more general 
framework [8], and to apply it to an industrial case 
study. 
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