
Concurrent Program Design in the Extended Theory of Owicki and

Gries

Doug Goldson Brijesh Dongol†

School of ITEE
University of Queensland,

Brisbane, Australia
Email: †brijesh@itee.uq.edu.au

Abstract

Feijen and van Gasteren have shown how to use
the theory of Owicki and Gries to design concur-
rent programs, however, the lack of a formal theory
of progress has meant that these designs are driven
entirely by safety requirements. Proof of progress re-
quirements are made post-hoc to the derivation and
are operational in nature. In this paper, we describe
the use of an extended theory of Owicki and Gries
in concurrent program design. The extended the-
ory incorporates a logic of progress, which provides
opportunity to develop a program in a manner that
gives proper consideration to progress requirements.
Dekker’s algorithm for two process mutual exclusion
is chosen to illustrate the use of the extended theory.

1 Introduction

Concurrent programs are delicate entities and are
consequently difficult to get right. Inherent difficul-
ties in conventional testing exist, which have long
been recognised. Unfortunately, formal verification
is also a daunting task, made more difficult by the
fact that program code cannot be altered. Complex
programs invariably give rise to complex proofs, and
when things become complicated, it is hard to judge
whether the program or the proof strategy is at fault.
For this reason, we have chosen to explore an ap-
proach to concurrent program design that is based on
derivation. A program and its proof are developed
hand in hand and carefully judged modifications are
made to a program. Modifications are driven by an
attention to proof obligations derived from the initial
requirements.

The theory of Owicki and Gries (Owicki & Gries
1976, Dijkstra 1982) has long been a popular choice
for verifying concurrent programs, and more recently
(Feijen & van Gasteren 1999) describes how the the-
ory can be used for program derivation. However, the
original theory is limited by the fact that it lacks a
formal theory of progress. This means that the ver-
ificaton or derivation of a concurrent program can
only address safety requirements, with progress re-
quirements being largely left to chance, or reasoned
about operationally. In (Dongol & Goldson 2004) we
describe how the theory of Owicki and Gries can be
extended with a logic of progress, a development that
provides an opportunity to drive program derivation
in a manner that gives proper consideration to both
progress and safety requirements. The main purpose

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australasian Theory Sym-
posium, Newcastle. Conferences in Research and Practice in
Information Technology, Vol. 41. Mike Atkinson and Frank
Dehne, Eds. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

of this paper is to show how the extended theory can
be used to derive programs in this way.

We have chosen to illustrate the extended theory
with a derivation of Dekker’s algorithm for two pro-
cess mutual exclusion. We have chosen this program
because mutual exclusion is a core problem in con-
current programming, because Dekker’s algorithm is
the first successful solution to this problem, and, most
of all, because nearly all of the program code is con-
cerned with ensuring progress.

The paper is structured as follows. Section 2 re-
views the extended theory of Owicki and Gries. Sec-
tion 3 presents Dekker’s algorithm and sets the con-
text for our derivation of it, which is presented in
Section 4. Section 5 makes a conclusion.

2 The extended theory of Owicki and Gries

This section reviews essential background to the main
part of the paper which is the derivation presented
in Section 4. It is intended to make the paper self-
contained, but the reader should note that full expla-
nation can be found in (Dongol & Goldson 2004).

2.1 The programming model

We begin by reviewing the programming language
and model used in the derivation, and the terminol-
ogy used in this paper. We call a sequential program
a component, which is just a program statement. We
call a concurrent program simply a program, and this
is a collection of components, together with a precon-
dition that defines its initial states.

A program statement is a statement in the
language of guarded commands (Dijkstra 1976).

Definition A statement S is defined by,

S ::= skip | x := E | S0; S1 | 〈S 〉
| if B0 → S0 8 . . . 8 Bm → Sm fi
| do B0 → S0 8 . . . 8 Bm → Sm od

�

Here, x := E =̂ x1:= E1 ‖ . . . ‖ xn := En is a mul-
tiple assignment, S0; S1 is the sequential composi-
tion of statements S0 and S1, 〈S 〉 is a coarse-grained
atomic statement, which is any statement S enclosed
in atomicity brackets 〈 〉, an if statement is used to
express choice (and condition synchronisation), and a
do statement is used to express repetition.

The atomic statements of the programming lan-
guage are skip, the assignment statement, and the
guard evaluation statement, which, it may be noted,
can only appear in a program as a part of an if or do
statement. An atomic statement must be enabled for
it to be executed, and when it is executed it results
in a single update of the control state of the program
(which means that it is guaranteed to terminate when

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14982203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


it is executed). A guard evaluation statement in an
if statement is a conditional atomic statement, in the
sense that it is not enabled when all of the guards in
the statement are evaluated false. In this case, execu-
tion of the guard evaluation statement is blocked, and
this makes the if statement a well-suited mechanism
for programming condition synchronisation between
components. We allow one more atomic statement
in the programming language, which is the coarse-
grained statement 〈S 〉. Being atomic, execution of
this statement must terminate and so it is only en-
abled when termination is guaranteed. The program-
ming model prescribes that the underlying machine
is weakly fair, which means that on termination of an
atomic statement, an atomic statement that follows
it, if there is one, is eventually executed if it is con-
tinually enabled. This means that in the concurrent
execution of a number of components, the execution
of the next (continually enabled) atomic statement of
no component is delayed indefinitely.

2.2 Representing program control points

In order to reason about progress, it is necessary to
introduce a means to describe the control points in
a program. In the extended theory of Owicki and
Gries, this is done in two steps. First every atomic
statement in a component is assigned a label unique
to that component. Second, a program counter is
introduced into each component.

We illustrate the use of labels by labelling a pro-
gram called the safe sluice (Figure 1), which plays an
important role in the derivation to come.

Pre: ¬x ∧ ¬y

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y →
4: skip

fi;
5: 〈CSX 〉;
6: x := false

od

Component Y
0: do true →
1: 〈NCSY 〉;
2: y := true;
3: if ¬x →
4: skip

fi;
5: 〈CSY 〉;
6: y := false

od

Figure 1: Safe sluice with labels

The essential property of a component labelling
is that the atomic statements of a component are
in one-to-one correspondence with the labels of the
component. For this reason, we use the notation A.i ,
where i is not the final label of A, to designate ‘the
atomic statement in component A labelled i ’. In this
way, for example, X .3 is used to pick out the guard
evaluation statement of the if statement in compo-
nent X above. Note that the correspondence between
atomic statements and labels is achieved in this exam-
ple by making the code segments NCS and CS into
coarse-grained atomic actions. Anticipating our use
of the safe sluice in deriving a mutual exlusion proto-
col, NCS and CS designate non-critical and critical
sections of code. By assuming the internals of this
code to be not relevant to the safe sluice, we are free
to turn NCS and CS into atomic statements.

The next step is to introduce program counters
into the two components X and Y . A program
counter is modelled by an auxiliary variable (Figure
2).

The essential property of a program counter is
that, for any component A and label i , pcA = i is
a correct program assertion at label i , where ‘correct’
means correct in the core theory of Owicki and Gries
presented in Section 2.3. And for this reason we are
free to interpret assertion pcA = i , for i not the final

Pre: ¬x ∧ ¬y ∧ pcX = pcY = 0
Component X
0: do 〈true → pcX := 1〉
1: 〈NCSX ; pcX := 2〉;
2: x := true ‖ pcX := 3;
3: if 〈¬y → pcX := 4〉
4: 〈skip; pcX := 5〉

fi;
5: 〈CSX ; pcX := 6〉;
6: x := false ‖ pcX := 0

od

Component Y
0: do 〈true → pcY := 1〉
1: 〈NCSY ; pcY := 2〉;
2: y := true ‖ pcY := 3;
3: if 〈¬x → pcY := 4〉
4: 〈skip; pcY := 5〉

fi;
5: 〈CSY ; pcY := 6〉;
6: y := false ‖ pcY := 0

od

Figure 2: Safe sluice with program counters

label of A, to mean that ‘program control in compo-
nent A is at the atomic statement labelled i ’.

2.3 Hoare logic, the wlp and the core theory
of Owicki and Gries

A significant semantic benefit to our approach to
modelling program control is that it allows us to
retain the weakest liberal precondition wlp predi-
cate transformer as a means to reason about the
correctness of a component. The definition of wlp
(Dijkstra 1976) is applied to a labelled statement with
program counter pc as follows

1. wlp.(i : 〈skip; pc:= j 〉 j : ).P ≡ wlp.(pc:= j ).P

2. wlp.(i : x := E ‖ pc:= j j : ).P ≡ P [x := E ‖ pc:= j ]

3. wlp.(i : 〈S ; pc:= j 〉 j : ).P ≡ wlp.(S ; pc:= j ).P

4. wlp.(i : S0; j : S1 k : ).P
≡

wlp.(i : S0 j : ).(wlp.(j : S1 k : ).P

5. wlp.(i : if 〈B0 → pc:= j 〉j :S0

8 〈B1 → pc:= k〉k : S1 fi l : ).P
≡

(B0 ⇒ wlp.(pc:= j ).(wlp.(j :S0 l : ).P)) ∧
(B1 ⇒ wlp.(pc:= k).(wlp.(k : S1 l : ).P))

6. {P} i :do 〈B → pc:= j 〉 j :S
8 〈¬B → pc:= k〉 od k : {Q}

⇐
((P ∧ B ⇒ wlp.(pc:= j ).(wlp.(j : S i : ).P)) ∧
(P ∧ ¬B ⇒ wlp.(pc:= k).Q)

On the other hand, a significant syntactic draw-
back to our approach is that the code of a component
is complicated by the superimposition of program
counter assignments onto every atomic statement in
the component. To avoid this problem we allow our-
selves to leave these cluttering program counter as-
signments implicit in the component code, defining
the wlp for a labelled statement with implicit pro-
gram counter pc as follows

1. wlp.(i : skip j : ).P ≡ wlp.(pc:= j ).P

2. wlp.(i : x := E j : ).P ≡ P [x := E ‖ pc:= j ]

3. wlp.(i : 〈S〉 j : ).P ≡ wlp.(S ; pc:= j ).P

4. wlp.(i : S0; j : S1k : ).P
≡

wlp.(i : S0 j : ).(wlp.(j : S1 k : ).P)

5. wlp.(i : if B0 → j :S0 8 B1 → k :S1 fi l : ).P
≡

(B0 ⇒ wlp.(pc:= j ).(wlp.(j :S0 l : ).P)) ∧
(B1 ⇒ wlp.(pc:= k).(wlp.(k : S1 l : ).P))

6. {P} i :do B → j :S od k : {Q}
⇐

((P ∧ B ⇒ wlp.(pc:= j ).(wlp.(j : S i : ).P)) ∧
(P ∧ ¬B ⇒ wlp.(pc:= k).Q).

We can now use the predicate transformer wlp to
calculate whether execution of a program statement
satisfies a postcondition given that some precondi-
tion is assumed to be true when the statement is ex-
ecuted. In other words, we can use the wlp to rea-
son about a Hoare-triple {P} i :S j : {Q}, given that
the triple is true whenever P ⇒ wlp.(i :S j : ).Q . We



also define pre(i) =̂ P and post(j ) =̂ Q . Hoare-triples
are the logical basis of program annotation, which, in
turn, is the logical basis of the core theory of Owicki
and Gries.

Rule (Local Correctness) An assertion P in a com-
ponent is locally correct (LC) when,

1. if P is textually preceded by program precondi-
tion Pre, then Pre ⇒ P

2. if P is textually preceded by {Q} S , then
{Q} S {P} holds.

Rule (Global Correctness) An assertion P in a com-
ponent is globally correct (GC) if for each {Q} S from
a different component, {P ∧ Q} S {P} holds.

To illustrate how the core theory of Owicki and
Gries can be used to verify satisfaction of a safety
requirement, we next present a proof that the safe
sluice satisfies the following requirement.

Safety: “Components X and Y are not in their
critical sections CSX and CSY at the same time.”

On account of already having made the code segments
NCS and CS into atomic statements! we formalise
this requirement by defining a critical set C of control
points

C =̂ {4, 5}

that represents a component being about to execute
its 〈CS 〉 statement. While control point 4 is not at
〈CS 〉, the fact that there is no blocking code between
control point 4 and 〈CS 〉 justifies its inclusion in the
critical set C . Satisfaction of the safety requirement
now amounts to proving the following invariant

I =̂ pcX ∈ C ⇒ pcY 6∈ C .

Proof of safety. I is invariant if the annotation in
Figure 3 is correct.

Pre: ¬x ∧ ¬y ∧ pcX = pcY = 0
Invariant: pcX ∈ C ⇒ pcY 6∈ C

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y → {? pcY 6∈ C}
4: skip

fi;
5: 〈CSX 〉;
6: x := false

od

Component Y
0: do true →
1: 〈NCSY 〉;
2: y := true;
3: if ¬x → {? pcX 6∈ C}
4: skip

fi;
5: 〈CSY 〉;
6: y := false

od

Figure 3: Annotated safe sluice

Local correctness (LC) of the assertions pre(X .4) and
pre(Y .4) are achieved (in the only way possible) by
investing in invariants

J1 =̂ ¬y ⇒ pcY 6∈ C
J2 =̂ ¬x ⇒ pcX 6∈ C .

It is not difficult to see that these are indeed invariant.
For J1, y is a LC assertion at all control points in Y
where pcY ∈ C and a GC assertion by the fact that
y is a private variable of Y (where private means not
written to in any other component).

Now we verify GC of the assertions pre(X .4) and
pre(Y .4) from Figure 3. We will need to establish
GC of pre(X .4), under statement Y .3 — the if guard
evaluation statement in Y , and under statement Y .4,

as they are both able to falsify pcY 6∈ C by an im-
plicit update of the program counter in Y . Against
Y .3, pcY 6∈ C is only GC in the presence of coasser-
tion x , which ensures that execution of this guard
evaluation statement is blocked. Fortunately, x is a
correct coassertion of pcY 6∈ C and we get the correct
annotation in Figure 4 on account of

Pre: ¬x ∧ ¬y ∧ pcX = pcY = 0
Invariants:
I : pcX ∈ C ⇒ pcY 6∈ C
J1: ¬y ⇒ pcY 6∈ C
J2: ¬x ⇒ pcX 6∈ C

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y → {pcY 6∈ C}{x}
4: skip

fi;
5: 〈CSX 〉;
6: x := false

od

Component Y
0: do true →
1: 〈NCSY 〉;
2: y := true;
3: if ¬x → {pcX 6∈ C}{y}
4: skip

fi;
5: 〈CSY 〉;
6: y := false

od

Figure 4: Safe sluice correctly annotated

GC of pre(X .4) under statement Y .3
pcY 6∈C ∧ x ∧¬x ⇒ wlp.(pcY := 4).(pcY 6∈C ∧ x )

≡
false ⇒ false

We get GC of pre(X .4) under statement Y .4 for
free by realizing that pcY = 4 is true at Y .4, which
falsifies pre(X .4), and the proof follows.

2.4 The extended theory of Owicki and Gries

The extended theory of Owicki and Gries is obtained
from the core theory by the addition of a logic of
progress. Any such logic is dependent upon the be-
haviour of the machine that executes a program, and
the programming model described in Section 2.1 man-
dates that this machine satisfies a weak fairness as-
sumption that an atomic statement is eventually exe-
cuted whenever it is at an active control point and it
is continually enabled. Assertions about progress in a
program are formalised using a leads-to (denoted  )
relation where P  Q means that if P is true then
Q is eventually true. Three rules define this relation,
of which the most basic rule, which we call Immedi-
ate Progress, is defined in terms of another relation
unless (un). We therefore first present the definition
of unless .

Definition If P and Q are any two predicates,
P un Q is true if the Hoare-triple

{P ∧ ¬Q ∧ U } S {P ∨ Q}

is true for all atomic statements {U } S , where U de-
notes the precondition of S in the annotated program.

Relation unless says that a program state in which
P holds and Q does not is perpetuated until a state
is reached in which Q holds. But note that this does
not guarantee that Q will ever hold, for (an extreme)
example, true un Q holds for all Q , including false.
The rules that define leads-to are now as follows.



Rule (Immediate Progress Rule) : P  Q holds
whenever there is a labelled statement with initial
label i in a component with program counter pc and

1. P un Q

2. P ∧ ¬Q ⇒ pc = i

3. (a) The statement is an assignment or skip
statement

i :S j : and,

P ∧ ¬Q ⇒ wlp.(i :S j : ).Q

(b) The statement is an IF statement

i : if B0 → j :S0 8 B1 → k :S1 fi l : and,

(i) P ∧ ¬Q ⇒ B0 ∨ B1

(ii) (P ∧ ¬Q ∧ B0 ⇒ wlp.(pc:= j ).Q)) ∧
(P ∧ ¬Q ∧ B1 ⇒ wlp.(pc:= k).Q))

(c) The statement is a DO statement

i :do B → j :S od k : and,

(P ∧ ¬Q ∧ B ⇒ wlp.(pc:= j ).Q) ∧
(P ∧ ¬Q ∧ ¬B ⇒ wlp.(pc:= k).Q)

(d) The statement is a coarse-grained atomic
statement

i : 〈S 〉 j : and,

P ∧ ¬Q ⇒ wp.S .(Q [pc:= j ])

Rule (Inductive Progress Rules)

(Transitivity) P  R ⇐ P  Q ∧ Q  R

(Disjunction) For any set W ,
(∃ i : i ∈ W :Pi) Q ⇐ (∀ i : i ∈ W :Pi  Q)

To make sense of these rules we provide these inter-
pretative notes. First of all, we remark that this logic
of progress is, in essence, that of UNITY (Chandy &
Misra 1988, Misra 2001), but with some key changes
made to the UNITY logic in the rule of immediate
progress above. Our explanation of the rules will
therefore focus on this one. The rule of transitivity
requires no explanation. The rule of disjunction, in
its finite application of, say, two progress assertions,
amounts to the inference that if P0  Q and P1  Q
then P0 ∨ P1  Q . In the case of immediate progress
P  Q is justified on the basis of being able to ac-
tually exhibit a continually enabled atomic statement
at an active control point that makes Q true when it
is executed. To see how the rule formalises this, we
first note that P ∧ ¬Q is assumed. Clause 1 of the
rule establishes that P remains true as long as ¬Q is
true. Clause 2 establishes that control is at an atomic
statement labelled i in a component. Clause 3 estab-
lishes that this statement is enabled when P ∧ ¬Q is
true, and that its execution makes Q true. It follows
from clause 1 that the statement is continually en-
abled as long as ¬Q is true. It then follows from the
programming model that the statement is eventually
executed. Clause 3 is separated into three cases to
cover the three kinds of atomic statements. In case
(3a) an assignment statement is always enabled and
it is enough to ensure that its execution makes Q
true. In case (3b) a guard evaluation statement in
an if statement is not always enabled and so clause
(3bi) ensures that it is enabled when P ∧ ¬Q is true.
Clause (3bii) further ensures that its execution makes
Q true. In case (3c) a guard evaluation statement in a
do statement is always enabled and it is again enough
to ensure that its execution makes Q true.

3 Dekker’s algorithm

This section presents Dekker’s algorithm (Figure 5)
for two process mutual exclusion. The algorithm as
presented is a labelled version of that in (Feijen &
van Gasteren 1999)(pp90). Dekker’s algorithm was
developed in the early 1960s and, historically, is the
first solution to the mutual exclusion problem. We
have chosen it as our example because we believe
it is not possible to provide this program with a
convincing operationally based argument that it
satisfies its progress requirement. Given the intricacy
of the code, nor are we optimistic of a verificationist
approach to proving correctness of the program. For
these reasons, Dek- ker’s program represents a chal-
lenging exercise in program derivation, and therefore
a good test of the extended theory of Owicki and
Gries. There are two program requirements, one for
safety and one for progress.

Safety: “Components X and Y are not in their
critical sections CSX and CSY at the same time.”

Progress: “A component that is waiting to enter its
CS code eventually does so.”

Pre: ¬x ∧ ¬y ∧ (v = X ∨ v = Y )
Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y →
4: skip

8 y →
5: if v = X →
6: skip

8 v 6= X →
7: x := false;
8: if v = X →
9: skip

fi;
10: x := true

fi;
11: if ¬y →
12: skip

fi

fi;
13: 〈CSX 〉;
14: v := Y ;
15: x := false

od

Component Y
0: do true →
1: 〈NCSY 〉;
2: y := true;
3: if ¬x →
4: skip

8 x →
5: if v = Y →
6: skip

8 v 6= Y →
7: y := false;
8: if v = X →
9: skip

fi;
10: y := true

fi;
11: if ¬x →
12: skip

fi

fi;
13: 〈CSY 〉;
14: v := X ;
15: y := false

od

Figure 5: Dekker’s algorithm

Some interpretive notes on the two requirements
are in order. We apply the same interpretation to the
safety requirement as was applied to the safe sluice in
Section 2.3. Having made the code segments CSX and
CSY atomic (Figure 5), the safety requirement is for-
malised by defining a critical set of control points that
guarantee eventual execution of statements 〈CSX 〉
and 〈CSY 〉. However, as we do not propose to ver-
ify Dekker’s algorithm, we do not need to define this
set here. The progress requirement for, component
X amounts to ensuring that X is never continually
blocked at a synchronisation statement. Hence, even-
tual execution of 〈CSX 〉 when X is waiting means
that when X is at X .8 eventually it is at X .9 and
when X is at X .11 eventually it is at X .12.

At this point we invite the reader to convince
themself that Dekker’s algorithm satisfies the two re-
quirements, and to pay particular attention to the
progress requirement. In the words of (Feijen & van
Gasteren 1999) “the argumentation should not be car-
ried out superficially ... but carefully and meticu-



lously; then we gather that long before the argument
is completed, the reader will see the light: this is like
all hell let loose” (pp90-91).

Finally, we motivate the safe sluice of Section 2.3
as the starting point of our derivation because it has
already been shown to satisfy the safety requirement.
The progress requirement for the safe sluice, on the
other hand, is another matter, with progress of X
immediately doubtful on account of guard ¬y in X
oscillating in Y . Worse is the danger of total dead-
lock, as revealed by the possibility of correctly anno-
tating X with x at statement X .3 and Y with y at
statement Y .3. Further motivation is arrived at by
careful examination of Dekker’s algorithm at state-
ments X .2, 3, 11, 15. These statements correspond to
the statements X .2, 3, 6 that preserve safety in the
safe sluice algorithm and highlight just how much of
Dekker’s algorithm is in the service of the progress
requirement.

4 The derivation

This section describes a series of refinements that re-
sult in Dekker’s algorithm. The pattern we will fol-
low is that each refinement is motivated either by the
safety requirement or the progress requirement. The
development is necessarily delicate, as each refine-
ment is at risk of violating a property of the program
that has already been proved. Code modification is
kept to a minimum, which is to say that each refine-
ment step is kept small. The starting point of the
derivation is the safe sluice program of Figure 4.

Refinement 1

Proof (of progress at X .3) pcX = 3  pcX = 4
involves showing that

(1) when the X .3 guard is false, it eventually be-
comes true, and

(2) when the X .3 guard is true, we eventually get
past the guard.

This is formalised as

(1) pcX = 3 ∧ y  pcX = 3 ∧ ¬y

(2) pcX = 3 ∧ ¬y  pcX = 4

We have already remarked on the possibility of to-
tal deadlock in the safe sluice. Two design options
now present themselves, we can either retain X .3 as
a synchronisation statement, but weaken the guard
¬y (so that the statement blocks in fewer program
states). Alternatively, we could give up X .3 as a syn-
chronisation statement. We choose the second option,
but also decide to retain ¬y as an entry condition for
CSX , which allows us to retain invariants J1 and J2

(cf Figure 6). While it is clear that a new synchro-
nization statement and waiting condition is required
when y is true, the exact choice is unclear at this
stage, and so we defer the choice with template guard
B .X in the first refinement (Figure 6).

Recalling that critical set C represents a compo-
nent about to execute its 〈CS 〉 statement, the first
refinement induces a redefinition of C to

C =̂ {4, 5, 8}.

Now, for the continued invariance of I we invest
in two more invariants

K1 =̂ B .X ⇒ pcY 6∈ C
K2 =̂ B .Y ⇒ pcX 6∈ C .

Pre: ¬x ∧ ¬y ∧ pcX = pcY = 0
Invariants:
I : pcX ∈ C ⇒ pcY 6∈ C
J1: ¬y ⇒ pcY 6∈ C
J2: ¬x ⇒ pcX 6∈ C

K1: ? B .X ⇒ pcY 6∈ C
K2: ? B .Y ⇒ pcX 6∈ C

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y → {pcY 6∈ C}{x}
4: skip

8 y →
7: if B .X →

{? pcY 6∈ C}
8: skip

fi

fi;
5: 〈CSX 〉;
6: x := false

od

Component Y
0: do true →
1: 〈NCSY 〉;
2: y := true;
3: if ¬x → {? ¬B .X}
4: skip

8 x →
7: if B .Y → {? ¬B .X}
8: skip

fi

fi;
5: 〈CSY 〉;
6: y := false

od

Figure 6: Refinement 1 (i)

By the similarity of invariants Ki and Ji , it ap-
pears that we have come full circle, however, there
is a crucial difference in that there is now choice for
B .X . For the satisfaction of progress, we must show

(1) pcX = 7 ∧ ¬B .X  pcX = 7 ∧ B .X

(2) pcX = 7 ∧ B .X  pcX = 8.

In light of (1) and because X .7 is a synchronisa-
tion statement with guard B .X , we decide to set up
component Y to make B .X true, while for (2), we
decide to set up component Y not to make B .X false
so that the potential problem of an oscillating guard
can be avoided.

Now consider invariance of K1

B .X ⇒ pcY 6∈ C
≡ pcY ∈ C ⇒ ¬B .X

This requires ¬B .X at both Y .4 and Y .8. We can
solve ¬B .X at Y .8 with B .Y ⇒ ¬B .X . Indeed, we
will choose B .Y ≡ ¬B .X to establish GC of ¬B .X on
account of having just decided that Y cannot falsify
B .X and so, by symmetry, nor can X falsify B .Y .

¬B .X at Y .4 is problematic. The obvious choice
¬x ≡ ¬B .X is ruled out because it makes ¬x ≡ B .Y
and, by symmetry, ¬y ≡ B .X , but we have just de-
cided that Y cannot falsify B .X . Instead we choose
to weaken the annotation at Y .4, and drastically so,
by weakening ¬B .X to ¬B .X ∨ true. This amounts
to giving up on invariant K1 and yields the annotation
in Figure 7.
Summary: For reasons of progress, this refinement
relocates the synchronization statement in the safe
sluice from X .3 to X .7 and we are free to choose any
guard B .X such that B .Y ≡ ¬B .X and B .X is GC
in X . A solution to this equation is to introduce a
fresh variable v ∈ {X ,Y } such that

B .X =̂ v = X
B .Y =̂ v = Y .

Refinement 2

The proof obligations for progress have now migrated
to the new synchronisation statement at X .7.

Proof (of progress at X .7) pcX = 7  pcX = 8
involves showing that

(1) pcX = 7 ∧ v 6= X  pcX = 7 ∧ v = X



Pre: ¬x ∧ ¬y ∧ pcX = pcY = 0
Invariants:
I : pcX ∈ C ⇒ pcY 6∈ C
J1: ¬y ⇒ pcY 6∈ C
J2: ¬x ⇒ pcX 6∈ C

B .Y ≡ ¬B .X

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y → {pcY 6∈ C}{x}
4: skip

8 y →
7: if B .X → {B .X}

{? pcY 6∈ C}
8: skip

fi

fi;
5: 〈CSX 〉;
6: x := false

od

Component Y
0: do true →
1: 〈NCSY 〉;
2: y := true;
3: if ¬x →
4: skip

8 x →
7: if B .Y → {¬B .X}
8: skip

fi

fi;
5: 〈CSY 〉;
6: y := false

od

Figure 7: Refinement 1 (ii)

(2) pcX = 7 ∧ v = X  pcX = 8.

And indeed we have made ‘progress’ in the deriva-
tion, because (2) now follows by the immediate
progress rule on account of our earlier decision to
make v = X GC in X . For (1) it is clear that we
need to make an assignment to v in Y that makes
v = X true, and in light of the role of X .7 as a syn-
chronisation statement, the earliest safe opportunity
to do this is at statement Y .6. The result is the an-
notation of Figure 8.

Pre: ¬x ∧ ¬y ∧ (v = X ∨ v = Y ) ∧ pcX = pcY = 0
Invariants:
I : pcX ∈ C ⇒ pcY 6∈ C
J1: ¬y ⇒ pcY 6∈ C
J2: ¬x ⇒ pcX 6∈ C
Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y → {pcY 6∈ C}{x}
4: skip

8 y → {x}
7: if v = X → {v = X}

{? pcY 6∈ C}
8: skip

fi

fi;
5: 〈CSX 〉;
6: x := false ‖ v := Y

od

Component Y
0: do true →
1: 〈NCSY 〉;
2: y := true;
3: if ¬x →
4: skip

8 x →
7: if v = Y → {v = Y }
8: skip

fi

fi;
5: 〈CSY 〉;
6: y := false ‖ v := X

od

Figure 8: Refinement 2 (i)

It remains to check (1), which is done by consid-
ering all control points in Y . That is, we show

(∀ i : : pcX =7 ∧ v 6= X ∧ pcY = i pcX = 7 ∧ v =X ).

Noting that pcX = 7 is stable in Y , by immediate
progress we get

v 6= X ∧ pcY = 0
 v 6= X ∧ pcY = 1
 v 6= X ∧ pcY = 2
 v 6= X ∧ pcY = 3 {pcX = 7 ⇒ x}
 v 6= X ∧ pcY = 7 {v 6= X ≡ v = Y }
 v 6= X ∧ pcY = 8
 v 6= X ∧ pcY = 5
 v 6= X ∧ pcY = 6
 v = X

v 6= X ∧ pcY = 4
 v 6= X ∧ pcY = 5

This gives us a proof of progress, which relies on
the assumption that code segments CS and NCS
will always terminate. However, it is usual to remove
this assumption in the case of NCS . In terms of
our formalisation of the problem, the proof above
assumes that atomic statements 〈CS 〉 and 〈NCS 〉
are always enabled. Once we drop this assumption
for statement 〈NCSY 〉, the inference from pcY = 1
to pcY = 2 is blocked, meaning that something more
is needed for progress.

Proof (of progress at X .7 again)
As pre(Y .1) ⇒ ¬y, we focus attention on showing

pcX = 7 ∧ v 6= X ∧ ¬y  pcX = 8

Given the possibility that Y .1 may be forever blocked,
our only option is to weaken the guard at X .7 to
v = X ∨ ¬y as shown in Figure 9. Weakening the
guard in this manner however does not preserve the
annotation and leaves pcY 6∈ C a queried assertion at
X .8. We defer considering how to establish correct-
ness of pcY 6∈ C at X .8 until a later stage.

Pre: ¬x ∧ ¬y ∧ (v = X ∨ v = Y ) ∧ pcX = pcY = 0
Invariants: I , J1, J2

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y → {pcY 6∈ C}{x}
4: skip

8 y →
7: if v = X ∨ ¬y →

{? pcY 6∈ C}
8: skip

fi

fi;
5: 〈CSX 〉;
6: x := false ‖ v := Y

od

Component Y
0: do true → {¬y}
1: 〈NCSY 〉;
2: y := true;
3: if ¬x →
4: skip

8 x →
7: if v = Y ∨ ¬x →
8: skip

fi

fi;
5: 〈CSY 〉;
6: y := false ‖ v := X

od

Figure 9: Refinement 2 (ii)

So again we have a proof of progress, but now the
proof relies on the assumption that the guard evalua-
tion statement at X .7 is an atomic statement, which,
indeed, it is in the programming model described in
Section 2.1. Unfortunately, this is not the model
that was assumed by Dekker. In Dekker’s model, an
atomic statement is restricted to at most one access to
at most one shared variable. The program in Figure
9 clearly violates this requirement at statements X .7
and X .6, and the removal of the ‘non-atomic’ guard
evaluation statement X .7 is the subject of the next
refinement (Figure 10).

Refinement 3

Once again, recalling that set C represents a compo-
nent about to execute its 〈CS 〉 statement, this refine-
ment induces a further redefinition of C to

C =̂ {4, 5, 8, 10}.

Again, we appear to have come full circle in
this step, returning to the synchronisation statement
if ¬y → skip fi, but again there is a different context
as we have added v to the program state. Having
reintroduced the danger of total deadlock at X .9 and
Y .9, we design to avoid this by strengthening the pro-
gram annotation with P at X .9 and ¬P in Y .9. The



Pre: ¬x ∧ ¬y ∧ (v = X ∨ v = Y ) ∧ pcX = pcY = 0
Invariants: I , J1, J2

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y → {pcY 6∈ C}{x}
4: skip

8 y →
7: if v = X → {v = X}

{? pcY 6∈ C}
8: skip

8 v 6= X → {? P}
9: if ¬y →

{pcY 6∈ C}{x}
10: skip

fi

fi

fi;
5: 〈CSX 〉;
6: x := false ‖ v := Y

od

Component Y
0: do true →
1: 〈NCSY 〉;
2: y := true;
3: if ¬x →
4: skip

8 x →
7: if v = Y →
8: skip

8 v 6= Y → {? ¬P}
9: if ¬x →
10: skip

fi

fi

fi;
5: 〈CSY 〉;
6: y := false ‖ v := X

od

Figure 10: Refinement 3 (i)

new context suggests a choice of P involving v . LC
points to P ≡ v 6= X , but this is not GC, so we
choose P ≡ (v = X ) and arrange LC with a second
synchronisation statement at X .11 as in Figure 11.

Pre: ¬x ∧ ¬y ∧ (v = X ∨ v = Y ) ∧ pcX = pcY = 0
Invariants: I , J1, J2

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y →

{pcY 6∈ C}{x}
4: skip

8 y →
7: if v = X → {v = X}

{? pcY 6∈ C}
8: skip

8 v 6= X →
11: if v = X →
12: skip

fi; {v = X}{x}
9: if ¬y →

{pcY 6∈ C}{x}
10: skip

fi

fi

fi;
5: 〈CSX 〉;
6: x := false ‖ v := Y

od

Component Y
{¬y}

0: do true →
1: 〈NCSY 〉;
2: y := true; {y}
3: if ¬x →
4: skip

8 x → {y}
7: if v = Y → {v = Y }
8: skip

8 v 6= Y → {y}
11: if v = Y →
12: skip

fi; {v = Y }
9: if ¬x →
10: skip

fi

fi

fi;
5: 〈CSY 〉;
6: y := false ‖ v := X

od

Figure 11: Refinement 3 (ii)

Refinement 4

Before considering progress at the new synchronisa-
tion statement X .9, we note that the structure of the
code now suggests an opportunity to restore safety at
X .8. This is done by moving the new synchronisa-
tion statement outside of the scope of the conditional
statement at X .7 as in Figure 12. Note too that the
annotation at X .9 in Figure 11 still holds at X .9 in
Figure 12. Again, set C is modified accordingly

C =̂ {4, 5, 10}.

Pre: ¬x ∧ ¬y ∧ (v = X ∨ v = Y ) ∧ pcX = pcY = 0
Invariants: I , J1, J2

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y →

{pcY 6∈ C}{x}
4: skip

8 y →
7: if v = X →
8: skip

8 v 6= X →
11: if v = X →
12: skip

fi

fi; {v = X}{x}
9: if ¬y →

{pcY 6∈ C}{x}
10: skip

fi

fi;
5: 〈CSX 〉;
6: x := false ‖ v := Y

od

Component Y
{¬y}

0: do true →
1: 〈NCSY 〉;
2: y := true; {y}
3: if ¬x →
4: skip

8 x → {y}
7: if v = Y →
8: skip

8 v 6= Y → {y}
11: if v = Y →
12: skip

fi

fi; {v = Y }
9: if ¬x →
10: skip

fi

fi;
5: 〈CSY 〉;
6: y := false ‖ v := X

od

Figure 12: Refinement 4

Refinement 5

Proof (of progress at X .9) pcX = 9  pcX = 10.
As before, this goal reduces to

(1) pcX = 9 ∧ y  pcX = 9 ∧ ¬y

(2) pcX = 9 ∧ ¬y  pcX = 10

(2) again confronts us with the problem of a poten-
tially oscillating guard, but we begin with (1), to es-
tablish the possibility of Y making the guard true.

pcX = 9 ∧ y  pcX = 9 ∧ ¬y
⇐

∀ i : : pcX = 9 ∧ y ∧ pcY = i  pcX = 9 ∧ ¬y

First, note that pcY = 6 leads to ¬y by the immediate
progress rule. Next, note that the proof is simplified
by eliminating control points from consideration. The
annotation eliminates pcY ∈ {0, 1, 2}

pcY ∈ {0, 1, 2}
⇒ {annotation}

¬y
⇒ {pcX = 9 ∧ y}

false

and pcY ∈ {8, 9, 12} on account of v = Y , which
leaves pcY ∈ {3, 4, 7, 11, 10, 5}, of which {4,10,5} lead
to 6, which just leaves pcY ∈ {3, 7, 11}

pcY = 3
 {Immediate progress as pcX = 9 ⇒ x}

pcY = 7
 {Immediate progress as pcX = 9 ⇒ v = X }

pcY = 11

At this point we are stuck at Y .11 since the guard
is v = Y and pcX = 9 ⇒ v = X . A further refine-
ment is needed, and we have only one viable choice
for a code change in component Y . Enabling the
guard at Y .11 with v := Y at Y .11 is clearly not
an option. Nor is arranging disjointness of states
(pcX = 9 ∧ pcY = 11 ⇒ false) using x := false at
Y .11, because it upsets the GC of x in X . This only
leaves y:= false at Y .11, restoring LC of the annota-
tion of Y by adding statement y:= true after Y .11
as in Figure 13. Carefully recapitulating the proof of
(1) will show that it is now concluded.

It remains to prove (2)



Pre: ¬x ∧ ¬y ∧ (v = X ∨ v = Y ) ∧ pcX = pcY = 0
Invariants: I , J1, J2

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y →

{pcY 6∈ C}{x}
4: skip

8 y →
7: if v = X →
8: skip

8 v 6= X →
13: x := false;
11: if v = X →
12: skip

fi;
14: x := true

fi; {v = X}{x}
9: if ¬y →

{pcY 6∈ C}{x}
10: skip

fi

fi;
5: 〈CSX 〉;
6: x := false ‖ v := Y

od

Component Y
{¬y}

0: do true →
1: 〈NCSY 〉;
2: y := true; {y}
3: if ¬x →
4: skip

8 x → {y}
7: if v = Y →
8: skip

8 v 6= Y →
13: y := false; {¬y}
11: if v = Y →
12: skip

fi;
14: y := true {y}

fi; {v = Y }
9: if ¬x →
10: skip

fi

fi;
5: 〈CSY 〉;
6: y := false ‖ v := X

od

Figure 13: Refinement 5 (i)

(2) pcX = 9 ∧ ¬y  pcX = 10.

The annotation of Y shows that only pcY ∈
{0, 1, 2, 11} need be considered since these are the
only states consistent with v = X ∧ ¬y and, by re-
peated application of the immediate progress rule, we
have

pcX = 9 ∧ pcY = 0
 

pcX = 10 ∨ (pcX = 9 ∧ pcY = 3)

and, by the proof of (1) above

pcX = 9 ∧ pcY = 3
 

pcX = 9 ∧ pcY = 11

and, by immediate progress

pcX = 9 ∧ pcY = 11
 

pcX = 10

It remains to prove that X makes progress at the
synchronisation statement at X .11.

Proof (of progress at X .11) pcX = 11 pcX = 12

(1) pcX = 11 ∧ v 6= X  pcX = 11 ∧ v = X

(2) pcX = 11 ∧ v = X  pcX = 12

(2) follows by the immediate progress rule as v = X
is GC in X . We next check (1) by appealing to the
usual rule

pcX = 11 ∧ v 6= X  pcX = 11 ∧ v = X
⇐ (∀ i : : pcX = 11 ∧ v 6= X ∧ pcY = i  

pcX = 11 ∧ v = X )

As pcX = 11 is stable in Y , by immediate progress
we have

v 6= X ∧ pcY = 0
 v 6= X ∧ pcY = 1

v 6= X ∧ pcY = 2
 v 6= X ∧ pcY = 3 {pcX = 11 ⇒ ¬x}
 v 6= X ∧ pcY = 4
 v 6= X ∧ pcY = 5
 v 6= X ∧ pcY = 6
 v = X

v 6= X ∧ pcY = 7 {v = Y }
 v 6= X ∧ pcY = 8
 v = X

v 6= X ∧ pcY = 13
 v 6= X ∧ pcY = 11 {v = Y }
 v 6= X ∧ pcY = 12
 v 6= X ∧ pcY = 14
 v 6= X ∧ pcY = 9 {pcX = 11 ⇒ ¬x}
 v 6= X ∧ pcY = 10
 v = X

Only one transition is missing to complete the
proof, the transition from Y .1 to Y .2, and, as before,
since this statement might be continually disabled, we
must appeal to the program annotation to permit the
inference by disjointness of states.

false
≡ {v = X ∨ y ∨ pcY 6= 1}

pcX = 11 ∧ v 6= X ∧ pcY = 1 ∧ ¬y
 

pcX = 11 ∧ v = X

It remains to check that the program can be cor-
rectly annotated with pre(X .11) = (v = X ∨ y ∨
pcY 6= 1). LC is at the cost of the same annotation
at X .13 and X .7. For GC at X .11, statements Y .0
(falsifies pcY 6= 1), and Y .13 and Y .6 (falsify y) need
to be considered. GC under Y .13 and Y .6 is straight-
forward because pcY 6= 1 is maintained. For Y .0, we
have

wlp.(pcY : = 1).(v = X ∨ y ∨ pcY 6= 1)
≡ v = X ∨ y
⇐ v = X

⇐ pcX = 11 ∧ (v = X ∨ pcX 6∈ {7, 13, 11})

The precondition of Y .0 is strengthened with v =
X ∨ pcX 6∈ {7, 13, 11} accordingly, and we must check
that this annotation is correct. LC is by statement
Y .6 and by Pre. For GC at Y .0, statements X .6 (fal-
sifies v = X ) and X .3 (statement X .7 is reached from
X .3) need to be considered. GC under X .6 is straight-
forward because pcX 6∈ {7, 13, 11} is maintained. For
X .3, we have

y ⇒ wlp.(pcX : = 7).(pcX 6∈ {7, 13, 11})
≡

y ⇒ false
≡ {coassertion ¬y at Y .0}

true

These changes are reflected in Figure 14.

A final refinement

In Figure 14, the multiple assignment at X .6 is non-
atomic in the model assumed by Dekker so it is nec-
essary to decompose this multiple assignment into a
pair of its component assignments. This is done in
Figure 15. The change affects the local correctness
of the annotation at Y .0. It can be restored by an-
notating Y .6 with v = X ∨ pcX 6∈ {7, 13, 11}, but
loss of the coassertion ¬y upsets its global correct-
ness under statement X .3. A solution is to once more
extend the definition of critical set C to represent a



Pre: ¬x ∧ ¬y ∧ (v = X ∨ v = Y ) ∧ pcX = pcY = 0
Invariants: I , J1, J2

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y →

{pcY 6∈ C}{x}
4: skip

8 y →
{v = X ∨ y ∨ pcY 6= 1}

7: if v = X →
8: skip

8 v 6= X →
13: x := false;

{v = X ∨ y ∨ pcY 6= 1}
11: if v = X →
12: skip

fi;
14: x := true

fi; {v = X}{x}
9: if ¬y →

{pcY 6∈ C}{x}
10: skip

fi

fi;
5: 〈CSX 〉;
6: x := false ‖ v := Y

od

Component Y
{¬y}{v = X ∨

pcX 6∈ {7, 13, 11}}
0: do true →
1: 〈NCSY 〉;
2: y := true;
3: if ¬x →
4: skip

8 x →
7: if v = Y →
8: skip

8 v 6= Y →
13: y := false;
11: if v = Y →
12: skip

fi;
14: y := true

fi;
9: if ¬x →
10: skip

fi

fi;
5: 〈CSY 〉;
6: y := false ‖ v := X

od

Figure 14: Refinement 5 (ii)

component being about to execute its 〈CS 〉 statement
with pc ∈ {4, 5, 10} or executing its exit protocol with
pc ∈ {15, 6}.

C =̂ {4, 5, 10, 15, 6}

It is routine to check that the annotation is correct,
and so satisfies mutual exclusion by construction, and
that the proofs of progress at X .9 and X .11 presented
in refinement 4 remain correct. The program deriva-
tion is now concluded.

Pre: ¬x ∧ ¬y ∧ (v = X ∨ v = Y ) ∧ pcX = pcY = 0
Invariants: I , J1, J2

Component X
0: do true →
1: 〈NCSX 〉;
2: x := true;
3: if ¬y →

{pcY 6∈ C}{x}
4: skip

8 y →
{v = X ∨ y ∨ pcY 6= 1}

7: if v = X →
8: skip

8 v 6= X →
13: x := false;

{v = X ∨ y ∨ pcY 6= 1}
11: if v = X →
12: skip

fi;
14: x := true

fi; {v = X}{x}
9: if ¬y →

{pcY 6∈ C}{x}
10: skip

fi

fi;
5: 〈CSX 〉; {pcY 6∈ C} {x}
15: v := Y ;
6: x := false

od

Component Y
{¬y}{v = X ∨

pcX 6∈ {7, 13, 11}}
0: do true →
1: 〈NCSY 〉;
2: y := true;
3: if ¬x →
4: skip

8 x →
7: if v = Y →
8: skip

8 v 6= Y →
13: y := false;
11: if v = Y →
12: skip

fi;
14: y := true

fi;
9: if ¬x →
10: skip

fi

fi;
5: 〈CSY 〉;
15: v := X ;

{v = X}{pcY ∈ C}
6: y := false

od

Figure 15: Final refinement

Overview

Dekker’s algorithm has been successfully derived from
the safe sluice algorithm in a series of six small refine-
ment steps. This section provides an overview of each
of these steps. The first refinement removes deadlock
at the synchronisation point X .3 in Figure 4. This,
however, introduces the danger of violating safety and
motivates a new synchronisation statement at X .7 in
Figure 8. The second refinement is entirely driven
by the need to satisfy progress at this newly created
synchronisation point. However, progress can only
be proved under the assumption that non-critical sec-
tions terminate, and the removal of this assumption
has the effect of complicating the new synchronisa-
tion statement X .7 in Figure 9. This complication
runs contrary to the model of atomic statements that
was assumed by Dekker, and the purpose of the third
refinement is to restore this model. Unfortunately,
this change reintroduces the danger of total deadlock
(at X .9 in Figure 10) that arises in the safe sluice
algorithm. Fortunately, the new context allows us to
remove this danger at the cost of a second synchroni-
sation statement (at X .11 in Figure 11). Refinement
four is concerned with restoring the mutual exclu-
sion property that was upset at the first refinement
step and at this point (Figure 12) we finally achieve
a correct program annotation. The fifth refinement is
concerned with proving progress at the two synchro-
nisation points (X .9 and X .11 in Figure 12) that were
introduced at refinement three. The sixth, and final,
refinement is concerned with decoupling the multiple
assignment at X .6 in Figure 14. It turns out that
there is only one way to do this, and the result is
Dekker’s algorithm.

5 Conclusion

We have shown how the extended theory of Owicki
and Gries can be used to design a concurrent program
in a way that gives proper consideration to progress as
well as safety requirements. Dekker’s program was an
ideal choice for this purpose because, as we have seen,
so much of its code is bound up with satisfaction of
the progress requirement that it is difficult to imagine
a derivation being made in the core theory of Owicki
and Gries. The example illustrates several tactical
aspects of progress driven derivation, an example of
which is the common proof pattern that is used to
discharge a progress obligation at a synchronisation
point, which is illustrated in refinements 1, 2 and 5.

As to the workload of the proof, whilst it is long,
this must be traded against the size of each refine-
ment step. Experience shows that it is easy to make
mistakes when reasoning about a concurrent program,
which recommends a process of small steps in which
the burden of checking the correctness of each step
is kept managable. Second, the complexity of the
program should not be overlooked when assessing the
complexity of its proof. Since Dekker’s program is
inherently complicated, we should not expect to be
able to show it correct in a simple fashion, no matter
what approach is taken. The reader is once again
invited to convince themself by operational means
that Dekker’s algorithm is correct. Third, we note
that derivation leaves open the possibility of alterna-
tive design in a way that verification does not, where
alternative, possibly better, programs must be over-
looked. In fact, going back to our first refinement
of Figure 4, we could have produced Peterson’s al-
gorithm for two process mutual exclusion instead of
Dekker’s had we chosen to weaken the guard at the
synchronisation statement X .3. It is quite satisfying
that a derivational approach to programming is able



to isolate the essential difference between these two
programs in this way, when they are separated by
some 15 years in their publication. Finally, we note
that our derivation compares favourably to the for-
mal treatment of a verification of Dekker’s algorithm
in (Francez 1986).

As to alternative programming models, there are
several event based models, such as (Chandy & Misra
1988, Lamport 1994, Lynch & Tuttle 1989, Back &
Sere 1989), which really only differ amongst them-
selves in terms of the ease with which a given pro-
gram can be formalized in a given model. We see the
strength of our approach over these in its ability to
support a more direct translation of a program design
into code on account of the concurrent sequential pro-
gramming model that we have adopted. Orthogonal
to the choice of programming model is the choice of
how to use it. For instance, (Lamport 1994) describes
refinement techniques that preserve both safety and
progress properties, but where the focus is on the
validation of refinements rather than the synthesis
of code. (Chandy & Misra 1988) have shown how
to derive a UNITY program in a way that takes ac-
count of both safety and progress requirements, but,
as just remarked, this event-based model is some-
what removed from ours. (Stølen 1990) presents a
derivation of Dekker’s algorithm in a compositional
setting, also addressing progress, however, although
the specification is clearly that of Dekker’s algo-
rithm, it is unclear how the code itself is generated.
(Dingel 1999) describes a refinement method based on
program syntax that combines compositional reason-
ing with the refinement calculus of (Morgan 1990),
where both safety and liveness properties are given
mention. (Feijen & van Gasteren 1999), as already
remarked, derive programs using the same model as
ours, but where formal derivation only takes account
of safety requirements. Nevertheless, their style of us-
ing logic for program design is the approach that we
find most appealing, and the one that we have tried
to build upon in this paper.

References

Back, R. J. & Sere, K. (1989), Stepwise refine-
ment of action systems, in ‘International Confer-
ence on Mathematics of Program Construction,
375th Anniversary of the Groningen University’,
pp. 115–138.

Chandy, K. M. & Misra, J. (1988), Parallel Program
Design, A Foundation, Addison-Wesley.

Dijkstra, E. W. (1976), A Discipline of Programming,
Prentice Hall.

Dijkstra, E. W. (1982), A personal summary of the
Gries-Owicki theory, in ‘Selected Writings on
Computing: A Personal Perspective’, Springer-
Verlag.

Dingel, J. (1999), A trace-based refinement calculus
for shared-variable parallel programs, in ‘Sev-
enth International Conference on the Algebraic
Methodology and Software Technology (AMAST
’98) Amazonia, Brazil’.

Dongol, B. & Goldson, D. (2004), Extending the the-
ory of Owicki and Gries with a logic of progress,
in ‘Proceedings of Principles of Software Engi-
neering 2004’.

Feijen, W. H. J. & van Gasteren, A. J. M. (1999), On
a Method of Multiprogramming, Springer-Verlag.

Francez, N. (1986), Fairness, Springer-Verlag.

Lamport, L. (1994), ‘The temporal logic of actions’,
ACM Transactions on Programming Languages
and Systems 16(3), 872–923.

Lynch, N. & Tuttle, M. (1989), ‘An introduc-
tion to input/output automata’, CWI-Quarterly
2(3), 219–246.

Misra, J. (2001), A Discipline of Multiprogramming,
Springer-Verlag.

Morgan, C. (1990), Programming from Specifications,
Prentice-Hall.

Owicki, S. & Gries, D. (1976), ‘Verifying properties
of parallel programs: An axiomatic approach’,
Communications of the ACM 19(5), 279–285.

Stølen, K. (1990), Development of Parallel Programs
on Shared Data-structures, PhD thesis, Univer-
sity of Manchester.


